Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tailoring the magnetic exchange interaction in MnBi2Te4 superlattices via the intercalation of ferromagnetic layers

Abstract

The intrinsic magnetic topological insulator MnBi2Te4 (MBT) provides a platform for the creation of exotic quantum phenomena. Novel properties can be created by modification of the MnBi2Te4 framework, but the design of stable magnetic structures remains challenging. Here we report ferromagnet-intercalated MnBi2Te4 superlattices with tunable magnetic exchange interactions. Using molecular beam epitaxy, we intercalate ferromagnetic MnTe layers into MnBi2Te4 to create [(MBT)(MnTe)m]N superlattices and examine their magnetic interaction properties using polarized neutron reflectometry and magnetoresistance measurements. Incorporation of the ferromagnetic spacer tunes the antiferromagnetic interlayer coupling of the MnBi2Te4 layers through the exchange-spring effect at MnBi2Te4/MnTe hetero-interfaces. The MnTe thickness can be used to modulate the relative strengths of the ferromagnetic and antiferromagnetic order, and the superlattice periodicity can tailor the spin configurations of the synthesized multilayers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural and electrical characterizations of the MBE-grown MBT thin film.
Fig. 2: Polarized neutron reflectometry measurements on the MBE-grown [(MBT)(MnTe)1.75]10 superlattice.
Fig. 3: Manipulation of the exchange-spring effect in [(MBT)(MnTe)m]5 samples through MnTe intercalation.
Fig. 4: Mediation of interlayer couplings in the [(MBT)(MnTe)m]5 system.
Fig. 5: Tunable MR responses through superlattice engineering.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of the study are available from the corresponding authors upon reasonable request.

References

  1. Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article  Google Scholar 

  2. Kou, X. et al. Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. 113, 137201 (2014).

    Article  Google Scholar 

  3. Nomura, K. & Nagaosa, N. Surface-quantized anomalous Hall current and the magnetoelectric effect in magnetically disordered topological insulators. Phys. Rev. Lett. 106, 166802 (2011).

    Article  Google Scholar 

  4. Li, R., Wang, J., Qi, X.-L. & Zhang, S.-C. Dynamical axion field in topological magnetic insulators. Nat. Phys. 6, 284–288 (2010).

    Article  Google Scholar 

  5. He, K., Wang, Y. & Xue, Q.-K. Quantum anomalous Hall effect. Natl Sci. Rev. 1, 38–48 (2013).

    Article  Google Scholar 

  6. Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).

    Article  Google Scholar 

  7. Kou, X. et al. Metal-to-insulator switching in quantum anomalous Hall states. Nat. Commun. 6, 8474 (2015).

    Article  Google Scholar 

  8. Winnerlein, M. et al. Epitaxy and structural properties of (V, Bi, Sb)2Te3 layers exhibiting the quantum anomalous Hall effect. Phys. Rev. Mater. 1, 011201 (2017).

    Article  Google Scholar 

  9. Lee, I. et al. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2 − xTe3. Proc. Natl Acad. Sci. USA 112, 1316–1321 (2015).

    Article  Google Scholar 

  10. He, Q. L. et al. Tailoring exchange couplings in magnetic topological-insulator/antiferromagnet heterostructures. Nat. Mater. 16, 94–100 (2017).

    Article  Google Scholar 

  11. Katmis, F. et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature 533, 513–516 (2016).

    Article  Google Scholar 

  12. Lang, M. et al. Proximity induced high-temperature magnetic order in topological insulator-ferrimagnetic insulator heterostructure. Nano Lett. 14, 3459–3465 (2014).

    Article  Google Scholar 

  13. Tang, C. et al. Above 400-K robust perpendicular ferromagnetic phase in a topological insulator. Sci. Adv. 3, e1700307 (2017).

    Article  Google Scholar 

  14. Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).

    Article  Google Scholar 

  15. Li, J. et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 5, eaaw5685 (2019).

    Article  Google Scholar 

  16. Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019).

    Article  Google Scholar 

  17. Gong, Y. et al. Experimental realization of an intrinsic magnetic topological insulator. Chin. Phys. Lett. 36, 076801 (2019).

    Article  Google Scholar 

  18. Otrokov, M. M. et al. Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects. 2D Mater. 4, 025082 (2017).

    Article  Google Scholar 

  19. Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527 (2020).

    Article  Google Scholar 

  20. Yan, J.-Q. et al. A-type antiferromagnetic order in MnBi4Te7 and MnBi6Te10 single crystals. Phys. Rev. Mater. 4, 054202 (2020).

    Article  Google Scholar 

  21. Wu, J. et al. Toward 2D magnets in the (MnBi2Te4)(Bi2Te3)n bulk crystal. Adv. Mater. 32, 2001815 (2020).

    Article  Google Scholar 

  22. Klimovskikh, I. I. et al. Tunable 3D/2D magnetism in the (MnBi2Te4)(Bi2Te3)m topological insulators family. npj Quant. Mater. 5, 54 (2020).

    Article  Google Scholar 

  23. Ding, L. et al. Crystal and magnetic structures of magnetic topological insulators MnBi2Te4 and MnBi4Te7. Phys. Rev. B 101, 020412 (2020).

    Article  Google Scholar 

  24. Vidal, R. C. et al. Topological electronic structure and intrinsic magnetization in MnBi4Te7: a Bi2Te3 derivative with a periodic Mn sublattice. Phys. Rev. X 9, 041065 (2019).

    Google Scholar 

  25. Shi, M. Z. et al. Magnetic and transport properties in the magnetic topological insulators MnBi2Te4(Bi2Te3)n (n = 1, 2). Phys. Rev. B 100, 155144 (2019).

    Article  Google Scholar 

  26. He, K. & Xue, Q.-K. The road to high-temperature quantum anomalous Hall effect in magnetic topological insulators. SPIN 09, 1940016 (2019).

    Article  Google Scholar 

  27. Cao, L. et al. Growth and characterization of the dynamical axion insulator candidate Mn2Bi2Te5 with intrinsic antiferromagnetism. Phys. Rev. B 104, 054421 (2021).

    Article  Google Scholar 

  28. Li, H. et al. Antiferromagnetic topological insulator MnBi2Te4: synthesis and magnetic properties. Phys. Chem. Chem. Phys. 22, 556–563 (2020).

    Article  Google Scholar 

  29. Zhao, Y.-F. et al. Even-odd layer-dependent anomalous Hall effect in topological magnet MnBi2Te4 thin films. Nano Lett. 21, 7691–7698 (2021).

    Article  Google Scholar 

  30. Chen, P. et al. Tailoring the hybrid anomalous Hall response in engineered magnetic topological insulator heterostructures. Nano Lett. 20, 1731–1737 (2020).

    Article  Google Scholar 

  31. Scholl, A., Liberati, M., Arenholz, E., Ohldag, H. & Stöhr, J. Creation of an antiferromagnetic exchange spring. Phys. Rev. Lett. 92, 247201 (2004).

    Article  Google Scholar 

  32. Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011).

    Article  Google Scholar 

  33. He, K. MnBi2Te4-family intrinsic magnetic topological materials. npj Quant. Mater. 5, 90 (2020).

    Article  Google Scholar 

  34. Awana, G. et al. Critical analysis of proximity-induced magnetism in MnTe/Bi2Te3 heterostructures. Phys. Rev. Mater. 6, 053402 (2022).

    Article  Google Scholar 

  35. Boltaev, A., Pudonin, F., Sherstnev, I., Egorov, D. & Kozmin, A. Flat magnetic exchange springs as mechanism for additional magnetoresistance in magnetic nanoisland arrays. J. Magn. Magn. Mater. 428, 132–135 (2017).

    Article  Google Scholar 

  36. Nogués, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

    Article  Google Scholar 

  37. Hellwig, O., Kortright, J., Takano, K. & Fullerton, E. E. Switching behavior of Fe-Pt/Ni-Fe exchange-spring films studied by resonant soft-X-ray magneto-optical Kerr effect. Phys. Rev. B 62, 11694–11698 (2000).

    Article  Google Scholar 

  38. Khan, M. Y., Shokr, Y. A. & Kuch, W. Coupling of pinned magnetic moments in an antiferromagnet to a ferromagnet and its role for exchange bias. J. Phys. Condens. Matter 32, 075801 (2019).

    Article  Google Scholar 

  39. Chi, X. et al. Role of antiferromagnetic bulk exchange coupling on exchange-bias propagation. Phys. Lett. A 379, 2772–2776 (2015).

    Article  Google Scholar 

  40. Guo, S. et al. Influence of antiferromagnetic interlayer on the exchange coupling of FM1/AFM/FM2 multilayers. J. Magn. Magn. Mater. 344, 35–38 (2013).

    Article  Google Scholar 

  41. Bali, R. et al. Competing magnetic anisotropies in an antiferromagnet-ferromagnet-antiferromagnet trilayer. J. Appl. Phys. 106, 113925 (2009).

    Article  Google Scholar 

  42. Rößler, U. & Bogdanov, A. Magnetic phases and reorientation transitions in antiferromagnetically coupled multilayers. Phys. Rev. B 69, 184420 (2004).

    Article  Google Scholar 

  43. Wang, Z. et al. Determining the phase diagram of atomically thin layered antiferromagnet CrCl3. Nat. Nanotechnol. 14, 1116–1122 (2019).

    Article  Google Scholar 

  44. Yang, S. et al. Odd-even layer-number effect and layer-dependent magnetic phase diagrams in MnBi2Te4. Phys. Rev. X 11, 011003 (2021).

    Google Scholar 

  45. Kneller, E. F. & Hawig, R. The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans. Magn. 27, 3588–3560 (1991).

    Article  Google Scholar 

  46. Fullerton, E. E., Jiang, J. & Bader, S. Hard/soft magnetic heterostructures: model exchange-spring magnets. J. Magn. Magn. Mater. 200, 392–404 (1999).

    Article  Google Scholar 

  47. Gruyters, M. & Schmitz, D. Microscopic nature of ferro- and antiferromagnetic interface coupling of uncompensated magnetic moments in exchange bias systems. Phys. Rev. Lett. 100, 077205 (2008).

    Article  Google Scholar 

  48. Lu, J. et al. Design and synthesis of an artificial perpendicular hard ferrimagnet with high thermal and magnetic field stabilities. Sci. Rep. 7, 16990 (2017).

    Article  Google Scholar 

  49. Meng, L. et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition. Nat. Commun. 12, 809 (2021).

    Article  Google Scholar 

  50. He, Y. et al. Large linear non-saturating magnetoresistance and high mobility in ferromagnetic MnBi. Nat. Commun. 12, 4576 (2021).

    Article  Google Scholar 

  51. Butler, W., Zhang, X.-G., Nicholson, D. & MacLaren, J. Spin-dependent scattering and giant magnetoresistance. J. Magn. Magn. Mater. 151, 354–362 (1995).

    Article  Google Scholar 

  52. Maranville, B., Ratcliff, W. & Kienzle, P. reductus: a stateless Python data reduction service with a browser front end. J. Appl. Crystallogr. 51, 1500–1506 (2018).

    Article  Google Scholar 

  53. Kirby, B. J. et al. Phase-sensitive specular neutron reflectometry for imaging the nanometer scale composition depth profile of thin-film materials. Curr. Opin. Colloid Interface Sci. 17, 44–53 (2012).

    Article  Google Scholar 

  54. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  55. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  56. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

  57. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  58. Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

    Article  Google Scholar 

  59. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  Google Scholar 

  60. Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Article  Google Scholar 

  61. Lado, J. L. & Fernández-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 4, 035002 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the National Key R&D Program of China under contract no. 2017YFA0305400, the National Natural Science Foundation of China (grants nos. 61874172 and 11904230), the Major Project of Shanghai Municipal Science and Technology (grant no. 2018SHZDZX02), the Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, and the Shanghaitech Quantum Device and Soft Matter Nano-fabrication Labs (SMN180827). X.K. acknowledges support from the Merck POC programme and the Shanghai Rising-Star programme (grant no. 21QA1406000). Y.Y. acknowledges support from Shanghai Pujiang Program (grant no. 20PJ1411500). We acknowledge the facilities, and scientific and technical assistance, of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy and Microanalysis, The University of Queensland. Q.Y. acknowledges support from the Shanghai Sailing Program (grant no. 19YF1433200). We would also like to thank the ISIS neutron facility for the award of beam time (RB2000244, https://doi.org/10.5286/ISIS.E.RB2000244). Certain commercial equipment is identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by NIST. Diamond Light Source is acknowledged for the beam time allocated on I10 under proposal MM30262. B.A. and T.H. acknowledge funding from the Engineering and Physical Sciences Research Council (EP/N032128/1). F.X. was supported by the National Natural Science Foundation of China (52225207 and 52150103), the Shanghai Municipal Science and Technology Major Project (grant no. 2019SHZDZX01), the Program of Shanghai Academic/Technology Research Leader (grant no. 20XD1400200) and the Shanghai Pilot Program for Basic Research—FuDan University 21TQ1400100 (21TQ006).

Author information

Authors and Affiliations

Authors

Contributions

X.K. and Q.Y. conceived and supervised the study. P.C. and S. Liu grew the samples. P.C., J.L. and P.H. performed the characterization measurements and conducted the transport measurements. Q.Y. and P.C. analysed the transport and characterization data. P.C. and Y.Y. conducted the macro-spin simulations. J.X. and H.Z. contributed the first-principles calculations. Q.S., A.L., X.H. and J.Z. performed the transmission electron microscopy characterization. A.J.G., P.Q., P.P.B., C.J.K., A.J.C. and S. Langridge performed the neutron reflectometry measurements. B.A., E.H. and T.H. performed X-ray magnetic circular dichroism measurements, and S. Liu, B.C., G.Y. and F.X. performed superconducting quantum interference device measurements. Y.J. and Z.L. performed the angle-resolved photoemission spectroscopy measurements. P.C., Q.Y., Y.Y. and X.K. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Qi Yao, Yumeng Yang or Xufeng Kou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Xianhui Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary sections 1–12 and Figs. 1–12.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Yao, Q., Xu, J. et al. Tailoring the magnetic exchange interaction in MnBi2Te4 superlattices via the intercalation of ferromagnetic layers. Nat Electron 6, 18–27 (2023). https://doi.org/10.1038/s41928-022-00880-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-022-00880-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing