Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fossil-fuel-dependent scenarios could lead to a significant decline of global plant-beneficial bacteria abundance in soils by 2100

Abstract

Exploiting the potential benefits of plant-associated microbes represents a sustainable approach to enhancing crop productivity. Plant-beneficial bacteria (PBB) provide multiple benefits to plants. However, the biogeography and community structure remain largely unknown. Here we constructed a PBB database to couple microbial taxonomy with their plant-beneficial traits and analysed the global atlas of potential PBB from 4,245 soil samples. We show that the diversity of PBB peaks in low-latitude regions, following a strong latitudinal diversity gradient. The distribution of potential PBB was primarily governed by environmental filtering, which was mainly determined by local climate. Our projections showed that fossil-fuel-dependent future scenarios would lead to a significant decline of potential PBB by 2100, especially biocontrol agents (−1.03%) and stress resistance bacteria (−0.61%), which may potentially threaten global food production and (agro)ecosystem services.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Taxonomy of PBB in global soils.
Fig. 2: Global biogeographical distribution of PBB.
Fig. 3: Factors affecting the global distribution of PBB.
Fig. 4: Predicted future changes in PBB.

Similar content being viewed by others

Data availability

All raw data used in the current study, including the PBB database, sample metadata, climate data and species-abundance dataset, are publicly available in Figshare (https://doi.org/10.6084/m9.figshare.22274866). The taxonomy information of bacteria is available in the Silva database (https://www.arb-silva.de/). The current and future climate data are available in WorldClim2 (https://www.worldclim.org/). The soil property data are available in the Harmonized World Soil Database (https://www.fao.org/soils-portal/soil-survey). Source data are provided with this paper.

Code availability

Most numerical analyses included in this article do not have an associated code. Used codes are available in Figshare (https://doi.org/10.6084/m9.figshare.22274866).

References

  1. Lam, S. K. et al. Next-generation enhanced-efficiency fertilizers for sustained food security. Nat. Food 3, 575–580 (2022).

    PubMed  Google Scholar 

  2. Lv, C. D. et al. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Sustain. 4, 868–876 (2021).

    Google Scholar 

  3. Wu, Y. Y. et al. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl Acad. Sci. USA 115, 7010–7015 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  4. Zamioudis, C. & Pieterse, C. M. J. Modulation of host immunity by beneficial microbes. Mol. Plant Microbe Interact. 25, 139–150 (2012).

    CAS  PubMed  Google Scholar 

  5. Busby, P. E. et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 15, e2001793 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. Haney, C. H., Samuel, B. S., Bush, J. & Ausubel, F. M. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat. Plants 1, 1–9 (2015).

    Google Scholar 

  7. Hunter, P. Plant microbiomes and sustainable agriculture: deciphering the plant microbiome and its role in nutrient supply and plant immunity has great potential to reduce the use of fertilizers and biocides in agriculture. EMBO Rep. 17, 1696–1699 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011).

    CAS  PubMed  ADS  Google Scholar 

  9. Berendsen, R. L., Pieterse, C. M. & Bakker, P. A. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).

    CAS  PubMed  Google Scholar 

  10. Lugtenberg, B. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 (2009).

    CAS  PubMed  Google Scholar 

  11. French, E., Kaplan, I., Lyer-Pascuzzi, A., Nakatsu, C. H. & Enders, L. Emerging strategies for precision microbiome management in diverse agroecosystems. Nat. Plants 7, 256–267 (2021).

    PubMed  Google Scholar 

  12. Porter, S. S. et al. Beneficial microbes ameliorate abiotic and biotic sources of stress on plants. Funct. Ecol. 34, 2075–2086 (2020).

    Google Scholar 

  13. de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270–274 (2020).

    PubMed  ADS  Google Scholar 

  14. Banerjee, S. & van der Heijden, M. G. A. Soil microbiomes and One Health. Nat. Rev. Microbiol. 21, 6–20 (2022).

  15. Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).

    CAS  PubMed  ADS  Google Scholar 

  16. Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

    CAS  PubMed  ADS  Google Scholar 

  18. Vetrovsky, T. et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10, 5142 (2019).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

    PubMed  Google Scholar 

  20. Oliverio, A. M. et al. The global-scale distributions of soil protists and their contributions to belowground systems. Sci. Adv. 6, eaax8787 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Delgado-Baquerizo, M. et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 10, 550–554 (2020).

    ADS  Google Scholar 

  22. Nelson, M. B., Martiny, A. C. & Martiny, J. B. H. Global biogeography of microbial nitrogen-cycling traits in soil. Proc. Natl Acad. Sci. USA 113, 8033–8040 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Stehr, N. This changes everything: capitalism vs the climate. Nature 513, 312–312 (2014).

    CAS  ADS  Google Scholar 

  24. Wang, C. Z. et al. Occurrence of crop pests and diseases has largely increased in China since 1970. Nat. Food 3, 57–65 (2022).

    PubMed  Google Scholar 

  25. Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).

    CAS  PubMed  ADS  Google Scholar 

  26. Martiny, J. B. H., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light of traits: a phylogenetic perspective. Science 350, aac9323 (2015).

    PubMed  ADS  Google Scholar 

  27. Voss, M. et al. The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change. Philos. Trans. R. Soc. B 368, 20130121 (2013).

    Google Scholar 

  28. Quast, C. et al. The Silva ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS  PubMed  Google Scholar 

  29. Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).

    Google Scholar 

  30. Polme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).

    Google Scholar 

  31. Clark, D. R., Underwood, G. J. C., McGenity, T. J. & Dumbrell, A. J. What drives study-dependent differences in distance–decay relationships of microbial communities? Global Ecol. Biogeogr. 30, 811–825 (2021).

    Google Scholar 

  32. Li, P. F. et al. Spatial variation in soil fungal communities across paddy fields in subtropical China. mSystems 5, e00704–e00719 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Martiny, J. B. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112 (2006).

    CAS  PubMed  Google Scholar 

  34. Bahram, M. et al. Structure and function of the soil microbiome underlying N2O emissions from global wetlands. Nat. Commun. 13, 1430 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Parn, J. et al. Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots. Nat. Commun. 9, 1135 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  36. Borcard, D. & Legendre, P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Model. 153, 51–68 (2002).

    Google Scholar 

  37. Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).

    CAS  PubMed  ADS  Google Scholar 

  38. Pugnaire, F. I. et al. Climate change effects on plant–soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Sci. Adv. 5, eaaz1834 (2019).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Antonelli, A. et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718–725 (2018).

    CAS  ADS  Google Scholar 

  40. Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Wang, S. H. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).

    CAS  PubMed  ADS  Google Scholar 

  42. Fischer, E. M., Sippel, S. & Knutti, R. Increasing probability of record-shattering climate extremes. Nat. Clim. Change 11, 689–695 (2021).

    ADS  Google Scholar 

  43. Jack, C. N., Petipas, R. H., Cheeke, T. E., Rowland, J. L. & Friesen, M. L. Microbial inoculants: silver bullet or microbial jurassic park? Trends Microbiol 29, 299–308 (2021).

    CAS  PubMed  Google Scholar 

  44. Mawarda, P. C., Le Roux, X., Van Elsas, J. D. & Salles, J. F. Deliberate introduction of invisible invaders: a critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil Biol. Biochem. 148, 107874 (2020).

    CAS  Google Scholar 

  45. Thomsen, C. N. & Hart, M. M. Using invasion theory to predict the fate of arbuscular mycorrhizal fungal inoculants. Biol. Invasions 20, 2695–2706 (2018).

    Google Scholar 

  46. Yang, X. et al. MBPD: a multiple bacterial pathogen detection pipeline for One Health practices. iMeta 2, e82 (2023).

    Google Scholar 

  47. Bull, C. T. et al. List of new names of plant pathogenic bacteria (2008–2010). J. Plant Pathol. 94, 21–27 (2012).

    Google Scholar 

  48. Biddle, J. F., Fitz-Gibbon, S., Schuster, S. C., Brenchley, J. E. & House, C. H. Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc. Natl Acad. Sci. USA 105, 10583–10588 (2008).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. McKnight, D. T. et al. Methods for normalizing microbiome data: an ecological perspective. Methods Ecol. Evol. 10, 389–400 (2019).

    Google Scholar 

  52. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  53. Wang, S., Zhang, Y., Ju, W., Qiu, B. & Zhang, Z. Tracking the seasonal and inter-annual variations of global gross primary production during last four decades using satellite near-infrared reflectance data. Sci. Total Environ. 755, 142569 (2021).

    CAS  PubMed  ADS  Google Scholar 

  54. Wang, Y., Naumann, U., Wright, S. T. & Warton, D. I. mvabund—an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474 (2012).

    Google Scholar 

  55. Alzarhani, A. K. et al. Are drivers of root-associated fungal community structure context specific? ISME J. 13, 1330–1344 (2019).

    PubMed  PubMed Central  Google Scholar 

  56. Li, P. F. et al. Responses of microbial communities to a gradient of pig manure amendment in red paddy soils. Sci. Total Environ. 705, 135884 (2020).

    CAS  PubMed  ADS  Google Scholar 

  57. Sakamoto, T. Early classification method for US corn and soybean by incorporating MODIS-estimated phenological data and historical classification maps in random-forest regression algorithm. Photogramm. Eng. Remote Sensing 87, 747–758 (2021).

    Google Scholar 

  58. Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (2022YFA0912501 to J.J.), Fundamental Research Funds for the Central Universities (KYZZ2023003 to J.J.; KYQN2023027 to P.L.; XUEKEN2022003 to B.W.), the National Natural Science Foundation of China (42207349 to P.L.; 41977056 to B.W.; 42107336 to L.L.), the Jiangsu Funding Program for Excellent Postdoctoral Talent (2022ZB331 to P.L.), the Natural Science Foundation of Jiangsu Province (BK20221005 to P.L.), the China Postdoctoral Science Foundation (2022M711653 to P.L.), the grants from DOB Ecology and the Bernina Foundation to T.W.C., and the financial support provided by the USDA National Institute of Food and Agriculture and Hatch Appropriations under Project PEN04732 and Accession number 7000239 to F.D.-A.

Author information

Authors and Affiliations

Authors

Contributions

J.J. and B.W. designed the framework. P.L., M.W., Y.J., L.L. and Z.L. collected the samples. P.L., L.K., T.L. and M.B. performed the data analysis. P.L., L.T., T.W.C., A.J.D., F.D.-A., M.B., L.L., M.S., F.T.d.V. and J.J. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Baozhan Wang or Jiandong Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Massimiliano Cardinale, Eleonora Egidi and Joshua Ladau for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Tables 1–3.

Reporting Summary

Supplementary Data 1

PBB database.

Supplementary Data 2

Comprehensive list of phytopathogenic bacteria.

Supplementary Data 3

Combined database and R script.

Source data

Source Data Fig. 1

Full PBB database.

Source Data Fig. 2

Source data of biogeographical pattern analyses.

Source Data Fig. 3

Source data of driving force analyses.

Source Data Fig. 4

Source data of future change analyses.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Tedersoo, L., Crowther, T.W. et al. Fossil-fuel-dependent scenarios could lead to a significant decline of global plant-beneficial bacteria abundance in soils by 2100. Nat Food 4, 996–1006 (2023). https://doi.org/10.1038/s43016-023-00869-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-023-00869-9

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology