Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metabolic engineering of Escherichia coli with electron channelling for the production of natural products

Abstract

The biosynthesis of natural products often requires eukaryotic cytochrome P450s (P450s) in combination with P450 reductase, in physical proximity, to perform electron-transfer reactions. Unfortunately, functional expression of eukaryotic P450s in bacteria remains generally difficult. Here we report an electron channelling strategy based on the application of Photorhabdus luminescens CipB scaffold protein, which allows efficient electron transfer between P450s and reductases by bringing these enzymes in close proximity. The general applicability of this electron channelling strategy is proved by developing recombinant Escherichia coli strains producing lutein, (+)-nootkatone, apigenin and l-3,4-dihydroxyphenylalanine (l-DOPA), each of which requires P450s in its biosynthetic pathway. The production titres are then further enhanced by increasing the haem pathway flux or by optimization of the culture conditions. Remarkably, the final lutein strain produced 218.0 mg l−1 of lutein with a productivity of 5.01 mg l−1 h−1 in fed-batch fermentation under optimized culture conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The primary lutein biosynthetic pathway.
Fig. 2: Results of flask culture for lutein production.
Fig. 3: Biosynthetic pathways of (+)-nootkatone, apigenin and L-DOPA.
Fig. 4: Applying the electron channelling strategy to produce natural products in E. coli.
Fig. 5: Enhancement of lutein production by increasing haem supply.
Fig. 6: Enhancement of lutein production by optimization of culture conditions.
Fig. 7: Fed-batch fermentation of LUT5MH1 for lutein production.

Similar content being viewed by others

Data availability

The data to reproduce the findings in this study are presented in the Paper and the Supplementary Information or are available from the authors upon reasonable request. Source data are provided with this Paper.

References

  1. Croteau, R., Kutchan, T. M. & Lewis, N. G. in Biochemistry & Molecular Biology of Plants (eds Buchana, B., Gruissem, W. & Jones, R.) 1250–1318 (American Society of Plant Physiologists, 2000).

  2. Yang, D., Park, S. Y., Park, Y. S., Eun, H. & Lee, S. Y. Metabolic engineering of Escherichia coli for natural product biosynthesis. Trends Biotechnol. 38, 745–765 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Lee, S. Y. High cell-density culture of Escherichia coli. Trends Biotechnol. 14, 98–105 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Hannemann, F., Bichet, A., Ewen, K. M. & Bernhardt, R. Cytochrome P450 systems-biological variations of electron transport chains. Biochim. Biophys. Acta 1770, 330–344 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, Y., Heermann, R. & Jung, K. CipA and CipB as scaffolds to organize proteins into crystalline inclusions. ACS Synth. Biol. 6, 826–836 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Dueber, J. E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27, 753–759 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Geraldi, A., Khairunnisa, F., Farah, N., Bui, L. M. & Rahman, Z. Synthetic scaffold systems for increasing the efficiency of metabolic pathways in microorganisms. Biology (Basel) 10, 216 (2021).

    CAS  Google Scholar 

  8. Haslinger, K. & Prather, K. L. J. Heterologous caffeic acid biosynthesis in Escherichia coli is affected by choice of tyrosine ammonia lyase and redox partners for bacterial cytochrome P450. Microb. Cell Fact. 19, 26 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hirakawa, H. & Nagamune, T. Molecular assembly of P450 with ferredoxin and ferredoxin reductase by fusion to PCNA. ChemBioChem 11, 1517–1520 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Kokorin, A. et al. Genetic fusion of P450 BM3 and formate dehydrogenase towards self-sufficient biocatalysts with enhanced activity. Sci. Rep. 11, 21706 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Johnson, E. O. & Wong, L. L. Partial fusion of a cytochrome P450 system by carboxy-terminal attachment of putidaredoxin reductase to P450cam (CYP101A1). Catal. Sci. Technol. 6, 7549–7560 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sibbesen, O., De Voss, J. J. & Montellano, P. R. Putidaredoxin reductase-putidaredoxin-cytochrome p450cam triple fusion protein. Construction of a self-sufficient Escherichia coli catalytic system. J. Biol. Chem. 271, 22462–22469 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Robin, A. et al. Engineering and improvement of the efficiency of a chimeric [P450cam-RhFRed reductase domain] enzyme. Chem. Commun. 18, 2478–2480 (2009).

    Article  CAS  Google Scholar 

  14. Sabbadin, F. et al. LICRED: a versatile drop-in vector for rapid generation of redox-self-sufficient cytochrome P450s. ChemBioChem 11, 987–994 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Sujak, A. et al. Lutein and zeaxanthin as protectors of lipid membranes against oxidative damage: the structural aspects. Arch. Biochem. Biophys. 371, 301–307 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Buscemi, S. et al. The effect of lutein on eye and extra-eye health. Nutrients 10, 1321 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  17. Cunningham, F. X. et al. Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell 8, 1613–1626 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim, J. & DellaPenna, D. Defining the primary route for lutein synthesis in plants: the role of Arabidopsis carotenoid beta-ring hydroxylase CYP97A3. Proc. Natl Acad. Sci. USA 103, 3474–3479 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tian, L., Musetti, V., Kim, J., Magallanes-Lundback, M. & DellaPenna, D. The Arabidopsis LUT1 locus encodes a member of the cytochrome P450 family that is required for carotenoid epsilon-ring hydroxylation activity. Proc. Natl Acad. Sci. USA 101, 402–407 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Urban, P., Mignotte, C., Kazmaier, M., Delorme, F. & Pompon, D. Cloning, yeast expression, and characterization of the coupling of two distantly related Arabidopsis thaliana NADPH-cytochrome P450 reductases with P450 CYP73A5. J. Biol. Chem. 272, 19176–19186 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Emanuelsson, O., Nielsen, H. & von Heijne, G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 8, 978–984 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakagawa, A. et al. Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat. Commun. 7, 10390 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Choi, H. S., Lee, S. Y., Kim, T. Y. & Woo, H. M. In silico identification of gene amplification targets for improvement of lycopene production. Appl. Environ. Microb. 76, 3097–3105 (2010).

    Article  CAS  Google Scholar 

  24. Park, S. Y., Binkley, R. M., Kim, W. J., Lee, M. H. & Lee, S. Y. Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity. Metab. Eng. 49, 105–115 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Kim, J., Kong, M. K., Lee, S. Y. & Lee, P. C. Carbon sources-dependent carotenoid production in metabolically engineered Escherichia coli. World J. Microbiol. Biotechnol. 26, 2231–2239 (2010).

    Article  CAS  Google Scholar 

  26. Zhang, Y. H. Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol. Adv. 29, 715–725 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Li, Z. R. et al. Lutein accumulation in the absence of zeaxanthin restores nonphotochemical quenching in the Arabidopsis thaliana npq1 mutant. Plant Cell 21, 1798–1812 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Macleod, W. D. & Buigues, N. M. Sesquiterpenes. I. Nootkatone, a new grapefruit flavor constituent. J. Food Sci. 29, 565–568 (1964).

    Article  CAS  Google Scholar 

  29. Zhu, B. C. R., Henderson, G., Chen, F., Maistrello, L. & Laine, R. A. Nootkatone is a repellent for Formosan subterranean termite (Coptotermes formosanus). J. Chem. Ecol. 27, 523–531 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Girhard, M. et al. Regioselective biooxidation of (+)-valencene by recombinant E. coli expressing CYP109B1 from Bacillus subtilis in a two-liquid-phase system. Microb. Cell Fact. 8, 36 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zhou, K., Qiao, K. J., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33, 377–383 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Takahashi, S. et al. Functional characterization of premnaspirodiene oxygenase, a cytochrome P450 catalyzing regio- and stereo-specific hydroxylations of diverse sesquiterpene substrates. J. Biol. Chem. 282, 31744–31754 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Beekwilder, J. et al. Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene. Plant Biotechnol. J. 12, 174–182 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Yang, J. M. & Guo, L. Z. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways. Microb. Cell Fact. 13, 160 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Burke, C. & Croteau, R. Geranyl diphosphate synthase from Abies grandis: cDNA isolation, functional expression and characterization. Arch. Biochem. Biophys. 405, 130–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. UniProt, C. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019).

    Article  CAS  Google Scholar 

  37. Meng, X. et al. Metabolic engineering Saccharomyces cerevisiae for de novo production of the sesquiterpenoid (+)-nootkatone. Microb. Cell Fact. 19, 21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Salehi, B. et al. The therapeutic potential of apigenin. Int. J. Mol. Sci. 20, 1305 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  39. Lee, H., Kim, B. G., Kim, M. & Ahn, J. H. Biosynthesis of two flavones, apigenin and genkwanin, in Escherichia coli. J. Microbiol. Biotechnol. 25, 1442–1448 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Martens, S. & Mithofer, A. Flavones and flavone synthases. Phytochemistry 66, 2399–2407 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Kim, B., Binkley, R., Kim, H. U. & Lee, S. Y. Metabolic engineering of Escherichia coli for the enhanced production of l-tyrosine. Biotechnol. Bioeng. 115, 2554–2564 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Yang, D. et al. Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria. Proc. Natl Acad. Sci. USA 115, 9835–9844 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fliegmann, J. et al. Flavone synthase II (CYP93B16) from soybean (Glycine max L.). Phytochemistry 71, 508–514 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Soares, A. R. et al. The role of L-DOPA in plants. Plant Signal Behav. 9, e28275 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Fordjour, E., Adipah, F. K., Zhou, S., Du, G. & Zhou, J. Metabolic engineering of Escherichia coli BL21 (DE3) for de novo production of L-DOPA from D-glucose. Microb. Cell Fact. 18, 74 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. DeLoache, W. C. et al. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nat. Chem. Biol. 11, 465–471 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Lerchner, A., Daake, M., Jarasch, A. & Skerra, A. Fusion of an alcohol dehydrogenase with an aminotransferase using a PAS linker to improve coupled enzymatic alcohol-to-amine conversion. Protein Eng. Des. Sel. 29, 557–562 (2016).

    CAS  PubMed  Google Scholar 

  48. Zhao, X. R., Choi, K. R. & Lee, S. Y. Metabolic engineering of Escherichia coli for secretory production of free haem. Nat. Catal. 1, 720–728 (2018).

    Article  CAS  Google Scholar 

  49. Lin, J. H., Lee, D. J. & Chang, J. S. Lutein production from biomass: marigold flowers versus microalgae. Bioresour. Technol. 184, 421–428 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Huang, W., Lin, Y., He, M., Gong, Y. & Huang, J. Induced high-yield production of zeaxanthin, lutein and beta-carotene by a mutant of Chlorella zofingiensis. J. Agric. Food Chem. 66, 891–897 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Tartof, K. D. & Hobbs, C. A. Improved media for growing plasmid and cosmid clones. Bethesda Res. Lab. Focus 9, 12 (1987).

    Google Scholar 

  52. Jeong, K. J. & Lee, S. Y. Excretion of human beta-endorphin into culture medium by using outer membrane protein F as a fusion partner in recombinant Escherichia coli. Appl. Environ. Microb. 68, 4979–4985 (2002).

    Article  CAS  Google Scholar 

  53. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, L. Y., Wilson, S. & Elliott, T. A mutant HemA protein with positive charge close to the N terminus is stabilized against heme-regulated proteolysis in Salmonella typhimurium. J. Bacteriol. 181, 6033–6041 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Drew, D., Lerch, M., Kunji, E., Slotboom, D. J. & de Gier, J. W. Optimization of membrane protein overexpression and purification using GFP fusions. Nat. Methods 3, 303–313 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Suzuki, T., Yamane, T. & Shimizu, S. Phenomenological background and some preliminary trials of automated substrate supply in pH-stat modal fed-batch culture using a setpoint of high limit. J. Ferment. Bioeng. 69, 292–297 (1990).

    Article  CAS  Google Scholar 

  57. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).

  58. Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Bang, K. R. Choi, S. Cho, D. Huccetogullari, G. B. Kim, G. Ryu and T. Yu for helpful discussions and valuable advice. This work was supported by the Cooperative Research Program for Agriculture Science & Technology Development (project no. PJ01550602), Rural Development Administration, Republic of Korea. This work was further supported by the Development of Next-Generation Biorefinery Platform Technologies for Leading Bio-based Chemicals Industry Project (2022M3J5A1056072) and by the Development of Platform Technologies of Microbial Cell Factories for the Next-Generation Biorefineries Project (2022M3J5A1056117) from the National Research Foundation supported by the Korean Ministry of Science and ICT.

Author information

Authors and Affiliations

Authors

Contributions

S.Y.L. conceived the project. S.Y.L. and S.Y.P. designed the experiments. S.Y.P. and H.E. conducted experiments and analysed the data. M.H.L. contributed to HPLC and HPLC-MS analysis. S.Y.L., S.Y.P. and H.E. wrote the manuscript, and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Sang Yup Lee.

Ethics declarations

Competing interests

S.Y.L. and S.Y.P. declare competing financial interests as the work described in this Paper is covered by a patent filed including, but not limited to, KR1020210005806, and is of commercial interest. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Kristina Haslinger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Tables 1–7, notes 1–9 and uncropped scans of gels and blots.

Reporting Summary

Supplementary Data 1

Statistical source data of Supplementary Fig. 2

Supplementary Data 2

Statistical source data of Supplementary Fig. 4

Supplementary Data 3

Statistical source data of Supplementary Fig. 8

Supplementary Data 4

Statistical source data of Supplementary Fig. 9

Supplementary Data 5

Statistical source data of Supplementary Fig. 10

Supplementary Data 6

Statistical source data of Supplementary Fig. 11

Source data

Source Data Fig. 2

Statistical source data

Source Data Fig. 4

Statistical source data

Source Data Fig. 5

Statistical source data

Source Data Fig. 6

Statistical source data

Source Data Fig. 7

Statistical source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.Y., Eun, H., Lee, M.H. et al. Metabolic engineering of Escherichia coli with electron channelling for the production of natural products. Nat Catal 5, 726–737 (2022). https://doi.org/10.1038/s41929-022-00820-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00820-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research