Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cropland displacement contributed 60% of the increase in carbon emissions of grain transport in China over 1990–2015

Abstract

Rapid urbanization and population growth have increased the need for grain transportation in China, as more grain is being consumed and croplands have been moved away from cities. Increased grain transportation has, in turn, led to higher energy consumption and carbon emissions. Here we undertook a model-based approach to estimate the carbon emissions associated with grain transportation in the country between 1990 and 2015. We found that emissions more than tripled, from 5.68 million tons of CO2 emission equivalent in 1990 to 17.69 million tons in 2015. Grain production displacement contributed more than 60% of the increase in carbon emissions associated with grain transport over the study period, whereas changes in grain consumption and population growth contributed 31.7% and 16.6%, respectively. Infrastructure development, such as newly built highways and railways in western China, helped offset 0.54 million tons of CO2 emission equivalent from grain transport. These findings shed light on the life cycle environmental impact within food supply chains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Change of grain production and consumption in China (1990–2015).
Fig. 2: Inter-provincial flow of grain transport in China (1990 and 2015).
Fig. 3: Inter-provincial flow of grain by transport mode in 1990 and 2015.
Fig. 4: Change in carbon emissions (million tons CO2e) of grain transportation.
Fig. 5: Driving factors of increased carbon emission.
Fig. 6: Transport-related carbon intensity (kgCO2e per ton) at the prefecture level (2015).

Similar content being viewed by others

Data availability

All the data used in this study are publicly available; for descriptions of the source data, see Methods and Supplementary Information. Source data are provided with this paper.

Code availability

The custom code and algorithm used for this study are available in Methods and Supplementary Information.

References

  1. Meyfroidt, P., Lambin, E. F., Erb, K. H. & Hertel, T. W. Globalization of land use: distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 5, 438–444 (2013).

    Article  Google Scholar 

  2. van Vliet, J., Eitelberg, D. A. & Verburg, P. H. A global analysis of land take in cropland areas and production displacement from urbanization. Glob. Environ. Change 43, 107–115 (2017).

    Article  Google Scholar 

  3. Garnett, T. Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? Food Policy 36, S23–S32 (2011).

    Article  Google Scholar 

  4. Clark, M. A. et al. Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets. Science 370, 705–708 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Change 7, 63–68 (2017).

    Article  ADS  CAS  Google Scholar 

  7. Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).

    Article  CAS  Google Scholar 

  8. Nelson, R. G. et al. Energy use and carbon dioxide emissions from cropland production in the United States, 1990–2004. J. Environ. Qual. 38, 418–425 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Tukker, A. & Jansen, B. Environmental impacts of products: a detailed review of studies. J. Ind. Ecol. 10, 159–182 (2006).

    Article  Google Scholar 

  10. Xu, X. & Lan, Y. Spatial and temporal patterns of carbon footprints of grain crops in China. J. Clean. Prod. 146, 218–227 (2017).

    Article  CAS  Google Scholar 

  11. Linquist, B., Van Groenigen, K. J., Adviento‐Borbe, M. A., Pittelkow, C. & Van Kessel, C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Change Biol. 18, 194–209 (2012).

    Article  ADS  Google Scholar 

  12. Weber, C. L. & Matthews, H. S. Food-miles and the relative climate impacts of food choices in the United States. Environ. Sci. Technol. 42, 3508–3513 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Wakeland, W., Cholette, S. & Venkat, K. Food transportation issues and reducing carbon footprint. in Green Technologies in Food Production and Processing (eds Boye, J. & Arcand Y.) pp. 211–236 (Springer, 2012).

  14. Li, M. et al. Global food-miles account for nearly 20% of total food-systems emissions. Nat. Food 3, 445–453 (2022).

    Article  CAS  Google Scholar 

  15. Cole, C. V. et al. Global estimates of potential mitigation of greenhouse gas emissions by agriculture. Nutr. Cycling Agroecosyst. 49, 221–228 (1997).

    Article  CAS  Google Scholar 

  16. Saunders, C. & Barber, A. Carbon footprints, life cycle analysis, food miles: global trade trends and market issues. Polit. Sci. 60, 73–88 (2008).

    Article  Google Scholar 

  17. Andersson, K., Ohlsson, T. & Olsson, P. Life cycle assessment (LCA) of food products and production systems. Trends Food Sci. Technol. 5, 134–138 (1994).

    Article  Google Scholar 

  18. Vidergar, P., Perc, M. & Lukman, R. K. A survey of the life cycle assessment of food supply chains. J. Clean. Prod. 286, 125506 (2021).

    Article  Google Scholar 

  19. National Bureau of Statistics of China. China Statistical Yearbook 2020 (China Statistics Press, 2020).

  20. Xu, M., He, C., Liu, Z. & Dou, Y. How did urban land expand in China between 1992 and 2015? A multi-scale landscape analysis. PLoS ONE 11, e0154839 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang, L. et al. China’s urban expansion from 1990 to 2010 determined with satellite remote sensing. Chin. Sci. Bull. 57, 2802–2812 (2012).

    Article  CAS  Google Scholar 

  22. Yang, B. et al. Impact of cropland displacement on the potential crop production in China: a multi-scale analysis. Reg. Environ. Change 20, 1–13. (2020).

    Article  CAS  Google Scholar 

  23. Liu, J. et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 24, 195–210 (2014).

    Article  Google Scholar 

  24. Liu, L., Xu, X., Liu, J., Chen, X. & Ning, J. Impact of farmland changes on production potential in China during 1990–2010. J. Geogr. Sci. 25, 19–34 (2015).

    Article  Google Scholar 

  25. Wang, J., Zhang, Z. & Liu, Y. Spatial shifts in grain production increases in China and implications for food security. Land Use Policy 74, 204–213 (2018).

    Article  Google Scholar 

  26. Yin, F., Sun, Z., You, L. & Müller, D. Increasing concentration of major crops in China from 1980 to 2011. J. Land Use Sci. 13, 480–493 (2018).

    Article  Google Scholar 

  27. Dalin, C., Qiu, H., Hanasaki, N., Mauzerall, D. L. & Rodriguez-Iturbe, I. Balancing water resource conservation and food security in China. Proc. Natl Acad. Sci. USA 112, 4588–4593 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, W. W., Zhang, M. & Zhou, M. Using LMDI method to analyze transport sector CO2 emissions in China. Energy 36, 5909–5915 (2011).

    Article  Google Scholar 

  29. Chen, X., Shuai, C., Wu, Y. & Zhang, Y. Analysis on the carbon emission peaks of China’s industrial, building, transport, and agricultural sectors. Sci. Total Environ. 709, 135768 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Zuo, C., Birkin, M., Clarke, G., McEvoy, F. & Bloodworth, A. Modelling the transportation of primary aggregates in England and Wales: exploring initiatives to reduce CO2 emissions. Land Use Policy 34, 112–124 (2013).

    Article  Google Scholar 

  31. Zuo, C., Birkin, M., Clarke, G., McEvoy, F. & Bloodworth, A. Reducing carbon emissions related to the transportation of aggregates: is road or rail the solution? Transport. Res. Part A 117, 26–38 (2018).

    Google Scholar 

  32. Cheng, W. M. et al. Spatial-temporal distribution of cropland in China based on geomorphologic regionalization during 1990–2015. Acta Geogr. Sin. 73, 1613–1629 (2018).

    Google Scholar 

  33. Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 27, 93–115 (1995).

    Article  Google Scholar 

  34. Kuang, W. et al. Cropland redistribution to marginal lands undermines environmental sustainability. Natl Sci. Rev. 9, nwab091 (2022).

    Article  PubMed  Google Scholar 

  35. Aubert, C. Food security and consumption patterns in China: the grain problem. Chin. Perspect. 2008, 5–23 (2008).

    Article  Google Scholar 

  36. Zhou, Z. Y., Tian, W. M. & Malcolm, B. Supply and demand estimates for feed grains in China. Agric. Econ. 39, 111–122 (2008).

    Article  Google Scholar 

  37. Mallapaty, S. How China could be carbon neutral by mid-century. Nature 586, 482–484. (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Hou, L. Nation to set obligatory carbon goals. China Daily http://english.www.gov.cn/statecouncil/ministries/202010/29/content_WS5f9a019dc6d0f7257693e947.html (2020).

  39. Ke, X. et al. Direct and indirect loss of natural habitat due to built-up area expansion: a model-based analysis for the city of Wuhan, China. Land Use Policy 74, 231–239 (2018).

    Article  Google Scholar 

  40. Ke, X., Zhou, Q., Zuo, C., Tang, L. & Turner, A. Spatial impact of cropland supplement policy on regional ecosystem services under urban expansion circumstance: a case study of Hubei Province, China. J. Land Use Sci. 15, 673–689 (2020).

    Article  Google Scholar 

  41. He, P., Baiocchi, G., Hubacek, K., Feng, K. & Yu, Y. The environmental impacts of rapidly changing diets and their nutritional quality in China. Nat. Sustain. 1, 122–127 (2018).

    Article  Google Scholar 

  42. Xiong, X. et al. Urban dietary changes and linked carbon footprint in China: a case study of Beijing. J. Environ. Manag. 255, 109877 (2020).

    Article  Google Scholar 

  43. Smith, A, et al. The validity of food miles as an indicator of sustainable development: final report. DEFRA report ED50254. DEFRA http://archive.defra.gov.uk/evidence/economics/foodfarm/reports/documents/foodmile.pdf (2005).

  44. Engelhaupt, E. Do food miles matter? Environ. Sci. Technol. 42, 3482 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Webb, J., Williams, A. G., Hope, E., Evans, D. & Moorhouse, E. Do foods imported into the UK have a greater environmental impact than the same foods produced within the UK? Int. J. Life Cycle Assess. 18, 1325–1343 (2013).

    Article  Google Scholar 

  46. Foster, C., Guében, C., Holmes, M., Wiltshire, J. & Wynn, S. The environmental effects of seasonal food purchase: a raspberry case study. J. Clean. Prod. 73, 269–274 (2014).

    Article  Google Scholar 

  47. Leontief, W. & Strout, A. Multiregional input-output analysis. in Structural Interdependence and Economic Development (eds Barna, T. et al.) pp. 119–150 (Palgrave Macmillan, 1963).

  48. Reed, P., Minsker, B. & Goldberg, D. E. Designing a competent simple genetic algorithm for search and optimisation. Water Resour. Res. 36, 3757–3761 (2000).

    Article  ADS  Google Scholar 

  49. Dalin, C., Hanasaki, N., Qiu, H., Mauzerall, D. L. & Rodriguez-Iturbe, I. Water resources transfers through Chinese interprovincial and foreign food trade. Proc. Natl Acad. Sci. USA 111, 9774–9779 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Samuelson, P. A. Spatial price equilibrium and linear programming. Am. Econ. Rev. 42, 283–303 (1952).

    Google Scholar 

  51. Ricci, L. A. Economic geography and comparative advantage: agglomeration versus specialisation. Eur. Econ. Rev. 43, 357–377 (1999).

    Article  Google Scholar 

  52. Wilson, A. G. A family of spatial interaction models, and associated developments. Environ. Plan. A 3, 1–32 (1971).

    Article  Google Scholar 

  53. Clarke, M. & Birkin, M. Spatial interaction models: from numerical experiments to commercial applications. Appl. Spat. Anal. Policy 11, 713–729 (2018).

    Article  Google Scholar 

  54. Chen, Y., Yang, Y. & Zhou, L. Discussion on selection of grain logistic modes in China. Railw. Freight Transp. 2014, 12–17 (2014).

    Google Scholar 

  55. 2015 Government GHG Conversion Factors for Company Reporting: Methodology Paper for Emission Factors Final Report, DECC, London. Department of Energy and Climate Change https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/507942/Emission_Factor_Methodology_Paper_-_2015.pdf (2015).

  56. Fotheringham, A. S. & O’Kelly, M. E. Spatial Interaction Models: Formulations and Applications (Kluwer Academic, 1989).

    Google Scholar 

  57. Griffith, D. A. Spatial structure and spatial interaction: 25 years later. Rev. Reg. Stud. 37, 28–38. (2007).

    Google Scholar 

  58. China dimensions data collection: China county-level data on population (census) and agriculture, keyed to 1:1M GIS map. Center for International Earth Science Information Network https://doi.org/10.7927/H43N21B3 (1997).

  59. China county map with 2000–2010 population census data. Harvard Dataverse https://doi.org/10.7910/DVN/VKGEBX (2020).

  60. Global roads open access data set, version 1 (gROADSv1). Center for International Earth Science Information Network https://doi.org/10.7927/H4VD6WCT (2013).

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (no.2662020GGPY002) and the Later Stage Program of Philosophy and Social Science Research by Ministry of Education of the People’s Republic of China (no. 21JHQ019) (C.Z.), and the Key Program of Philosophy and Social Science Research by Ministry of Education of the People’s Republic of China (no. 20JZD015) (X.K.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.Z. and X.K. conceptualized and designed the study. C.Z. and L.T. collected the original data. C.Z. developed the model framework and compiled the figures. C.Z. and C.W. interpreted the data and analysed the results. C.Z. drafted the manuscript, and C.W., G.C., L.Y. and A.T. reviewed the manuscript and contributed to the revisions.

Corresponding authors

Correspondence to Chengchao Zuo or Xinli Ke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Chenyang Shuai, Qiangyi Yu and Bohan Yang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

Changes of Mean Centres of Cropland and Population at National Level, Chinese mainland, 1990–2015.

Extended Data Fig. 2 Grain Supply and Consumption 1990–2015.

a) Grain supply by origin 1990–2015; b) Grain consumption by use 1990–2015.

Source data

Extended Data Fig. 3 Spatial Distribution of Grain Production and Consumption in 1990 and 2015.

a) Change of population by county 1990–2015; b) Change of cropland area by county 1990–2015; Grain output of each prefecture in c) 1990 and d) in 2015; Grain consumption by prefecture in e) 1990 and f) in 2015.

Source data

Extended Data Fig. 4

Modelling Framework for Estimating Carbon Emission of Grain Transport.

Extended Data Fig. 5

Illustration of Modal Choice and Transport Cost Model for Grain Transport.

Extended Data Fig. 6

Transport flows of grain in China at the provincial level, 1990–2015.

Source data

Extended Data Table 1 Key metrics and data sources for the study
Extended Data Table 2 Provincial average carbon footprints of grain transport for consumption and production
Extended Data Table 3 GHG Conversion Factors by transport mode

Supplementary information

Supplementary Information

Model calibrating, sensitivity analysis, Supplementary Figs. 1–3 and Table 1.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig./Table 3

Statistical source data.

Source Data Extended Data Fig./Table 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, C., Wen, C., Clarke, G. et al. Cropland displacement contributed 60% of the increase in carbon emissions of grain transport in China over 1990–2015. Nat Food 4, 223–235 (2023). https://doi.org/10.1038/s43016-023-00708-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-023-00708-x

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene