Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Environmental crises at the Permian–Triassic mass extinction

Abstract

The link between the Permian–Triassic mass extinction (252 million years ago) and the emplacement of the Siberian Traps Large Igneous Province (STLIP) was first proposed in the 1990s. However, the complex cascade of volcanically driven environmental and biological events that led to the largest known extinction remains challenging to reconstruct. In this Review, we critically evaluate the geological evidence and discuss the current hypotheses surrounding the kill mechanisms of the Permian–Triassic mass extinction. The initial extrusive and pyroclastic phase of STLIP volcanism was coeval with a widespread crisis of terrestrial biota and increased stress on marine animal species at high northern latitudes. The terrestrial ecological disturbance probably started 60–370 thousand years before that in the ocean, indicating different response times of terrestrial and marine ecosystems to the Siberian Traps eruptions, and was related to increased seasonality, ozone depletion and acid rain, the effects of which could have lasted more than 1 million years. The mainly intrusive STLIP phase that followed is linked with the final collapse of terrestrial ecosystems and the rapid (around 60 thousand years) extinction of 81–94% of marine species, potentially related to a combination of global warming, anoxia and ocean acidification. Nevertheless, the ultimate reasons for the exceptional severity of the Permian–Triassic mass extinction remain debated. Improved geochronology (especially of terrestrial records and STLIP products), tighter ecological constraints and higher-resolution Earth system modelling are needed to resolve the causal relations between volcanism, environmental perturbations and the patterns of ecosystem collapse.

Key points

  • The Permian–Triassic mass extinction (252 million years ago) substantially reduced global biodiversity, with the extinction of 81–94% of marine species and 70% of terrestrial vertebrate families.

  • Sedimentary, palaeontological and geochemical records of the mass extinction indicate that a cascade of environmental changes caused the extinction.

  • The environmental changes can be linked (and attributed to) the effects of volcanic emissions (for example, CO2, SO2, halogens and metals) during the eruption of the Siberian Traps Large Igneous Province.

  • The inferred volcanically driven environmental perturbations include: global warming, oceanic anoxia, oceanic acidification, ozone reduction, acid rain and metal poisoning.

  • The crisis on land probably started about 60–370 thousand years before that in the ocean, indicating the different response times of terrestrial and marine ecosystems to volcanism, but the reasons for the earlier terrestrial crisis remain poorly understood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The PTME and its world.
Fig. 2: Marine mass extinction.
Fig. 3: Extinction selectivity during the PTME.
Fig. 4: Terrestrial mass extinction.
Fig. 5: Links between Siberian Traps, extinction, C-cycle changes and global warming.
Fig. 6: Extinction mechanisms.

Similar content being viewed by others

Data availability statement

Data from the Paleobiology Database used for the calculation of the marine extinction rate are available in Supplementary Data 13.

References

  1. Wignall, P. B. The Worst of Times (Princeton Univ. Press, 2015).

  2. Black, B. A., Karlstrom, L. & Mather, T. A. The life cycle of large igneous provinces. Nat. Rev. Earth Environ. 2, 840–857 (2021).

    Article  Google Scholar 

  3. Jin, Y. G. et al. Pattern of marine mass extinction near the Permian–Triassic boundary in south China. Science 289, 432–436 (2000).

    Article  Google Scholar 

  4. Song, H., Wignall, P. B., Tong, J. & Yin, H. Two pulses of extinction during the Permian–Triassic crisis. Nat. Geosci. 6, 52–56 (2013).

    Article  Google Scholar 

  5. Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in Earth history. Proc. Natl Acad. Sci. USA 113, E6325–E6334 (2016).

    Article  Google Scholar 

  6. Benton, M. J. & Newell, A. J. Impacts of global warming on Permo–Triassic terrestrial ecosystems. Gondwana Res. 25, 1308–1337 (2014).

    Article  Google Scholar 

  7. Brayard, A. et al. Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nat. Geosci. 4, 693–697 (2011).

    Article  Google Scholar 

  8. Brayard, A. et al. Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science 325, 1118–1121 (2009).

    Article  Google Scholar 

  9. Scheyer, T. M., Romano, C., Jenks, J. & Bucher, H. Early triassic marine biotic recovery: the predators’ perspective. PLoS ONE 9, e88987 (2014).

    Article  Google Scholar 

  10. Retallack, G. J., Veevers, J. J. & Morante, R. Global coal gap between Permian–Triassic extinction and Middle Triassic recovery of peat-forming plants. Bull. Geolog. Soc. Am. 108, 195–207 (1996).

    Article  Google Scholar 

  11. Payne, J. L. et al. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305, 506–509 (2004).

    Article  Google Scholar 

  12. Song, H., Wignall, P. B. & Dunhill, A. M. Decoupled taxonomic and ecological recoveries from the Permo–Triassic extinction. Sci. Adv. 4, eaat5091 (2018).

    Article  Google Scholar 

  13. Retallack, G. J. Postapocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney basin, Australia. Bull. Geol. Soc. Am. 111, 52–70 (1999).

    Article  Google Scholar 

  14. Ward, P. D., Montgomery, D. R. & Smith, R. Altered river morphology in South Africa related to the Permian–Triassic extinction. Science 289, 1740–1743 (2000).

    Article  Google Scholar 

  15. Wignall, P. B. & Twitchett, R. J. Extent, duration, and nature of the Permian–Triassic superanoxic event. Spec. Pap. Geol. Soc. Am. 356, 395–413 (2002).

    Google Scholar 

  16. Rampino, M. R. & Stothers, R. B. Flood basalt volcanism during the past 250 million years. Science 241, 663–668 (1988).

    Article  Google Scholar 

  17. Renne, P. R. & Basu, A. R. Rapid eruption of the Siberian traps flood basalts at the Permo–Triassic boundary. Science 253, 176–179 (1991).

    Article  Google Scholar 

  18. Burgess, S. D. & Bowring, S. A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci. Adv. 1, e1500470 (2015).

    Article  Google Scholar 

  19. Vasiljev, Y. R., Zolotukhin, V. V., Feoktistov, G. D. & Prusskaya, S. N. Volume estimation and genesis of Permian–Triassic trap magmatism from Siberian platform. Russ. Geol. Geophys. 41, 1696–1705 (2000).

    Google Scholar 

  20. Dobretsov, N. L. Large igneous provinces of Asia (250 Ma): Siberian and Emeishan traps (plateau basalts) and associated granitoids. Geol. Geof. 46, 870–890 (2005).

    Google Scholar 

  21. Augland, L. E. et al. The main pulse of the Siberian Traps expanded in size and composition. Sci. Rep. 9, 18723 (2019).

    Article  Google Scholar 

  22. Kasbohm, J., Schoene, B. & Burgess, S. in Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes (eds Ernst, R. E., Dickson, A. & Bekker, A.) 27–82 (Wiley, 2021).

  23. Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164 (2017).

    Article  Google Scholar 

  24. Posenato, R. Marine biotic events in the lopingian succession and latest Permian extinction in the Southern Alps (Italy). Geol. J. 45, 195–215 (2010).

    Article  Google Scholar 

  25. Posenato, R. The end-Permian mass extinction (EPME) and the early Triassic biotic recovery in the western Dolomites (Italy): state of the art. Bull. Soc. Paleontol. Ital. 58, 11–34 (2019).

    Google Scholar 

  26. Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 385 (2019).

    Article  Google Scholar 

  27. Chu, D. et al. Ecological disturbance in tropical peatlands prior to marine Permian–Triassic mass extinction. Geology 48, 288–292 (2020).

    Article  Google Scholar 

  28. Gastaldo, R. A. et al. The base of the Lystrosaurus Assemblage Zone, Karoo basin, predates the end-Permian marine extinction. Nat. Commun. 11, 1428 (2020).

    Article  Google Scholar 

  29. Foote, M. Morphological and taxonomic diversity in clade’s history: the blastoid record and stochastic simulations. Contrib. Mus. Paleontol. 28, 101–140 (1991).

    Google Scholar 

  30. Stanley, S. M. & Yang, X. A double mass extinction at the end of the Paleozoic era. Science 266, 1340–1344 (1994).

    Article  Google Scholar 

  31. Wang, X. D. & Sugiyama, T. Diversity and extinction patterns of Permian coral faunas of China. Lethaia 33, 285–294 (2000).

    Article  Google Scholar 

  32. Hallam, A. & Wignall, P. B. Mass Extinctions and their Aftermath (Oxford Univ. Press, 1997).

  33. Orchard, M. J. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 93–117 (2007).

    Article  Google Scholar 

  34. Romano, C. et al. Permian–Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution. Biol. Rev. 91, 106–147 (2016).

    Article  Google Scholar 

  35. Tu, C., Chen, Z. Q. & Harper, D. A. T. Permian–Triassic evolution of the Bivalvia: extinction-recovery patterns linked to ecologic and taxonomic selectivity. Palaeogeogr. Palaeoclimatol. Palaeoecol. 459, 53–62 (2016).

    Article  Google Scholar 

  36. Schaal, E. K., Clapham, M. E., Rego, B. L., Wang, S. C. & Payne, J. L. Comparative size evolution of marine clades from the Late Permian through Middle Triassic. Paleobiology 42, 127–142 (2016).

    Article  Google Scholar 

  37. Chen, J. et al. Size variation of brachiopods from the late Permian through the middle Triassic in south China: evidence for the Lilliput effect following the Permian–Triassic extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 519, 248–257 (2019).

    Article  Google Scholar 

  38. Feng, Y., Song, H. & Bond, D. P. G. Size variations in foraminifers from the early Permian to the Late Triassic: implications for the Guadalupian–Lopingian and the Permian–Triassic mass extinctions. Paleobiology 46, 511–532 (2020).

    Article  Google Scholar 

  39. Luo, G., Lai, X., Jiang, H. & Zhang, K. Size variation of the end-Permian conodont Neogondolella at Meishan section, Changxing, Zhejiang and its significance. Sci. China Ser. D 49, 337–347 (2006).

    Article  Google Scholar 

  40. Brayard, A. et al. Early Triassic Gulliver gastropods: spatio-temporal distribution and significance for biotic recovery after the end-Permian mass extinction. Earth Sci. Rev. 146, 31–64 (2015).

    Article  Google Scholar 

  41. Knoll, A. H., Bambach, R. K., Canfield, D. E. & Grotzinger, J. P. Comparative Earth history and late Permian mass extinction. Science 273, 452–457 (1996).

    Article  Google Scholar 

  42. Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S. & Fischer, W. W. Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 256, 295–313 (2007).

    Article  Google Scholar 

  43. Clapham, M. E. & Payne, J. L. Acidification, anoxia, and extinction: a multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian. Geology 39, 1059–1062 (2011).

    Article  Google Scholar 

  44. Vázquez, P. & Clapham, M. E. Extinction selectivity among marine fishes during multistressor global change in the end-Permian and end-Triassic crises. Geology 45, 395–398 (2017).

    Article  Google Scholar 

  45. Payne, J. L. & Finnegan, S. The effect of geographic range on extinction risk during background and mass extinction. Proc. Natl Acad. Sci. USA 104, 10506–10511 (2007).

    Article  Google Scholar 

  46. Dai, X. & Song, H. Toward an understanding of cosmopolitanism in deep time: a case study of ammonoids from the middle Permian to the Middle Triassic. Paleobiology 46, 533–549 (2020).

    Article  Google Scholar 

  47. Kiessling, W. et al. Pre-mass extinction decline of latest Permian ammonoids. Geology 46, 283–286 (2018).

    Article  Google Scholar 

  48. Rampino, M. R. & Adler, A. C. Evidence for abrupt latest Permian mass extinction of foraminifera: results of tests for the Signor–Lipps effect. Geology 26, 415–418 (1998).

    Article  Google Scholar 

  49. Song, H., Tong, J., Chen, Z. Q., Yang, H. & Wang, Y. End-Permian mass extinction of foraminifers in the Nanpanjiang basin, south China. J. Paleontol. 83, 718–738 (2009).

    Article  Google Scholar 

  50. Wignall, P. B. & Hallam, A. Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeogr. Palaeoclimatol. Palaeoecol. 93, 21–46 (1992).

    Article  Google Scholar 

  51. Shen, S. Z. et al. A sudden end-Permian mass extinction in south China. Bull. Geol. Soc. Am. 131, 205–223 (2019).

    Article  Google Scholar 

  52. Angiolini, L., Checconi, A., Gaetani, M. & Rettori, R. The latest Permian mass extinction in the Alborz Mountains (North Iran). Geol. J. 45, 216–229 (2010).

    Article  Google Scholar 

  53. Yin, H., Feng, Q., Lai, X., Baud, A. & Tong, J. The protracted Permo-Triassic crisis and multi-episode extinction around the Permian–Triassic boundary. Glob. Planet. Change 55, 1–20 (2007).

    Article  Google Scholar 

  54. Wignall, P. B. & Newton, R. Contrasting deep-water records from the Upper Permian and Lower Triassic of South Tibet and British Columbia: evidence for a diachronous mass extinction. Palaios 18, 153–167 (2003).

    Article  Google Scholar 

  55. Wang, Y. et al. Quantifying the process and abruptness of the end-Permian mass extinction. Paleobiology 40, 113–129 (2014).

    Article  Google Scholar 

  56. Liu, X., Song, H., Bond, D. P. G., Tong, J. & Benton, M. J. Migration controls extinction and survival patterns of foraminifers during the Permian–Triassic crisis in south China. Earth Sci. Rev. 209, 103329 (2020).

    Article  Google Scholar 

  57. Chen, Z. Q. et al. Environmental and biotic turnover across the Permian–Triassic boundary on a shallow carbonate platform in western Zhejiang, south China. Aust. J. Earth Sci. 56, 775–797 (2009).

    Article  Google Scholar 

  58. He, W. H. et al. Late Permian marine ecosystem collapse began in deeper waters: evidence from brachiopod diversity and body size changes. Geobiology 13, 123–138 (2015).

    Article  Google Scholar 

  59. Burgess, S. D., Bowring, S. & Shen, S. Z. High-precision timeline for Earth’s most severe extinction. Proc. Natl Acad. Sci. USA 111, 3316–3321 (2014).

    Article  Google Scholar 

  60. Yang, H. et al. Composition and structure of microbialite ecosystems following the end-Permian mass extinction in south China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 111–128 (2011).

    Article  Google Scholar 

  61. Tian, L. et al. Distribution and size variation of ooids in the aftermath of the Permian–Triassic mass extinction. Palaios 30, 714–727 (2015).

    Article  Google Scholar 

  62. Retallack, G. J. Permian–Triassic life crisis on land. Science 267, 77–80 (1995).

    Article  Google Scholar 

  63. Looy, C. V., Brugman, W. A., Dilcher, D. L. & Visscher, H. The delayed resurgence of equatorial forests after the Permian–Triassic ecologic crisis. Proc. Natl Acad. Sci. USA 96, 13857–13862 (1999).

    Article  Google Scholar 

  64. Hermann, E. et al. Terrestrial ecosystems on North Gondwana following the end-Permian mass extinction. Gondwana Res. 20, 630–637 (2011).

    Article  Google Scholar 

  65. Cascales-Miñana, B., Diez, J. B., Gerrienne, P. & Cleal, C. J. A palaeobotanical perspective on the great end-Permian biotic crisis. Hist. Biol. 28, 1066–1074 (2016).

    Article  Google Scholar 

  66. Yu, J. et al. Vegetation changeover across the Permian–Triassic boundary in southwest China. Extinction, survival, recovery and palaeoclimate: a critical review. Earth Sci.Rev. 149, 203–224 (2015).

    Article  Google Scholar 

  67. Vajda, V. et al. End-Permian (252 Mya) deforestation, wildfires and flooding—an ancient biotic crisis with lessons for the present. Earth Planet. Sci. Lett. 529, 115875 (2020).

    Article  Google Scholar 

  68. Schneebeli-Hermann, E., Hochuli, P. A. & Bucher, H. Palynofloral associations before and after the Permian–Triassic mass extinction, Kap Stosch, East Greenland. Glob. Planet. Change 155, 178–195 (2017).

    Article  Google Scholar 

  69. Nowak, H., Schneebeli-Hermann, E. & Kustatscher, E. No mass extinction for land plants at the Permian–Triassic transition. Nat. Commun. 10, 384 (2019).

    Article  Google Scholar 

  70. Chu, D. et al. Biostratigraphic correlation and mass extinction during the Permian–Triassic transition in terrestrial-marine siliciclastic settings of south China. Glob. Planet. Change 146, 67–88 (2016).

    Article  Google Scholar 

  71. Zhang, H. et al. The terrestrial end-Permian mass extinction in south China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 448, 108–124 (2016).

    Article  Google Scholar 

  72. Krassilov, V. & Karasev, E. Paleofloristic evidence of climate change near and beyond the Permian–Triassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 326–336 (2009).

    Article  Google Scholar 

  73. Mcloughlin, S., Lindström, S. & Drinnan, A. N. Gondwanan floristic and sedimentological trends during the Permian–Triassic transition: new evidence from the Amery Group, northern Prince Charles Mountains, east Antarctica. Antarctic Sci. 9, 281–298 (1997).

    Article  Google Scholar 

  74. Kerp, H., Hamad, A. A., Vörding, B. & Bandel, K. Typical Triassic Gondwanan floral elements in the Upper Permian of the paleotropics. Geology 34, 265–268 (2006).

    Article  Google Scholar 

  75. Eshet, Y., Rampino, M. R. & Visscher, H. Fungal event and palynological record of ecological crisis and recovery across the Permian–Triassic boundary. Geology 23, 967–970 (1995).

    Article  Google Scholar 

  76. Visscher, H. et al. Environmental mutagenesis during the end-Permian ecological crisis. Proc. Natl Acad. Sci. USA 101, 12952–12956 (2004).

    Article  Google Scholar 

  77. Looy, C. V., Collinson, M. E., Van Konijnenburg-Van Cittert, J. H. A., Visscher, H. & Brain, A. P. R. The ultrastructure and botanical affinity of end-Permian spore tetrads. Int. J. Plant Sci. 166, 875–887 (2005).

    Article  Google Scholar 

  78. Foster, C. B. & Afonin, S. A. Abnormal pollen grains: an outcome of deteriorating atmospheric conditions around the Permian–Triassic boundary. J. Geol. Soc. 162, 653–659 (2005).

    Article  Google Scholar 

  79. Hochuli, P. A., Schneebeli-Hermann, E., Mangerud, G. & Bucher, H. Evidence for atmospheric pollution across the Permian–Triassic transition. Geology 45, 1123–1126 (2017).

    Article  Google Scholar 

  80. Rampino, M. R. & Eshet, Y. The fungal and acritarch events as time markers for the latest Permian mass extinction: an update. Geosci. Front. 9, 147–154 (2018).

    Article  Google Scholar 

  81. Benca, J. P., Duijnstee, I. A. P. & Looy, C. V. UV-B–induced forest sterility: implications of ozone shield failure in Earth’s largest extinction. Sci. Adv. 4, e1700618 (2018).

    Article  Google Scholar 

  82. Chu, D. et al. Metal-induced stress in survivor plants following the end-Permian collapse of land ecosystems. Geology 49, 657–661 (2021).

    Article  Google Scholar 

  83. Schneebeli-Hermann, E. et al. Vegetation history across the Permian–Triassic boundary in Pakistan (Amb section, Salt Range). Gondwana Res. 27, 911–924 (2015).

    Article  Google Scholar 

  84. Visscher, H. et al. The terminal paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. Proc. Natl Acad. Sci. USA 93, 2155–2158 (1996).

    Article  Google Scholar 

  85. Visscher, H., Sephton, M. A. & Looy, C. V. Fungal virulence at the time of the end-Permian biosphere crisis? Geology 39, 883–886 (2011).

    Article  Google Scholar 

  86. Looy, C. V., Twitchett, R. J., Dilcher, D. L., Van Konijnenburg-Van Cittert, J. H. A. & Visscher, H. Life in the end-Permian dead zone. Proc. Natl Acad. Sci. USA 98, 7879–7883 (2001).

    Article  Google Scholar 

  87. Bercovici, A. & Vajda, V. Terrestrial Permian–Triassic boundary sections in south China. Glob. Planet. Change 143, 31–33 (2016).

    Article  Google Scholar 

  88. Hochuli, P. A. Interpretation of “fungal spikes” in Permian–Triassic boundary sections. Glob. Planet. Change 144, 48–50 (2016).

    Article  Google Scholar 

  89. Angielczyk, K. D., Roopnarine, P. D. & Wang, S. C. Modeling the role of primary productivity disruption in end-Permian extinctions, Karoo basin, South Africa. New Mex. Mus. Nat. Hist. Sci. Bull. 30, 16–23 (2005).

    Google Scholar 

  90. Labandeira, C. C. & Sepkoski, J. J. Insect diversity in the fossil record. Science 261, 310–315 (1993).

    Article  Google Scholar 

  91. Shcherbakov, D. E. On Permian and Triassic insect faunas in relation to biogeography and the Permian-Triassic crisis. Paleontol. J. 42, 15–31 (2008).

    Article  Google Scholar 

  92. Condamine, F. L., Clapham, M. E. & Kergoat, G. J. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence? Sci. Rep. 6, 19208 (2016).

    Article  Google Scholar 

  93. Smith, R. M. H. & Ward, P. D. Pattern of vertebrate extinctions across an event bed at the Permian–Triassic boundary in the Karoo basin of South Africa. Geology 29, 1147 (2001).

    Article  Google Scholar 

  94. Benton, M. J., Tverdokhlebov, V. P. & Surkov, M. V. Ecosystem remodelling among vertebrates at the Permian–Triassic boundary in Russia. Nature 432, 97–100 (2004).

    Article  Google Scholar 

  95. Viglietti, P. A. et al. Evidence from South Africa for a protracted end-Permian extinction on land. Proc. Natl Acad. Sci. USA 118, e2017045118 (2021).

    Article  Google Scholar 

  96. Sennikov, A. G. & Golubev, V. K. Vyazniki biotic assemblage of the terminal Permian. Paleontol. J. 40, S475–S481 (2006).

    Article  Google Scholar 

  97. Sennikov, A. G. & Golubev, V. K. On the faunal verification of the Permo–Triassic boundary in continental deposits of eastern Europe: 1. Gorokhovets–Zhukov ravine. Paleontol. J. 46, 313–323 (2012).

    Article  Google Scholar 

  98. Zhu, Z. et al. Altered fluvial patterns in north China indicate rapid climate change linked to the Permian–Triassic mass extinction. Sci. Rep. 9, 16818 (2019).

    Article  Google Scholar 

  99. Shen, S. Z. et al. Calibrating the end-Permian mass extinction. Science 334, 1367–1372 (2011).

    Article  Google Scholar 

  100. Twitchett, R. J., Looy, C. V., Morante, R., Visscher, H. & Wignall, P. B. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology 29, 351–354 (2001).

    Article  Google Scholar 

  101. Biswas, R. K., Kaiho, K., Saito, R., Tian, L. & Shi, Z. Terrestrial ecosystem collapse and soil erosion before the end-Permian marine extinction: organic geochemical evidence from marine and non-marine records. Glob. Planet. Change 195, 103327 (2020).

    Article  Google Scholar 

  102. Aftabuzzaman, M. D. et al. End-Permian terrestrial disturbance followed by the complete plant devastation, and the vegetation proto-recovery in the earliest-Triassic recorded in coastal sea sediments. Glob. Planet. Change 205, 103621 (2021).

    Article  Google Scholar 

  103. Gastaldo, R. A., Neveling, J., Geissman, J. W., Kamo, S. L. & Looy, C. V. A tale of two Tweefonteins: what physical correlation, geochronology, magnetic polarity stratigraphy, and palynology reveal about the end-Permian terrestrial extinction paradigm in South Africa. GSA Bull. https://doi.org/10.1130/b35830.1 (2021).

  104. Yan, Z. et al. Frequent and intense fires in the final coals of the Paleozoic indicate elevated atmospheric oxygen levels at the onset of the end-Permian mass extinction event. Int. J.Coal Geol. 207, 75–83 (2019).

    Article  Google Scholar 

  105. DiMichele, W. A., Bashforth, A. R., Falcon-Lang, H. J. & Lucas, S. G. Uplands, lowlands, and climate: taphonomic megabiases and the apparent rise of a xeromorphic, drought-tolerant flora during the Pennsylvanian–Permian transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 559, 109965 (2020).

    Article  Google Scholar 

  106. Smith, R. M. H. & Botha-Brink, J. Anatomy of a mass extinction: sedimentological and taphonomic evidence for drought-induced die-offs at the Permo-Triassic boundary in the main Karoo basin, South Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 396, 99–118 (2014).

    Article  Google Scholar 

  107. Xiong, C. & Wang, Q. Permian–Triassic land-plant diversity in south China: was there a mass extinction at the Permian/Triassic boundary? Paleobiology 37, 157–167 (2011).

    Article  Google Scholar 

  108. Yu, J. et al. Terrestrial events across the Permian–Triassic boundary along the Yunnan–Guizhou border, SW China. Glob. Planet. Change 55, 193–208 (2007).

    Article  Google Scholar 

  109. Becker, L., Poreda, R. J., Hunt, A. G., Bunch, T. E. & Rampino, M. Impact event at the Permian–Triassic boundary: evidence from extraterrestrial noble gases in fullerenes. Science 291, 1530–1533 (2001).

    Article  Google Scholar 

  110. Basu, A. R., Petaev, M. I., Poreda, R. J., Jacobsen, S. B. & Becker, L. Chondritic meteorite fragments associated with the Permian–Triassic boundary in Antarctica. Science 302, 1388–1392 (2003).

    Article  Google Scholar 

  111. Isozaki, Y. Permo–Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276, 235–238 (1997).

    Article  Google Scholar 

  112. French, B. M. & Koeberl, C. The convincing identification of terrestrial meteorite impact structures: what works, what doesn’t, and why. Earth Sci. Rev. 98, 123–170 (2010).

    Article  Google Scholar 

  113. Saunders, A. D., England, R. W., Reichow, M. K. & White, R. V. A mantle plume origin for the Siberian traps: uplift and extension in the west Siberian basin, Russia. Lithos 79, 407–424 (2005).

    Article  Google Scholar 

  114. Reichow, M. K. et al. Petrogenesis and timing of mafic magmatism, south Taimyr, Arctic Siberia: a northerly continuation of the Siberian Traps? Lithos 248–251, 382–401 (2016).

    Article  Google Scholar 

  115. Naldrett, A. J., Lightfoot, P. C., Fedorenko, V., Doherty, W. & Gorbachev, N. S. Geology and geochemistry of intrusions and flood basalts of the Noril’sk region, USSR, with implications for the origin of the Ni-Cu ores. Econ. Geol. 87, 975–1004 (1992).

    Article  Google Scholar 

  116. Hawkesworth, C. J. et al. Magma differentiation and mineralisation in the Siberian continental flood basalts. Lithos 34, 61–88 (1995).

    Article  Google Scholar 

  117. Fedorenko, V. A. et al. Petrogenesis of the flood-basalt sequence at Noril’sk, north central Siberia. Int. Geol. Rev. 38, 99–135 (1996).

    Article  Google Scholar 

  118. Arndt, N., Chauvel, C., Czamanske, G. & Fedorenko, V. Two mantle sources, two plumbing systems: tholeiitic and alkaline magmatism of the Maymecha River basin, Siberian flood volcanic province. Contribut. Mineral. Petrol. 133, 297–313 (1998).

    Article  Google Scholar 

  119. Sobolev, S. V. et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312–316 (2011).

    Article  Google Scholar 

  120. Sobolev, A. V., Arndt, N. T., Krivolutskaya, N. A., Kuzmin, D. V. & Sobolev, S. V. in Volcanism and Global Environmental Change (eds Schmidt, A. Fristad, K. & Elkins-Tanton, L.) 147–163 (Cambridge Univ. Press, 2015).

  121. Black, B. A., Elkins-Tanton, L. T., Rowe, M. C. & Peate, I. U. Magnitude and consequences of volatile release from the Siberian Traps. Earth Planet. Sci. Lett. 317–318, 363–373 (2012).

    Article  Google Scholar 

  122. Broadley, M. W., Barry, P. H., Ballentine, C. J., Taylor, L. A. & Burgess, R. End-Permian extinction amplified by plume-induced release of recycled lithospheric volatiles. Nat. Geosci. 11, 682–687 (2018).

    Article  Google Scholar 

  123. Elkins-Tanton, L. T. et al. Field evidence for coal combustion links the 252 Ma Siberian Traps with global carbon disruption. Geology 48, 986–991 (2020).

    Article  Google Scholar 

  124. Grasby, S. E. & Beauchamp, B. Latest Permian to Early Triassic basin-to-shelf anoxia in the Sverdrup basin, Arctic Canada. Chem. Geol. 264, 232–246 (2009).

    Article  Google Scholar 

  125. Grasby, S. E., Sanei, H. & Beauchamp, B. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nat. Geosci. 4, 104–107 (2011).

    Article  Google Scholar 

  126. Sanei, H., Grasby, S. E. & Beauchamp, B. Latest Permian mercury anomalies. Geology 40, 63–66 (2012).

    Article  Google Scholar 

  127. Reichow, M. K., Saunders, A. D., White, R. V., Al’Mukhamedov, A. I. & Medvedev, A. Y. Geochemistry and petrogenesis of basalts from the west Siberian basin: an extension of the Permo–Triassic Siberian Traps, Russia. Lithos 79, 425–452 (2005).

    Article  Google Scholar 

  128. Jerram, D. A., Svensen, H. H., Planke, S., Polozov, A. G. & Torsvik, T. H. The onset of flood volcanism in the north-western part of the Siberian Traps: explosive volcanism versus effusive lava flows. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 38–50 (2016).

    Article  Google Scholar 

  129. Svensen, H. et al. Siberian gas venting and the end-Permian environmental crisis. Earth Planet. Sci.Lett. 277, 490–500 (2009).

    Article  Google Scholar 

  130. Svensen, H. H. et al. Sills and gas generation in the Siberian Traps. Phil. Trans. R. Soc. A 376, 20170080 (2018).

    Article  Google Scholar 

  131. Davydov, V. I. Tunguska сoals, Siberian sills and the Permian–Triassic extinction. Earth Sci. Rev. 212, 103438 (2021).

    Article  Google Scholar 

  132. Callegaro, S. et al. Geochemistry of deep Tunguska basin sills, Siberian Traps: correlations and potential implications for the end-Permian environmental crisis. Contribut. Mineral. Petrol. 176, 49 (2021).

    Article  Google Scholar 

  133. Wooden, J. L. et al. Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril’sk area, Siberia. Geochim. Cosmochim. Acta 57, 3677–3704 (1993).

    Article  Google Scholar 

  134. Arndt, N. T., Czmanske, G. K., Walker, R. J., Chauvel, C. & Fedorenko, V. A. Geochemistry and origin of the intrusive hosts of the Noril’sk-Talnakh Cu-Ni-PGE sulfide deposits. Eco. Geol. 98, 495–515 (2003).

    Google Scholar 

  135. Pang, K. N. et al. A petrologic, geochemical and Sr-Nd isotopic study on contact metamorphism and degassing of Devonian evaporites in the Norilsk aureoles, Siberia. Contrib. Mineral. Petrol. 165, 683–704 (2013).

    Article  Google Scholar 

  136. Yao, Z. S. & Mungall, J. E. Linking the Siberian flood basalts and giant Ni-Cu-PGE sulfide deposits at Norilsk. J. Geophys. Res. Solid Earth 126, e2020JB020823 (2021).

    Article  Google Scholar 

  137. Sibik, S., Edmonds, M., Maclennan, J. & Svensen, H. Magmas erupted during the main pulse of Siberian Traps volcanism were volatile-poor. J. Petrol. 56, 2089–2116 (2015).

    Article  Google Scholar 

  138. Retallack, G. J. & Jahren, A. H. Methane release from igneous intrusion of coal during late Permian extinction events. J. Geol. 116, 1–20 (2008).

    Article  Google Scholar 

  139. Iacono-Marziano, G. et al. Gas emissions due to magma-sediment interactions during flood magmatism at the Siberian Traps: gas dispersion and environmental consequences. Earth Planet. Sci. Lett. 357–358, 308–318 (2012).

    Article  Google Scholar 

  140. Fristad, K. E., Svensen, H. H., Polozov, A. & Planke, S. Formation and evolution of the end-Permian Oktyabrsk volcanic crater in the Tunguska basin, eastern Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 76–87 (2017).

    Article  Google Scholar 

  141. Polozov, A. G. et al. The basalt pipes of the Tunguska basin (Siberia, Russia): high temperature processes and volatile degassing into the end-Permian atmosphere. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 51–64 (2016).

    Article  Google Scholar 

  142. Elkins-Tanton, L. T. et al. The last lavas erupted during the main phase of the Siberian flood volcanic province: results from experimental petrology. Contribut. Mineral. Petrol. 153, 191–209 (2007).

    Article  Google Scholar 

  143. Schmidt, A. et al. Selective environmental stress from sulphur emitted by continental flood basalt eruptions. Nat. Geosci. 9, 77–82 (2016).

    Article  Google Scholar 

  144. Black, B. A. et al. Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing. Nat. Geosci. 11, 949–954 (2018).

    Article  Google Scholar 

  145. Schobben, M., Joachimski, M. M., Korn, D., Leda, L. & Korte, C. Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction. Gondwana Res. 26, 675–683 (2014).

    Article  Google Scholar 

  146. Chen, J. et al. Abrupt warming in the latest Permian detected using high-resolution in situ oxygen isotopes of conodont apatite from Abadeh, central Iran. Palaeogeogr. Palaeoclimatol. Palaeoecol. 560, 109973 (2020).

    Article  Google Scholar 

  147. Joachimski, M. M., Alekseev, A. S., Grigoryan, A. & Gatovsky, Y. A. Siberian trap volcanism, global warming and the Permian–Triassic mass extinction: new insights from Armenian Permian–Triassic sections. Bull. Geol. Soc. Am. 132, 427–443 (2020).

    Article  Google Scholar 

  148. Sun, Y. et al. Lethally hot temperatures during the early Triassic greenhouse. Science 338, 366–370 (2012).

    Article  Google Scholar 

  149. Joachimski, M. M. et al. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40, 195–198 (2012).

    Article  Google Scholar 

  150. Jiang, H., Joachimski, M. M., Wignall, P. B., Zhang, M. & Lai, X. A delayed end-Permian extinction in deep-water locations and its relationship to temperature trends (Bianyang, Guizhou province, south China). Palaeogeogr. Palaeoclimatol. Palaeoecol. 440, 690–695 (2015).

    Article  Google Scholar 

  151. Chen, J. et al. High-resolution SIMS oxygen isotope analysis on conodont apatite from south China and implications for the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 448, 26–38 (2016).

    Article  Google Scholar 

  152. Shen, S. et al. Permian integrative stratigraphy and timescale of China. Sci. China Earth Sci. 62, 154–188 (2019).

    Article  Google Scholar 

  153. Pörtner, H. O. Oxygen- And capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010).

    Article  Google Scholar 

  154. Pörtner, H. O. Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes. Mar. Ecol. Progr. Ser. 470, 273–290 (2012).

    Article  Google Scholar 

  155. Bijma, J., Pörtner, H. O., Yesson, C. & Rogers, A. D. Climate change and the oceans — what does the future hold? Mar. Pollut. Bull. 74, 495–505 (2013).

    Article  Google Scholar 

  156. Song, H. et al. Flat latitudinal diversity gradient caused by the Permian–Triassic mass extinction. Proc. Natl Acad. Sci. USA 117, 17578–17583 (2020).

    Article  Google Scholar 

  157. Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).

    Article  Google Scholar 

  158. Benton, M. J. Hyperthermal-driven mass extinctions: killing models during the Permian–Triassic mass extinction. Phil. Trans. R. Soc. A 376, 20170076 (2018).

    Article  Google Scholar 

  159. Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Envir. 38, 1699–1712 (2015).

    Article  Google Scholar 

  160. Cai, Y. F., Zhang, H., Feng, Z. & Shen, S. Z. Intensive wildfire associated with volcanism promoted the vegetation changeover in southwest china during the Permian−Triassic transition. Front. Earth Sci. 9, 615841 (2021).

    Article  Google Scholar 

  161. Grasby, S. E. et al. Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction. Bull. Geol. Soc. Am. 127, 1331–1347 (2015).

    Article  Google Scholar 

  162. Beauchamp, B. & Grasby, S. E. Permian lysocline shoaling and ocean acidification along NW Pangea led to carbonate eradication and chert expansion. Palaeogeogr. Palaeoclimatol. Palaeoecol. 350–352, 73–90 (2012).

    Article  Google Scholar 

  163. Wignall, P. B. & Twitchett, R. J. Oceanic anoxia and the end Permian mass extinction. Science 272, 1155–1158 (1996).

    Article  Google Scholar 

  164. Wignall, P. B. et al. Ultra-shallow-marine anoxia in an Early Triassic shallow-marine clastic ramp (Spitsbergen) and the suppression of benthic radiation. Geol. Mag. 153, 316–331 (2016).

    Article  Google Scholar 

  165. Proemse, B. C., Grasby, S. E., Wieser, M. E., Mayer, B. & Beauchamp, B. Molybdenum isotopic evidence for oxic marine conditions during the latest Permian extinction. Geology 41, 967–970 (2013).

    Article  Google Scholar 

  166. Grasby, S. E. et al. Transient Permian–Triassic euxinia in the southern Panthalassa deep ocean. Geology 49, 889–893 (2021).

    Article  Google Scholar 

  167. Wignall, P. B. et al. An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of four mass extinctions. Glob. Planet. Change 71, 109–123 (2010).

    Article  Google Scholar 

  168. Song, H. et al. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery. Earth Planet. Sci. Lett. 353–354, 12–21 (2012).

    Article  Google Scholar 

  169. Grasby, S. E., Beauchamp, B., Embry, A. & Sanei, H. Recurrent Early Triassic ocean anoxia. Geology 41, 175–178 (2013).

    Article  Google Scholar 

  170. Takahashi, S., Yamasaki, S. I., Ogawa, K., Kaiho, K. & Tsuchiya, N. Redox conditions in the end-Early Triassic Panthalassa. Palaeogeogr. Palaeoclimato. Palaeoecol. 432, 15–28 (2015).

    Article  Google Scholar 

  171. Brennecka, G. A., Herrmann, A. D., Algeo, T. J. & Anbar, A. D. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 108, 17631–17634 (2011).

    Article  Google Scholar 

  172. Takahashi, S. et al. Bioessential element-depleted ocean following the euxinic maximum of the end-Permian mass extinction. Earth Planet. Sci. Lett 393, 94–104 (2014).

    Article  Google Scholar 

  173. Newton, R. J., Pevitt, E. L., Wignall, P. B. & Bottrell, S. H. Large shifts in the isotopic composition of seawater sulphate across the Permo–Triassic boundary in northern Italy. Earth Planet. Sci. Lett. 218, 331–345 (2004).

    Article  Google Scholar 

  174. Grice, K. et al. Photic zone euxinia during the Permian–Triassic superanoxic event. Science 307, 706–709 (2005).

    Article  Google Scholar 

  175. Ingall, E. & Jahnke, R. Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters. Geochim. Cosmochim. Acta 58, 2571–2575 (1994).

    Article  Google Scholar 

  176. Sun, Y. D. et al. Ammonium ocean following the end-Permian mass extinction. Earth Planet. Sci. Lett. 518, 211–222 (2019).

    Article  Google Scholar 

  177. Grasby, S. E., Beauchamp, B. & Knies, J. Early Triassic productivity crises delayed recovery from world’s worst mass extinction. Geology 44, 779–782 (2016).

    Article  Google Scholar 

  178. Schoepfer, S. D., Henderson, C. M., Garrison, G. H. & Ward, P. D. Cessation of a productive coastal upwelling system in the Panthalassic Ocean at the Permian–Triassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 313–314, 181–188 (2012).

    Article  Google Scholar 

  179. Schobben, M. et al. Flourishing ocean drives the end-Permian marine mass extinction. Proc. Natl Acad. Sci. USA 112, 10298–10303 (2015).

    Article  Google Scholar 

  180. Grasby, S. E. et al. Global warming leads to Early Triassic nutrient stress across northern Pangea. Bull. Geol. Soc. Am. 132, 943–954 (2020).

    Article  Google Scholar 

  181. Song, H. et al. Conodont calcium isotopic evidence for multiple shelf acidification events during the Early Triassic. Chem. Geol. 562, 120038 (2021).

    Article  Google Scholar 

  182. Jurikova, H. et al. Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations. Nat. Geosci. 13, 745–750 (2020).

    Article  Google Scholar 

  183. Garbelli, C., Angiolini, L. & Shen, S. Z. Biomineralization and global change: a new perspective for understanding the end-Permian extinction. Geology 45, 19–22 (2017).

    Article  Google Scholar 

  184. Clarkson, M. O. et al. Ocean acidification and the Permo–Triassic mass extinction. Science 348, 229–232 (2015).

    Article  Google Scholar 

  185. Zhang, S. et al. Investigating controls on boron isotope ratios in shallow marine carbonates. Earth Planet. Sci. Lett. 458, 380–393 (2017).

    Article  Google Scholar 

  186. Hinojosa, J. L. et al. Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite. Geology 40, 743–746 (2012).

    Article  Google Scholar 

  187. Komar, N. & Zeebe, R. E. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian. Paleoceanography 31, 115–130 (2016).

    Article  Google Scholar 

  188. Silva-Tamayo, J. C. et al. Global perturbation of the marine calcium cycle during the Permian–Triassic transition. Bull. Geol. Soc. Am. 130, 1323–1338 (2018).

    Article  Google Scholar 

  189. Payne, J. L. et al. Calcium isotope constraints on the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 107, 8543–8548 (2010).

    Article  Google Scholar 

  190. Lau, K. V. et al. The influence of seawater carbonate chemistry, mineralogy, and diagenesis on calcium isotope variations in Lower–Middle Triassic carbonate rocks. Chem. Geol. 471, 13–37 (2017).

    Article  Google Scholar 

  191. Wang, J. et al. Coupled δ44/40Ca, δ88/86Sr, and 87Sr/86Sr geochemistry across the end-Permian mass extinction event. Geochim. Cosmochim. Acta 262, 143–165 (2019).

    Article  Google Scholar 

  192. Kiessling, W. & Simpson, C. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob. Change Biol. 17, 56–67 (2011).

    Article  Google Scholar 

  193. Chen, Z. Q., Kaiho, K. & George, A. D. Early Triassic recovery of the brachiopod faunas from the end-Permian mass extinction: a global review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 224, 270–290 (2005).

    Article  Google Scholar 

  194. Dai, X., Korn, D. & Song, H. Morphological selectivity of the Permian–Triassic ammonoid mass extinction. Geology 49, 1112–1116 (2021).

    Article  Google Scholar 

  195. Fijałkowska-Mader, A. in Morphogenesis, Environmental Stress and Reverse Evolution (eds Guex, J., Torday, J. S. & Miller, W. B. Jr) 23–35 (Springer, 2020).

  196. Beerling, D. J., Harfoot, M., Lomax, B. & Pyle, J. A. The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps. Phil. Trans. R. Soc. A 365, 1843–1866 (2007).

    Article  Google Scholar 

  197. Svensen, H., Schmidbauer, N., Roscher, M., Stordal, F. & Planke, S. Contact metamorphism, halocarbons, and environmental crises of the past. Environ. Chem. 6, 466–471 (2009).

    Article  Google Scholar 

  198. Black, B. A., Lamarque, J. F., Shields, C. A., Elkins-Tanton, L. T. & Kiehl, J. T. Acid rain and ozone depletion from pulsed siberian traps magmatism. Geology 42, 67–70 (2014).

    Article  Google Scholar 

  199. Likens, G. E. & Butler, T. J. in Encyclopedia of the Anthropocene (eds Dellasala, D. A. & Goldstein, M. I.) 23–31 (Elsevier, 2018).

  200. Sephton, M. A., Jiao, D., Engel, M. H., Looy, C. V. & Visscher, H. Terrestrial acidification during the end-Permian biosphere crisis? Geology 43, 159–162 (2015).

    Article  Google Scholar 

  201. Sheldon, N. D. Abrupt chemical weathering increase across the Permian–Triassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 315–321 (2006).

    Article  Google Scholar 

  202. Maruoka, T., Koeberl, C., Hancox, P. J. & Reimold, W. U. Sulfur geochemistry across a terrestrial Permian–Triassic boundary section in the Karoo basin, South Africa. Earth Planet. Sci. Lett. 206, 101–117 (2003).

    Article  Google Scholar 

  203. Grasby, S. E., Them, T. R., Chen, Z., Yin, R. & Ardakani, O. H. Mercury as a proxy for volcanic emissions in the geologic record. Earth Sci. Rev. 196, 102880 (2019).

    Article  Google Scholar 

  204. Dal Corso, J. et al. Permo–Triassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse. Nat. Commun. 11, 2962 (2020).

    Article  Google Scholar 

  205. Rugenstein, M. A. A., Sedláček, J. & Knutti, R. Nonlinearities in patterns of long-term ocean warming. Geophys. Res. Lett. 43, 3380–3388 (2016).

    Article  Google Scholar 

  206. Yang, H. & Zhu, J. Equilibrium thermal response timescale of global oceans. Geophys. Res. Lett. 38, L14711 (2011).

    Article  Google Scholar 

  207. Song, H. et al. Anoxia/high temperature double whammy during the Permian–Triassic marine crisis and its aftermath. Sci. Rep. 4, 4132 (2014).

    Article  Google Scholar 

  208. Alroy, J. Accurate and precise estimates of origination and extinction rates. Paleobiology 40, 374–397 (2014).

    Article  Google Scholar 

  209. Scotese, C. R. Atlas of Permo-Triassic paleogeographic maps (Mollweide projection), maps 43–52, vol. 3/4 of the PALEOMAP Atlas. ResearchGate https://doi.org/10.13140/2.1.2609.9209 (2014).

  210. Zhang, F. et al. Two distinct episodes of marine anoxia during the Permian–Triassic crisis evidenced by uranium isotopes in marine dolostones. Geochim. Cosmochim. Acta 287, 165–179 (2020).

    Article  Google Scholar 

  211. Wu, Y. et al. Six-fold increase of atmospheric pCO2 during the Permian–Triassic mass extinction. Nat. Commun. 12, 2137 (2021).

    Article  Google Scholar 

  212. Grossman, E. L. & Joachimski, M. M. Oxygen isotope stratigraphy. Geol. Time Scale 1, 279–307 (2020).

    Google Scholar 

  213. Trotter, J. A., Williams, I. S., Barnes, C. R., Männik, P. & Simpson, A. New conodont δ18O records of Silurian climate change: implications for environmental and biological events. Palaeogeogr. Palaeoclimatol. Palaeoecol. 443, 34–48 (2016).

    Article  Google Scholar 

  214. Kaiho, K. et al. End-Permian catastrophe by a bolide impact: evidence of a gigantic release of sulfur from the mantle. Geology 29, 815–818 (2001).

    Article  Google Scholar 

  215. Chu, D. et al. Lilliput effect in freshwater ostracods during the Permian–Triassic extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 435, 38–52 (2015).

    Article  Google Scholar 

  216. Shen, J. et al. Mercury evidence of intense volcanic effects on land during the Permian–Triassic transition. Geology 47, 1117–1121 (2019).

    Article  Google Scholar 

  217. Cao, C., Wang, W., Liu, L., Shen, S. & Summons, R. E. Two episodes of 13C-depletion in organic carbon in the latest Permian: evidence from the terrestrial sequences in northern Xinjiang, China. Earth Planet. Sci. Lett. 270, 251–257 (2008).

    Article  Google Scholar 

  218. Shen, J. et al. Evidence for a prolonged Permian–Triassic extinction interval from global marine mercury records. Nat. Commun. 10, 1563 (2019).

    Article  Google Scholar 

  219. Wang, X. et al. Mercury anomalies across the end Permian mass extinction in south China from shallow and deep water depositional environments. Earth Planet Sci.Lett. 496, 159–167 (2018).

    Article  Google Scholar 

  220. Holser, W. T. et al. A unique geochemical record at the Permian/Triassic boundary. Nature 337, 39–44 (1989).

    Article  Google Scholar 

  221. Korte, C. & Kozur, H. W. Carbon-isotope stratigraphy across the Permian–Triassic boundary: a review. J. Asian Earth Sci. 39, 215–235 (2010).

    Article  Google Scholar 

  222. Luo, G. et al. Stepwise and large-magnitude negative shift in δ13Ccarb preceded the main marine mass extinction of the Permian–Triassic crisis interval. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299, 70–82 (2011).

    Article  Google Scholar 

  223. Shen, S. Z. et al. High-resolution δ13Ccarb chemostratigraphy from latest Guadalupian through earliest Triassic in south China and Iran. Earth Planet. Sci. Lett. 375, 156–165 (2013).

    Article  Google Scholar 

  224. Hermann, E. et al. A close-up view of the Permian-Triassic boundary based on expanded organic carbon isotope records from Norway (Trøndelag and Finnmark platform). Glob. Planet. Change 74, 156–167 (2010).

    Article  Google Scholar 

  225. Luo, G. et al. Vertical δ13Corg gradients record changes in planktonic microbial community composition during the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 396, 119–131 (2014).

    Article  Google Scholar 

  226. Schneebeli-Hermann, E. et al. Evidence for atmospheric carbon injection during the end-Permian extinction. Geology 41, 579–582 (2013).

    Article  Google Scholar 

  227. Williams, M. L., Jones, B. G. & Carr, P. F. The interplay between massive volcanism and the local environment: geochemistry of the Late Permian mass extinction across the Sydney basin, Australia. Gondwana Res. 51, 149–169 (2017).

    Article  Google Scholar 

  228. Wu, Y. et al. Organic carbon isotopes in terrestrial Permian–Triassic boundary sections of North China: implications for global carbon cycle perturbations. Bull. Geol. Soc. Am. 132, 1106–1118 (2020).

    Article  Google Scholar 

  229. Grasby, S. E., Liu, X., Yin, R., Ernst, R. E. & Chen, Z. Toxic mercury pulses into late Permian terrestrial and marine environments. Geology 48, 830–833 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank S. Greene (University of Birmingham) for useful discussions on Earth system modelling. J.D.C., H.S. and D.C. acknowledge support from the National Natural Science Foundation of China (42172031, 92155201, 41821001, 42072025). J.D.C., H.S., D.C., J.H. and P.B.W. acknowledge “Ecosystem resilience and recovery from the Permo-Triassic crisis” project (EcoPT; grant NE/P013724/1), which is a part of the Biosphere Evolution, Transitions and Resilience (BETR) Program. S.C. acknowledges support from the Research Council of Norway (grant 301096 MAPLES, Young Research Talents). M.M.J. and Y.S. acknowledge support from the German Science Foundation (grant JO 219/16 within DFG Research Unit TERSANE/FOR 2332).

Author information

Authors and Affiliations

Authors

Contributions

J.D.C. led the development of the article. All authors contributed to the writing of the manuscript and building of the figures.

Corresponding authors

Correspondence to Jacopo Dal Corso, Haijun Song or Paul B. Wignall.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Stable Isotope Database for Earth System Research: http://StabisoDB.org

Supplementary information

Glossary

Mass extinction

Global biological events of greatly elevated extinction rates.

Large Igneous Province

(LIPs). Rapidly emplaced (<1–5 Ma) volcanic provinces with areal extents >0.1 million km2 and volumes >0.1 million km3.

Radioisotope dating

Technique to determine the absolute age of rocks using radioactive decay.

Biostratigraphy

Technique to determine the relative age of sedimentary rocks using their fossil content.

Chemostratigraphy

The study of geochemical variations in sedimentary rocks; globally recorded chemostratigraphic changes are used to correlate sedimentary sequences.

Evolutionary fauna

A type of fauna that typically shows an increase in biodiversity following a logistic curve, for example, Cambrian fauna, Palaeozoic fauna and Modern fauna.

Signor–Lipps effect

A palaeontological principle that states that the fossil record of organisms is never complete.

Global Stratotype Section and Point

(GSSP). Reference stratigraphic section and level where boundaries between geological stages, for example, between the Permian and the Triassic, are defined.

Origination rates

The ratio of the number of newly occurring species or genera to the total number over a given geological period.

Spore tetrads

Four immature spore grains connected in a tetrahedral or tetragonal fashion, produced by meiotic microsporogenesis.

Pyroclastic

Volcanic rock produced by explosive volcanism and composed of lava fragments (ash, tephra and lapilli). Coarser pyroclastic fragments accumulate in proximity to the erupting vent, whereas finer particles can travel hundreds of kilometres.

Alkaline

Any rock of a magmatic series presenting a high content of alkali oxides (Na2O and K2O) relative to silica (SiO2).

Pyroxenitic mantle source

A mantle source dominated by the presence of pyroxene and lack of olivine, representing an enriched and very fertile mantle lithology.

Tholeiitic

Sub-alkaline series of magmatic rocks, which undergo iron enrichment during differentiation owing to their poorly oxidized state. Tholeiitic series originate from extensive partial melting of the mantle.

Sills

Tabular subvolcanic magma bodies, intruded roughly concordant with the general bedding (stratification or layering) of its host rocks.

Juvenile volatiles

Gas species that are dissolved in, or exsolved from, a magma and are thus newly introduced to the atmosphere when the magma reaches the Earth’s surface.

Conodont

The hard part of an extinct jawless vertebrate that is similar to an eel.

Oceanic anoxic event

(OAE). Interval of severely reduced dissolved oxygen content in the ocean.

Framboidal pyrite

Aggregates of pyrite (sulfide mineral, FeS2) with a ‘raspberry’ texture aspect. It is used as a palaeo-redox proxy.

Teratological sporomorphs

Pollen and spores that present congenital abnormalities, such as lack of full development and malformations in their structure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dal Corso, J., Song, H., Callegaro, S. et al. Environmental crises at the Permian–Triassic mass extinction. Nat Rev Earth Environ 3, 197–214 (2022). https://doi.org/10.1038/s43017-021-00259-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-021-00259-4

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology