Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intestinal MYC modulates obesity-related metabolic dysfunction

Abstract

MYC is a transcription factor with broad biological functions, notably in the control of cell proliferation. Here, we show that intestinal MYC regulates systemic metabolism. We find that MYC expression is increased in ileum biopsies from individuals with obesity and positively correlates with body mass index. Intestine-specific reduction of MYC in mice improves high-fat-diet-induced obesity, insulin resistance, hepatic steatosis and steatohepatitis. Mechanistically, reduced expression of MYC in the intestine promotes glucagon-like peptide-1 (GLP-1) production and secretion. Moreover, we identify Cers4, encoding ceramide synthase 4, catalysing de novo ceramide synthesis, as a MYC target gene. Finally, we show that administration of the MYC inhibitor 10058-F4 has beneficial effects on high-fat-diet-induced metabolic disorders, and is accompanied by increased GLP-1 and reduced ceramide levels in serum. This study positions intestinal MYC as a putative drug target against metabolic diseases, including non-alcoholic fatty liver disease and non-alcoholic steatohepatitis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MYC was induced in the intestines of humans and mice with obesity.
Fig. 2: MycΔIE/+ mice displayed less obesity and hepatic steatosis under HFD challenge.
Fig. 3: Intestine-specific inducible Myc disruption ameliorated HFD-induced obesity and hepatic steatosis.
Fig. 4: Intestinal Myc disruption or inhibition increased GLP-1 production and secretion.
Fig. 5: Intestinal Myc disruption reduced ceramide production and secretion.
Fig. 6: Cers4 was a MYC target gene in the intestine.
Fig. 7: Inhibition of MYC in the intestine improved HFD-induced hepatic steatosis.
Fig. 8: Inhibition of MYC in the intestine improved HFCFD-induced liver fibrosis.

Similar content being viewed by others

Data availability

Transcriptomic data have been deposited in the Gene Expression Omnibus under accession code GSE155460. Source data are provided with this paper.

References

  1. Ray, K. NAFLD—the next global epidemic. Nat. Rev. Gastroenterol. Hepatol. 10, 621 (2013).

    Article  PubMed  Google Scholar 

  2. Younossi, Z. et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 15, 11–20 (2018).

    Article  PubMed  Google Scholar 

  3. Anstee, Q. M., Targher, G. & Day, C. P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 10, 330–344 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Wong, R. J., Cheung, R. & Ahmed, A. Non-alcoholic steatohepatitis is the most rapidly growing indication for liver transplantation in patients with hepatocellular carcinoma in the U.S. Hepatology 59, 2188–2195 (2014).

    Article  PubMed  Google Scholar 

  5. Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M. & Sanyal, A. J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 24, 908–922 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Meyer, N. & Penn, L. Z. Reflecting on 25 years with MYC. Nat. Rev. Cancer 8, 976–990 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Dang, C. V. MYC on the path to cancer. Cell 149, 22–35 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qu, A. et al. Role of Myc in hepatocellular proliferation and hepatocarcinogenesis. J. Hepatol. 60, 331–338 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Shachaf, C. M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431, 1112–1117 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Shroff, E. H. et al. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proc. Natl Acad. Sci. USA 112, 6539–6544 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Osthus, R. C. et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem. 275, 21797–21800 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Peterson, C. W. & Ayer, D. E. An extended Myc network contributes to glucose homeostasis in cancer and diabetes. Front. Biosci. 16, 2206–2223 (2011).

    Article  CAS  Google Scholar 

  13. Nevzorova, Y. A. et al. Enhanced expression of c-myc in hepatocytes promotes initiation and progression of alcoholic liver disease. J. Hepatol. 64, 628–640 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Shin, J. et al. SIRT7 represses myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep. 5, 654–665 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gouw, A. M. et al. The MYC oncogene cooperates with sterol-regulated element-binding protein to regulate lipogenesis essential for neoplastic growth. Cell Metab. 30, 556–572 e555 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Davis, A. C., Wims, M., Spotts, G. D., Hann, S. R. & Bradley, A. A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes Dev. 7, 671–682 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Hofmann, J. W. et al. Reduced expression of MYC increases longevity and enhances health span. Cell 160, 477–488 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gonzalez, F. J., Jiang, C. & Patterson, A. D. An intestinal microbiota-farnesoid X receptor axis modulates metabolic disease. Gastroenterology 151, 845–859 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Gonzalez, F. J., Xie, C. & Jiang, C. The role of hypoxia-inducible factors in metabolic diseases. Nat. Rev. Endocrinol. 15, 21–32 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Chaurasia, B. & Summers, S. A. Ceramides—lipotoxic inducers of metabolic disorders. Trends Endocrinol. Metab. 26, 538–550 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Pagadala, M., Kasumov, T., McCullough, A. J., Zein, N. N. & Kirwan, J. P. Role of ceramides in non-alcoholic fatty liver disease. Trends Endocrinol. Metab. 23, 365–371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Samuel, V. T. & Shulman, G. I. Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852–871 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Summers, S. A., Chaurasia, B. & Holland, W. L. Metabolic Messengers: ceramides. Nat. Metab. 1, 1051–1058 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hannun, Y. A. & Obeid, L. M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 19, 175–191 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Liang, S. J., Li, X. G. & Wang, X. Q. Notch signaling in mammalian intestinal stem cells: determining cell fate and maintaining homeostasis. Curr. Stem Cell Res. Ther. 14, 583–590 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Sancho, R., Cremona, C. A. & Behrens, A. Stem cell and progenitor fate in the mammalian intestine: Notch and lateral inhibition in homeostasis and disease. EMBO Rep. 16, 571–581 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Andersen, A., Lund, A., Knop, F. K. & Vilsboll, T. Glucagon-like peptide 1 in health and disease. Nat. Rev. Endocrinol. 14, 390–403 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Gorboulev, V. et al. Na+-d-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61, 187–196 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Gribble, F. M., Williams, L., Simpson, A. K. & Reimann, F. A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line. Diabetes 52, 1147–1154 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Kuhre, R. E., Frost, C. R., Svendsen, B. & Holst, J. J. Molecular mechanisms of glucose-stimulated GLP-1 secretion from perfused rat small intestine. Diabetes 64, 370–382 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Parker, H. E. et al. Predominant role of active versus facilitative glucose transport for glucagon-like peptide-1 secretion. Diabetologia 55, 2445–2455 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Reimann, F. et al. Glucose sensing in L cells: a primary cell study. Cell Metab. 8, 532–539 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Filhoulaud, G., Guilmeau, S., Dentin, R., Girard, J. & Postic, C. Novel insights into ChREBP regulation and function. Trends Endocrinol. Metab. 24, 257–268 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Trabelsi, M. S. et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat. Commun. 6, 7629 (2015).

    Article  PubMed  Google Scholar 

  35. Mao, J. et al. Overnutrition stimulates intestinal epithelium proliferation through beta-catenin signaling in obese mice. Diabetes 62, 3736–3746 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Petit, V. et al. Chronic high-fat diet affects intestinal fat absorption and postprandial triglyceride levels in the mouse. J. Lipid Res. 48, 278–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Beyaz, S. et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531, 53–58 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. He, T. C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Bettess, M. D. et al. c-Myc is required for the formation of intestinal crypts but dispensable for homeostasis of the adult intestinal epithelium. Mol. Cell. Biol. 25, 7868–7878 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cho, Y. M., Fujita, Y. & Kieffer, T. J. Glucagon-like peptide-1: glucose homeostasis and beyond. Annu. Rev. Physiol. 76, 535–559 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Nauck, M. A. et al. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 36, 741–744 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Rachman, J., Barrow, B. A., Levy, J. C. & Turner, R. C. Near-normalisation of diurnal glucose concentrations by continuous administration of glucagon-like peptide-1 (GLP-1) in subjects with NIDDM. Diabetologia 40, 205–211 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Holst, J. J. The physiology of glucagon-like peptide 1. Physiol. Rev. 87, 1409–1439 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Tang-Christensen, M., Vrang, N. & Larsen, P. J. Glucagon-like peptide 1(7-36) amide’s central inhibition of feeding and peripheral inhibition of drinking are abolished by neonatal monosodium glutamate treatment. Diabetes 47, 530–537 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Verdich, C. et al. A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans. J. Clin. Endocrinol. Metab. 86, 4382–4389 (2001).

    CAS  PubMed  Google Scholar 

  46. Summers, S. A. Could ceramides become the new cholesterol? Cell Metab. 27, 276–280 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Gorden, D. L. et al. Biomarkers of NAFLD progression: a lipidomics approach to an epidemic. J. Lipid Res. 56, 722–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Laaksonen, R. et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL cholesterol. Eur. Heart J. 37, 1967–1976 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vorkas, P. A. et al. Metabolic phenotyping of atherosclerotic plaques reveals latent associations between free cholesterol and ceramide metabolism in atherogenesis. J. Proteome Res. 14, 1389–1399 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Chavez, J. A. & Summers, S. A. A ceramide-centric view of insulin resistance. Cell Metab. 15, 585–594 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Haus, J. M. et al. Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 58, 337–343 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yetukuri, L. et al. Bioinformatics strategies for lipidomics analysis: characterization of obesity-related hepatic steatosis. BMC Syst. Biol. 1, 12 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Jiang, C. et al. Intestinal farnesoid X receptor signaling promotes non-alcoholic fatty liver disease. J. Clin. Invest. 125, 386–402 (2015).

    Article  PubMed  Google Scholar 

  54. Jiang, C. et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat. Commun. 6, 10166 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Xie, C. et al. An intestinal farnesoid X receptor-ceramide signaling axis modulates hepatic gluconeogenesis in mice. Diabetes 66, 613–626 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, X. et al. Adipocyte hypoxia-inducible factor 2α suppresses atherosclerosis by promoting adipose ceramide catabolism. Cell Metab. 30, 937–951 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Chaurasia, B. et al. Adipocyte ceramides regulate subcutaneous adipose browning, inflammation and metabolism. Cell Metab. 24, 820–834 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Turpin, S. M. et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 20, 678–686 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Wegner, M. S., Schiffmann, S., Parnham, M. J., Geisslinger, G. & Grosch, S. The enigma of ceramide synthase regulation in mammalian cells. Prog. Lipid Res. 63, 93–119 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Schiffmann, S. et al. Ceramide metabolism in mouse tissue. Int. J. Biochem. Cell Biol. 45, 1886–1894 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Peters, F. et al. Ceramide synthase 4 regulates stem cell homeostasis and hair follicle cycling. J. Invest. Dermatol. 135, 1501–1509 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Mizutani, Y., Kihara, A. & Igarashi, Y. Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem. J. 390, 263–271 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Whitfield, J. R., Beaulieu, M. E. & Soucek, L. Strategies to inhibit myc and their clinical applicability. Front Cell Dev. Biol. 5, 10 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Guo, J. et al. Efficacy, pharmacokinetics, tisssue distribution, and metabolism of the Myc–Max disruptor, 10058-F4 [Z,E]-5-[4-ethylbenzylidine]-2-thioxothiazolidin-4-one, in mice. Cancer Chemother. Pharmacol. 63, 615–625 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. de Alboran, I. M. et al. Analysis of C-MYC function in normal cells via conditional gene-targeted mutation. Immunity 14, 45–55 (2001).

    Article  PubMed  Google Scholar 

  66. Madison, B. B. et al. Cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine. J. Biol. Chem. 277, 33275–33283 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. el Marjou, F. et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 39, 186–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T. & Yamanaka, S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949–953 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Huang da, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  PubMed  CAS  Google Scholar 

  70. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Q. Wang, D. Lu and J. Zhao for help with animal dissection and sample collection, and L. Byrd for assistance with the mouse protocols. We thank J. M. Sedevy for providing the Mycfl/fl mice, D. L. Gumucio for transferring the villin-cre mice and P. Chambon for providing the villin-ERT2-cre mice. This study was supported by the National Cancer Institute Intramural Research Program (ZIA BC005562; to F.J.G.) and the Outstanding academic leaders plan of Shanghai (grant no. 2018BR07; to W.L.). S.Y. was supported by a visiting fellowship from the First Affiliated Hospital, University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Contributions

Y.L., S.Y., X.W., L.S. and J.C. performed experiments. K.W.K. helped with the lipidomics analysis. C.X. and X.G. helped with RNA-seq analysis. H.B.D. helped with immunohistochemistry staining. C.J., C.X. and S.T. provided valuable suggestions about experimental design. W.L. collected human ileum biopsies. O.G. helped with indirect calorimetry. Y.L. and F.J.G. were responsible for the study concept and design. Y.L. and F.J.G. wrote the manuscript. W.L. and F.J.G. supervised the study. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Weiwei Liu or Frank J. Gonzalez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Metabolism thanks William Holland, Ömer Yilmaz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Christoph Schmitt.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Homozygous loss of MYC in the intestine was lethal.

Mycfl/fl and MycΔIE mice at 21 days of age. a, Photos of Mycfl/fl and MycΔIE mice. b, Representative H&E staining of intestine sections (n = 3 mice/group, 3 images/mouse). Scale bar, 50 µm. c, Representative Alcian Blue staining of intestine sections (n = 3 mice/group, 3 images/mouse). Scale bar, 100 µm. d, Number of goblet cells. n = 30. e, Body weight. f, Liver weight. g, Small intestine length. h, Colon length. i, Small intestine length to body weight ratio. j, Colon length to body weight ratio. k, Serum ALT. l, Serum AST. m, Serum triglyceride. n, Serum total cholesterol. o, Hepatic triglyceride. p, Hepatic total cholesterol. e-p, n = 9 for Mycfl/fl mice and n = 4 for MycΔIE mice. q, The mRNA levels of indicated genes in the intestine of Mycfl/fl and MycΔIE mice. n = 5 for Mycfl/fl mice and n = 4 for MycΔIE mice. * or ** P = 0.0030, 0,0167, 0.0040, 0.0402, 0.0235, 0.0344, from left to right. N.D., not detectable. r, Western blot analysis of indicated proteins in the intestine of Mycfl/fl and MycΔIE mice. All data are presented as mean ± S.E.M. of biologically independent samples, analyzed using a two-tailed Student’s t-test (d-q).

Source data

Extended Data Fig. 2 Generation of mice with heterozygous loss of MYC in the intestine.

a, Myc mRNA levels in different tissues of Mycfl/+ and MycΔIE/+ mice. n = 6. b, The mRNA levels of indicated genes in the intestine of Mycfl/+ and MycΔIE/+ mice. n = 7. c, The protein levels of MYC in the intestine of Mycfl/+ and MycΔIE/+ mice. d, Representative H&E staining of intestine sections (n = 3 mice/group, 3 images/mouse). Scale bar, 100 µm. e, Representative Alcian Blue staining of intestine sections (n = 3 mice/group, 3 images/mouse). Scale bar, 100 µm. f, Number of goblet cells. n = 30. g, Representative immunohistochemistry staining of lysozyme on intestine sections (n = 3 mice/group, 3 images/mouse). Scale bar, 50 µm. h, Number of Paneth cells. n = 30. i, Representative immunohistochemistry staining of synaptophysin on intestine sections (n = 3 mice/group, 3 images/mouse). Scale bar, 50 µm. j, Number of enteroendocrine cells. n = 9. k, Representative BrdU staining of intestine sections (n = 5 mice/group, 9 images/mouse). Scale bar, 100 µm. l, BrdU labeling index. n = 5. All data are presented as mean ± S.E.M. of biologically independent samples, analyzed using a two-tailed Student’s t-test (a,b,f,h,j,l).

Source data

Extended Data Fig. 3 Intestinal cell proliferation, hepatic gene expression and energy expenditure of MycΔIE/+ mice under HFD.

a-c, Mycfl/+ and MycΔIE/+ mice were fed a HFD for 18 weeks. Representative of n = 2 experiments. a, Body weight curve. ** or ***P = 0.0003, 0.0002, < 0.0001, 0.0008, 0.0009, 0.0008, 0.0008, 0.0008, 0.0007, 0.0010, 0.0004, 0.0003, 0.0005, 0.0003, < 0.0001, 0.0004, 0.0004 from 2w to 18w. b, Liver weight. a,b, n = 7 for Mycfl/+ mice and n = 6 for MycΔIE/+ mice. c, Representative H&E and Oil Red O staining of liver sections (n = 4 mice/group, 3 images/mouse). Scale bar, 50 µm. d-f, Mycfl/+ and MycΔIE/+ mice were fed a HFD for 10 weeks. Representative of n = 3 experiments. d, Representative BrdU staining of intestine sections (n = 5 mice/group, 9 images/mouse). Scale bar, 100 µm. right, BrdU labeling index, n = 5. e, Hepatic expression of genes involved in lipid synthesis, transport and β-oxidation. n = 7. * or ** or *** P = 0.0412, 0.0456, 0.0165, 0.0216, 0.0002, 0.0071, 0.0027, 0.0124, 0.0022, from left to right. f, Hepatic expression of genes involved in glycolysis (left) and gluconeogenesis (right). n = 7. * or ** or *** P = 0.0376, 0.0231, 0.0235, 0.0007, 0.0047, 0.0004, 0.0067, 0.0015, 0.0047, 0.0045, 0.0407, 0.0175, 0.0058, from left to right. g-i, Mycfl/+ and MycΔIE/+ mice were fed a HFD for 2 weeks. n = 6. Representative of n = 3 experiments. g, Fecal triglyceride. h, Fecal total cholesterol. i, Fecal NEFA. j-n, Mycfl/+ and MycΔIE/+ mice were fed a HFD for 4 weeks. j, Total energy expenditure. k, Oxygen consumption rate. l, Respiratory exchange ratio. m, Total activity. n, Food intake. j-m, n = 6. n, n = 5 for Mycfl/+ and n = 4 for MycΔIE/+. o, Representative immunohistochemistry staining of UCP-1 on subcutaneous white adipose tissues from Mycfl/+ and MycΔIE/+ mice fed a HFD for 10 weeks (n = 3 mice/group, 3 images/mouse). Scale bar, 50 µm. All data are presented as mean ± S.E.M. of biologically independent samples, analyzed using a two-tailed Student’s t-test (a,b,d-n).

Source data

Extended Data Fig. 4 Generation of mice with inducible loss of MYC in the intestine.

a, Myc mRNA levels in different tissues of Mycfl/fl and MycΔIE, ERT2 mice treated with tamoxifen. n = 4. b, The mRNA levels of indicated genes in the intestine of Mycfl/fl and MycΔIE, ERT2 mice treated with tamoxifen. n = 5. c, Representative H&E staining of intestine sections (n = 3 mice/group, 3 images/mouse). Scale bar, 100 µm. d, Representative Alcian Blue staining of intestine sections (n = 3 mice/group, 3 images/mouse). Scale bar, 100 µm. e, Number of goblet cells. n = 30. f, Representative immunohistochemistry staining of lysozyme on intestine sections (n = 3 mice/group, 3 images/mouse). Scale bar, 50 µm. g, Number of Paneth cells. n = 30. h, Representative immunohistochemistry staining of synaptophysin on intestine sections (n = 3 mice/group, 3 images/mouse). Scale bar, 50 µm. i, Number of enteroendocrine cells. n = 9. All data are presented as mean ± S.E.M. of biologically independent samples, analyzed using a two-tailed Student’s t-test (a,b,e,g,i).

Source data

Extended Data Fig. 5 Metabolic parameters of MycΔIE, ERT2 mice under chow diet.

a, Representative immunohistochemistry staining of MYC on intestine sections from Mycfl/+ and MycΔIE/+ mice (n = 3 mice/group, 3 images/mouse). Scale bar, 50 µm. b, Representative immunohistochemistry staining of MYC on intestine sections from Mycfl/fl and MycΔIE, ERT2 mice (n = 3 mice/group, 3 images/mouse). Scale bar, 50 µm. c, Representative in situ hybridization of Myc on intestine sections from Mycfl/+ and MycΔIE/+ mice (n = 2 mice/group, 3 images/mouse). Scale bar, 50 µm. d, Representative in situ hybridization of Myc on intestine sections from Mycfl/fl and MycΔIE, ERT2 mice (n = 2 mice/group, 3 images/mouse). Scale bar, 50 µm. e-n, Mycfl/fl and MycΔIE, ERT2 mice were weekly injected with tamoxifen for 6 weeks from 8 weeks of age. e, Glucose tolerance test. f, Insulin tolerance test. g, Body weight. h, Liver weight. i, Serum ALT. j, Serum AST. k, Serum triglyceride. l, Serum total cholesterol. m, Hepatic triglyceride. n, Hepatic total cholesterol. e-n, n = 4. All data are presented as mean ± S.E.M. of biologically independent samples, analyzed using a two-tailed Student’s t-test (e-n).

Source data

Extended Data Fig. 6 RNA-seq analysis of MycΔIE, ERT2 mice fed a HFD for 2 weeks.

a-j, Mycfl/fl and MycΔIE, ERT2 mice were injected with tamoxifen and fed a HFD for 2 weeks. a, Body weight curve. b, Liver weight. c, Serum ALT. d, Serum AST. e, Serum triglyceride. f, Serum total cholesterol. g, Hepatic triglyceride. h, Hepatic total cholesterol. a-h, n = 7. i, Glucose tolerance test. j, Insulin tolerance test. i,j, n = 9 for Mycfl/fl mice and n = 10 for MycΔIE, ERT2 mice. *P = 0.0113 (GTT, 30 min), 0.0497 (GTT, 60 min), 0.0103 (ITT, 60 min), 0.0224 (ITT, 90 min). All data are presented as mean ± S.E.M. of biologically independent samples, analyzed using a two-tailed Student’s t-test (a-j). The PCA plot (k), volcano plot (l) and pathway enrichment (m) of the RNA-seq data from the intestines of Mycfl/fl and MycΔIE, ERT2 mice injected with tamoxifen and fed a HFD for 2 weeks.

Source data

Extended Data Fig. 7 Intestinal Myc disruption improved obesity and fatty liver through ceramide reduction.

Mycfl/+ and MycΔIE/+ mice were fed a HFD and daily i.p. injected with vehicle or ceramide for 6 weeks. Representative of n = 2 experiments. a, Glucose tolerance test. b, Insulin tolerance test. a,b, * or **P = 0.0027, 0.0031, 0.0340, 0.0074, 0.0139, 0.0428, 0.0179, from left to right, MycΔIE/+ Vehicle group versus Mycfl/+ Vehicle group. # or ##P = 0.0138, 0.0341, 0.0120, from left to right, MycΔIE/+ Ceramide group versus MycΔIE/+ Vehicle group. c, GTT AUC. d, ITT AUC. e, Liver weight. f, Serum ALT. g, Serum AST. h, Serum triglyceride. i, Serum total cholesterol. j, Hepatic triglyceride. k, Hepatic total cholesterol. l, The mRNA levels of indicated genes in the liver. * or ** or ***P = 0.0325, 0.0062, 0.0383, 0.0145, 0.0027, 0.0007, 0.0013, 0.0005, 0.0319, from left to right, MycΔIE/+ Vehicle group versus Mycfl/+ Vehicle group. # or ## or ###P = 0.0091, < 0.0001, 0.0059, 0.0007, 0.0023, 0.0089, 0.0345, 0.0477, from left to right, MycΔIE/+ Ceramide group versus MycΔIE/+ Vehicle group. a-l, n = 7 for Mycfl/+ Vehicle group. n = 6 for MycΔIE/+ Vehicle group and MycΔIE/+ Ceramide group. All data are presented as mean ± S.E.M. of biologically independent samples, analyzed using one-way ANOVA followed by Tukey’s multiple comparisons test (c-l), or two-way ANOVA followed by Dunnett’s multiple comparisons test (a,b). m, Representative H&E and Oil Red O staining of liver sections (n = 4 mice/group, 3 images/mouse). Scale bar, 100 µm.

Source data

Extended Data Fig. 8 Intestinal Myc disruption decreased SMPD3 levels.

a, Protein levels of SMPD3 in the intestine of Mycfl/+ and MycΔIE/+ mice fed a HFD for 2 weeks. b, Protein levels of SMPD3 in the intestine of C57BL/6 N mice first fed a HFD for 6 weeks and then daily gavaged with vehicle or 50 mg/kg 10058-F4 while maintained on a HFD for another 8 weeks. c, Schematic diagram of the mouse Smpd3 promotor illustrating the predicted Ebox sites in the regulatory region and the fragments used for the luciferase reporter assay. d, Luciferase reporter assay of the mouse Smpd3 promoter activity. n = 3. e, ChIP assay with MC38 cells transfected with empty backbone or MYC overexpression plasmid and treated with vehicle or 40 µM 10058-F4 for 48 h. n = 3 for α-MYC and IgG groups, n = 1 for α-H3 group. All data are presented as mean ± S.E.M. of biologically independent samples, analyzed using two-way ANOVA followed by Tukey’s multiple comparisons test (d,e).

Source data

Extended Data Fig. 9 CERS4 regulated ceramide production in intestinal organoids.

a, Cers4 mRNA levels in the intestine of C57BL/6 N mice fed a chow diet or HFD for 2 weeks or 15 weeks. n = 5 for 2w chow, 15w chow and 15w HFD. n = 6 for 2w HFD. b-e, Intestinal organoids were isolated from Mycfl/+ mice fed a HFD for 2 weeks and infected with lentiviruses carrying scramble siRNA (scramble) or Cers4 shRNA (shCers4). b, Cers4 mRNA levels in intestinal organoids. n = 4. c, CERS4 protein levels in intestinal organoids. d, Ceramide levels in the intestinal organoids. n = 6. e, Ceramide levels in the culture medium of intestinal organoids. n = 6. f-i, Intestinal organoids were isolated from Mycfl/+ and MycΔIE/+ mice fed a HFD for 2 weeks and infected with control lentiviruses (Lv-Empty) or lentiviruses carrying Cers4 cDNA (Lv-Cers4). f, Cers4 mRNA levels in intestinal organoids. n = 4. g, CERS4 protein levels in intestinal organoids. h, Ceramide levels in the intestinal organoids. n = 6. i, Ceramide levels in the culture medium of intestinal organoids. n = 6. h-i, * or **P = 0.0046, 0.0016, 0.0309, 0.0229, 0.0212, 0.0136, 0.0018, 0.0012, 0.0031, from left to right, MycΔIE/+ Lv-Empty group versus Mycfl/+ Lv-Empty group. # or ##P = 0.0012, 0.0492, 0.0015, 0.0072, 0.0416, from left to right, MycΔIE/+ Lv-Cers4 group versus MycΔIE/+ Lv-Empty group. All data are presented as mean ± S.E.M. of biologically independent samples, analyzed using a two-tailed Student’s t-test (a,b,d,e), or one-way ANOVA followed by Tukey’s multiple comparisons test (f,h,i).

Source data

Extended Data Fig. 10 The effect of 10058-F4 on metabolic syndrome was dependent on intestinal MYC.

Mycfl/+ and MycΔIE/+ mice were fed a HFD and treated with vehicle or 10058-F4 for 8 weeks. a, Body weight curve. ** or ***P = 0.0013 for 2w, < 0.0001 for 3–8w, MycΔIE/+ Vehicle group versus Mycfl/+ Vehicle group. # or ## or ###P = 0.0307, 0.0033, 0.0011, 0.0001, 0.0015, 0.0001, < 0.0001 for 2–8w, Mycfl/+ 10058-F4 group versus Mycfl/+ Vehicle group. b, Fat mass. c, Lean mass. d, Liver weight. e, Glucose tolerance test. f, Insulin tolerance test. e,f, * or ** or ***P = 0.0403, 0.0050, 0.0144, 0.0175, 0.0298, 0.0014, 0.0004, from left to right, MycΔIE/+ Vehicle group versus Mycfl/+ Vehicle group. # or ##P = 0.0330, 0.0226, 0.0099, 0.0041, from left to right, Mycfl/+ 10058-F4 group versus Mycfl/+ Vehicle group. g, GTT AUC. h, ITT AUC. i, Insulin curve in response to glucose. **P = 0.0031 (0 min), 0.0078 (75 min), MycΔIE/+ Vehicle group versus Mycfl/+ Vehicle group. # or ##P = 0.0025 (0 min), 0.0140 (75 min), Mycfl/+ 10058-F4 group versus Mycfl/+ Vehicle group. j, insulin levels at 0 min and 15 min post glucose load. k, Serum ALT. l, Serum AST. m, Serum triglyceride. n, Serum total cholesterol. o, Hepatic triglyceride. p, Hepatic total cholesterol. a-p, n = 8. All data are presented as mean ± S.E.M. of biologically independent samples, analyzed using one-way ANOVA followed by Tukey’s multiple comparisons test (b-d,g,h,k-p), two-way ANOVA followed by Tukey’s multiple comparisons test (a,e,f,i), or a two-tailed paired t-test (j). q, Representative H&E staining of liver (top) and intestine sections (bottom), and Oil Red O staining of liver sections (middle) (n = 4 mice/group, 3 images/mouse). Scale bar, 100 µm.

Source data

Supplementary information

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 1

Uncropped western blots.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 4

Uncropped western blots.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 6

Uncropped western blots.

Source Data Fig. 7

Statistical source data.

Source Data Fig. 7

Uncropped western blots.

Source Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 1

Uncropped western blots.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 2

Uncropped western blots.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 8

Uncropped western blots.

Source Data Extended Data Fig. 9

Statistical source data.

Source Data Extended Data Fig. 9

Uncropped western blots.

Source Data Extended Data Fig. 10

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Yang, S., Wu, X. et al. Intestinal MYC modulates obesity-related metabolic dysfunction. Nat Metab 3, 923–939 (2021). https://doi.org/10.1038/s42255-021-00421-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-021-00421-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing