Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lifetime improvement in methanol-to-olefins catalysis over chabazite materials by high-pressure H2 co-feeds

Abstract

Mitigating catalyst deactivation in the industrially deployed process of methanol-to-olefins conversion over HSAPO-34 is a critical challenge. Here, we demonstrate that lifetime in methanol-to-olefins catalysis over HSAPO-34 at sub-complete methanol conversion, as determined by the cumulative turnover capacity per Brønsted acid site towards hydrocarbon products in the effluent before complete catalyst deactivation (~15% carbon final conversion), can be enhanced with increasing efficacy (~2.8× to >70×) by co-feeding H2 at increasing partial pressures (400–3,000 kPa) in the influent with methanol compared with co-feeding helium at equivalent pressures. The lifetime improvement in the presence of high-pressure H2 co-feeds is observed to be more prominent at complete methanol conversion than at sub-complete conversion. The improvements in catalyst lifetime by co-feeding H2 are rendered without any deleterious effects on C2–C4 olefins selectivity, which remains ~85% carbon irrespective of the inlet H2 pressure. These observations can be rationalized based on the participation of H2 in hydrogen transfer reactions, and in effect, the interception of pathways that promote the formation of deactivation-inducing polycyclic species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalytic behaviour of HSAPO-34 with helium versus H2 co-feeds at sub-complete methanol conversion.
Fig. 2: Catalytic behaviour of HSAPO-34 with helium versus H2 co-feeds at complete methanol conversion.
Fig. 3: Catalytic behaviour of HZSM-5 with helium versus H2 co-feeds at sub-complete methanol conversion.
Fig. 4: Catalytic behaviour of HSAPO-34 with helium versus H2 co-feeds with methanol-formaldehyde feeds.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Chen, J. Q., Bozzano, A., Glover, B., Fuglerud, T. & Kvisle, S. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catal. Today 106, 103–107 (2005).

    Article  CAS  Google Scholar 

  2. Mokrani, T. & Scurrell, M. Gas conversion to liquid fuels and chemicals: the methanol route-catalysis and processes development. Catal. Rev. 51, 1–145 (2009).

    Article  CAS  Google Scholar 

  3. Yilmaz, B. & Müller, U. Catalytic applications of zeolites in chemical industry. Top. Catal. 52, 888–895 (2009).

    Article  CAS  Google Scholar 

  4. Tian, P., Wei, Y., Ye, M. & Liu, Z. Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal. 5, 1922–1938 (2015).

    Article  CAS  Google Scholar 

  5. Baerlocher, C., McCusker, L. B. & Olson, D. Atlas of Zeolite Framework Types (Elsevier, Amsterdam, 2007).

  6. Song, W., Haw, J. F., Nicholas, J. B. & Heneghan, C. S. Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34. J. Am. Chem. Soc. 122, 10726–10727 (2000).

    Article  CAS  Google Scholar 

  7. Song, W., Fu, H. & Haw, J. F. Supramolecular origins of product selectivity for methanol-to-olefin catalysis on HSAPO-34. J. Am. Chem. Soc. 123, 4749–4754 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Arstad, B. & Kolboe, S. Methanol-to-hydrocarbons reaction over SAPO-34. Molecules confined in the catalyst cavities at short time on stream. Catal. Lett. 71, 209–212 (2001).

    Article  CAS  Google Scholar 

  9. Arstad, B. & Kolboe, S. The reactivity of molecules trapped within the SAPO-34 cavities in the methanol-to-hydrocarbons reaction. J. Am. Chem. Soc. 123, 8137–8138 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Song, W., Marcus, D. M., Fu, H., Ehresmann, J. O. & Haw, J. F. An oft-studied reaction that may never have been: direct catalytic conversion of methanol or dimethyl ether to hydrocarbons on the solid acids HZSM-5 or HSAPO-34. J. Am. Chem. Soc. 124, 3844–3845 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Nawaz, S., Kvisle, S., Lillerud, K.-P., Stocker, M. & Øren, H. Selectivity and deactivation profiles of zeolite type materials in the MTO process. Stud. Surf. Sci. Catal. 61, 421–427 (1991).

    Article  CAS  Google Scholar 

  12. Yuen, L.-T., Zones, S. I., Harris, T. V., Gallegos, E. J. & Auroux, A. Product selectivity in methanol to hydrocarbon conversion for isostructural compositions of AFI and CHA molecular sieves. Microporous Mater. 2, 105–117 (1994).

    Article  CAS  Google Scholar 

  13. Haw, J. F., Song, W., Marcus, D. M. & Nicholas, J. B. The mechanism of methanol to hydrocarbon catalysis. Acc. Chem. Res. 36, 317–326 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Schulz, H. “Coking” of zeolites during methanol conversion: basic reactions of the MTO-, MTP- and MTG processes. Catal. Today 154, 183–194 (2010).

    Article  CAS  Google Scholar 

  15. Olsbye, U. et al. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angew. Chemie Int. Ed. 51, 5810–5831 (2012).

    Article  CAS  Google Scholar 

  16. Marcus, D. M. et al. Experimental evidence from H/D exchange studies for the failure of direct C–C coupling mechanisms in the methanol-to-olefin process catalyzed by HSAPO-34. Angew. Chemie Int. Ed. 45, 3133–3136 (2006).

    Article  CAS  Google Scholar 

  17. Müller, S. et al. Hydrogen transfer pathways during zeolite catalyzed methanol conversion to hydrocarbons. J. Am. Chem. Soc. 138, 15994–16003 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Martinez-Espin, J. S. et al. New insights into catalyst deactivation and product distribution of zeolites in the methanol-to-hydrocarbons (MTH) reaction with methanol and dimethyl ether feeds. Catal. Sci. Technol. 6, 2314–2331 (2017).

    Google Scholar 

  19. Hwang, A., Kumar, M., Rimer, J. D. & Bhan, A. Implications of methanol disproportionation on catalyst lifetime for methanol-to-olefins conversion by HSSZ-13. J. Catal. 346, 154–160 (2017).

    Article  CAS  Google Scholar 

  20. Martinez-Espin, J. S. et al. Hydrogen transfer versus methylation: on the genesis of aromatics formation in the methanol-to-hydrocarbons reaction over H-ZSM-5. ACS Catal. 7, 5773–5780 (2017).

    Article  CAS  Google Scholar 

  21. Arora, S. S. & Bhan, A. The critical role of methanol pressure in controlling its transfer dehydrogenation and the corresponding effect on propylene-to-ethylene ratio during methanol-to-hydrocarbons catalysis on H-ZSM-5. J. Catal. 356, 300–306 (2017).

    Article  CAS  Google Scholar 

  22. Meusinger, J. & Corma, A. Activation of hydrogen on zeolites: kinetics and mechanism of n-heptane cracking on H-ZSM-5 zeolites under high hydrogen pressure. J. Catal. 152, 189–197 (1995).

    Article  CAS  Google Scholar 

  23. Guisnet, M. & Magnoux, P. Organic chemistry of coke formation. Appl. Catal. A 212, 83–96 (2001).

    Article  CAS  Google Scholar 

  24. Marcus, D. M., Song, W., Ng, L. L. & Haw, J. F. Aromatic hydrocarbon formation in HSAPO-18 catalysts: cage topology and acid site density. Langmuir 18, 8386–8391 (2002).

    Article  CAS  Google Scholar 

  25. Hereijgers, B. P. et al. Product shape selectivity dominates the methanol-to-olefins (MTO) reaction over H-SAPO-34 catalysts. J. Catal. 264, 77–87 (2009).

    Article  CAS  Google Scholar 

  26. Hwang, A., Prieto-Centurion, D. & Bhan, A. Isotopic tracer studies of methanol-to-olefins conversion over HSAPO-34: the role of the olefins-based catalytic cycle. J. Catal. 337, 52–56 (2016).

    Article  CAS  Google Scholar 

  27. Keil, F. Methanol-to-hydrocarbons: process technology. Microporous Mesoporous Mater. 29, 49–66 (1999).

    Article  CAS  Google Scholar 

  28. Martinez-Espin, J. S. et al. Benzene co-reaction with methanol and dimethyl ether over zeolite and zeotype catalysts: evidence of parallel reaction paths to toluene and diphenylmethane. J. Catal. 349, 136–148 (2017).

    Article  CAS  Google Scholar 

  29. Kanai, J., Martens, J. A. & Jacobs, P. A. On the nature of the active sites for ethylene hydrogenation in metal-free zeolites. J. Catal. 133, 527–543 (1992).

    Article  CAS  Google Scholar 

  30. Senger, S. & Radom, L. Zeolites as transition-metal-free hydrogenation catalysts: a theoretical mechanistic study. J. Am. Chem. Soc. 122, 2613–2620 (2000).

    Article  CAS  Google Scholar 

  31. Zheng, A., Liu, S.-B. & Deng, F. Chemoselectivity during propene hydrogenation reaction over H-ZSM-5 zeolite: insights from theoretical calculations. Microporous Mesoporous Mater. 121, 158–165 (2009).

    Article  CAS  Google Scholar 

  32. Gounder, R. & Iglesia, E. Catalytic hydrogenation of alkenes on acidic zeolites: mechanistic connections to monomolecular alkane dehydrogenation reactions. J. Catal. 277, 36–45 (2011).

    Article  CAS  Google Scholar 

  33. Li, Y., Zhang, M., Wang, D., Wei, F. & Wang, Y. Differences in the methanol-to-olefins reaction catalyzed by SAPO-34 with dimethyl ether as reactant. J. Catal. 311, 281–287 (2014).

    Article  CAS  Google Scholar 

  34. Müller, S. et al. Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins. J. Catal. 325, 48–59 (2015).

    Article  CAS  Google Scholar 

  35. Marchi, A. & Froment, G. Catalytic conversion of methanol to light alkenes on SAPO molecular sieves. Appl. Catal. 71, 139–152 (1991).

    Article  CAS  Google Scholar 

  36. Wu, X. & Anthony, R. Effect of feed composition on methanol conversion to light olefins over SAPO-34. Appl. Catal. A 218, 241–250 (2001).

    Article  CAS  Google Scholar 

  37. Nishiyama, N. et al. Size control of SAPO-34 crystals and their catalyst lifetime in the methanol-to-olefin reaction. Appl. Catal. A 362, 193–199 (2009).

    Article  CAS  Google Scholar 

  38. Chen, D., Moljord, K. & Holmen, A. A methanol to olefins review: diffusion, coke formation and deactivation on SAPO type catalysts. Microporous Mesoporous Mater. 164, 239–250 (2012).

    Article  CAS  Google Scholar 

  39. Zhu, Q. et al. The study of methanol-to-olefin over proton type aluminosilicate CHA zeolites. Microporous Mesoporous Mater. 112, 153–161 (2008).

    Article  CAS  Google Scholar 

  40. Schmidt, F., Paasch, S., Brunner, E. & Kaskel, S. Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction. Microporous Mesoporous Mater. 164, 214–221 (2012).

    Article  CAS  Google Scholar 

  41. Salmasi, M., Fatemi, S. & Najafabadi, A. T. Improvement of light olefins selectivity and catalyst lifetime in MTO reaction; using Ni and Mg-modified SAPO-34 synthesized by combination of two templates. J. Ind. Eng. Chem. 17, 755–761 (2011).

    Article  CAS  Google Scholar 

  42. Sedighi, M., Ghasemi, M. & Jahangiri, A. Catalytic performance of CeAPSO-34 molecular sieve with various cerium content for methanol conversion to olefin. Korean J. Chem. Eng. 34, 997–1003 (2017).

    Article  CAS  Google Scholar 

  43. Hwang, A. & Bhan, A. Bifunctional strategy coupling Y2O3-catalyzed alkanal decomposition with methanol-to-olefins catalysis for enhanced lifetime. ACS Catal. 7, 4417–4422 (2017).

    Article  CAS  Google Scholar 

  44. Jiao, F. et al. Selective conversion of syngas to light olefins. Science 351, 1065–1068 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Cheng, K. et al. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon–carbon coupling. Angew. Chemie Int. Ed. 55, 4725–4728 (2016).

    Article  CAS  Google Scholar 

  46. Gao, P. et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem. 9, 1019–1024 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Li, Z. et al. Highly selective conversion of carbon dioxide to lower olefins. ACS Catal. 7, 8544–8548 (2017).

    Article  CAS  Google Scholar 

  48. Nieskens, D. L. S., Ciftci, A., Groenendijk, P. E., Wielemaker, M. F. & Malek, A. Production of light hydrocarbons from syngas using a hybrid catalyst. Ind. Eng. Chem. Res. 56, 2722–2732 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge: The Dow Chemical Company and National Science Foundation (CBET 1701534) for financial support; the Characterization Facility, University of Minnesota, which receives partial support from the National Science Foundation through the Materials Research Science and Engineering Centers programme, for providing the X-ray diffraction and X-ray photoelectron spectroscopy data; T. Whitmer, The Ohio State University, for providing the NMR data; The Dow Chemical Company, Analytical Science, Midland and Terneuzen for providing the quantitative elemental analysis, scanning electron microscopy and extracts analysis data; D. M. Millar, The Dow Chemical Company, for synthesis of the SSZ-13 sample; and J. F. DeWilde, The Dow Chemical Company, for helpful technical discussions.

Author information

Authors and Affiliations

Authors

Contributions

D.L.S.N. and A.M conceptualized the research effort. The experimental outline was designed by all authors. A.M. synthesized the SAPO-34 sample. S.S.A. performed the experiments. S.S.A. and A.B. analysed the reaction data. All authors contributed towards data interpretation. S.S.A. drafted the initial manuscript. All authors reviewed and edited the manuscript and supplementary materials.

Corresponding author

Correspondence to Aditya Bhan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes, Supplementary Figures 1–10; Supplementary Tables 1–6; Supplementary Methods; Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, S.S., Nieskens, D.L.S., Malek, A. et al. Lifetime improvement in methanol-to-olefins catalysis over chabazite materials by high-pressure H2 co-feeds. Nat Catal 1, 666–672 (2018). https://doi.org/10.1038/s41929-018-0125-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0125-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing