Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Broadband convolutional processing using band-alignment-tunable heterostructures

Abstract

Broadband convolutional processing is critical to high-precision image recognition and is of use in remote sensing and environmental monitoring. Implementing in-sensor broadband convolutional processing using conventional complementary metal–oxide–semiconductor technology is, however, challenging because broadband sensing and convolutional processing require the use of the same physical processes. Here we show that a palladium diselenide/molybdenum ditelluride van der Waals heterostructure can provide simultaneous broadband image sensing and convolutional processing. The band alignment between type-II and type-III heterojunctions of the photovoltaic heterostructure is gate tunable, and the devices exhibit linear light-intensity dependence for both positive and negative photoconductivity, as well as linear gate dependence for the broadband photoresponse. Our in-sensor broadband convolutional processing improves recognition accuracy for multi-band images compared with conventional single-band-based convolutional neural networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow and mechanism for in-sensor BCP.
Fig. 2: Gate-tunable broadband positive and negative photovoltaic effects of PdSe2/MoTe2 heterostructures.
Fig. 3: Illustration of characteristics of PdSe2/MoTe2 heterostructures for in-sensor BCP.
Fig. 4: Implementation of BCP with a vdW heterostructure photosensor.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020).

    Article  Google Scholar 

  2. Zhou, F. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 14, 776–782 (2019).

    Article  Google Scholar 

  3. Seo, S. Y. et al. Reconfigurable photo-induced doping of two-dimensional van der Waals semiconductors using different photon energies. Nat. Electron. 4, 38–44 (2021).

    Article  Google Scholar 

  4. Wu, C. et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat. Commun. 12, 96 (2021).

    Article  Google Scholar 

  5. Zhou, F. & Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).

    Article  Google Scholar 

  6. Feng, X., He, L., Cheng, Q., Long, X. & Yuan, Y. Hyperspectral and multispectral remote sensing image fusion based on endmember spatial information. Remote Sens. 12, 1009 (2020).

    Article  Google Scholar 

  7. Jameel, S. M., Hashmani, M. A., Rehman, M. & Budiman, A. Adaptive CNN ensemble for complex multispectral image analysis. Complexity 2020, 8361989 (2020).

  8. Jiang, J. H., Feng, X. A., Liu, F., Xu, Y. Y. & Huang, H. Multi-spectral RGB-NIR image classification using double-channel CNN. IEEE Access 7, 20607–20613 (2019).

    Article  Google Scholar 

  9. Ahmed, T. et al. Fully light-controlled memory and neuromorphic computation in layered black phosphorus. Adv. Mater. 33, 2004207 (2021).

    Article  Google Scholar 

  10. Roy, K., Jaiswal, A. & Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 575, 607–617 (2019).

    Article  Google Scholar 

  11. Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).

    Article  Google Scholar 

  12. Jayachandran, D. et al. A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat. Electron. 3, 646–655 (2020).

    Article  Google Scholar 

  13. Ham, D., Park, H., Hwang, S. & Kim, K. Neuromorphic electronics based on copying and pasting the brain. Nat. Electron. 4, 635–644 (2021).

    Article  Google Scholar 

  14. Choi, C. et al. Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 11, 5934 (2020).

    Article  Google Scholar 

  15. Migliato Marega, G. et al. Logic-in-memory based on an atomically thin semiconductor. Nature 587, 72–77 (2020).

    Article  Google Scholar 

  16. Yu, J. et al. Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure. Sci. Adv. 7, eabd9117 (2021).

    Article  Google Scholar 

  17. Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 9, 257–261 (2014).

    Article  Google Scholar 

  18. Tao, Q. et al. Reconfigurable electronics by disassembling and reassembling van der Waals heterostructures. Nat. Commun. 12, 1825 (2021).

    Article  Google Scholar 

  19. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    Article  Google Scholar 

  20. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    Article  Google Scholar 

  21. Zhou, X. et al. Tunneling diode based on WSe2/SnS2 heterostructure incorporating high detectivity and responsivity. Adv. Mater. 30, 1703286 (2018).

    Article  Google Scholar 

  22. Buscema, M. et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 44, 3691–3718 (2015).

    Article  Google Scholar 

  23. Xiong, X. et al. A transverse tunnelling field-effect transistor made from a van der Waals heterostructure. Nat. Electron. 3, 106–112 (2020).

    Article  Google Scholar 

  24. Long, M. et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 16, 2254–2259 (2016).

    Article  Google Scholar 

  25. Wu, D. et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 13, 9907–9917 (2019).

    Article  Google Scholar 

  26. Chen, Y. et al. Unipolar barrier photodetectors based on van der Waals heterostructures. Nat. Electron. 4, 357–363 (2021).

    Article  Google Scholar 

  27. Lukman, S. et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat. Nanotechnol. 15, 675–682 (2020).

    Article  Google Scholar 

  28. Li, A. et al. Photodetectors: ultrahigh-sensitive broadband photodetectors based on dielectric shielded MoTe2/graphene/SnS2 p–g–n junctions. Adv. Mater. 31, 1970040 (2019).

    Article  Google Scholar 

  29. Hu, L. et al. Phosphorene/ZnO nano-heterojunctions for broadband photonic nonvolatile memory applications. Adv. Mater. 30, 1801232 (2018).

    Article  Google Scholar 

  30. Jang, H. et al. An atomically thin optoelectronic machine vision processor. Adv. Mater. 32, 2002431 (2020).

    Article  Google Scholar 

  31. Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014).

    Article  Google Scholar 

  32. Lee, J. et al. Modulation of junction modes in SnSe2/MoTe2 broken-gap van der Waals heterostructure for multifunctional devices. Nano Lett. 20, 2370–2377 (2020).

    Article  Google Scholar 

  33. Gao, A. et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 14, 217–222 (2019).

    Article  Google Scholar 

  34. Bai, P. et al. Broadband THz to NIR up-converter for photon-type THz imaging. Nat. Commun. 10, 3513 (2019).

    Article  Google Scholar 

  35. Pan, C. et al. Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat. Electron. 3, 383–390 (2020).

    Article  Google Scholar 

  36. Wang, C.-Y. et al. Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci. Adv. 6, eaba6173 (2020).

    Article  Google Scholar 

  37. Chow, W. L. et al. High mobility 2D palladium diselenide field-effect transistors with tunable ambipolar characteristics. Adv. Mater. 29, 1602969 (2017).

    Article  Google Scholar 

  38. Yan, R. et al. Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano Lett. 15, 5791–5798 (2015).

    Article  Google Scholar 

  39. Wu, F. et al. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nat. Commun. 10, 4663 (2019).

    Article  Google Scholar 

  40. Merrill, R. B. Color separation in an active pixel cell imaging array using a triple-well structure. US patent 5,965,875 (1999).

  41. Hubel, P. M., Liu, J. & Guttosch, R. J. Spatial frequency response of color image sensors: Bayer color filters and Foveon X3. In Proc. SPIE Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications V Vol. 5301, 402–407 (SPIE, 2004).

  42. Lin, Z. et al. 2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Mater. 3, 042001 (2016).

    Article  Google Scholar 

  43. Xu, X. et al. Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2. Science 372, 195–200 (2021).

    Article  Google Scholar 

  44. Zeng, L. H. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 29, 1806878 (2019).

    Article  Google Scholar 

  45. Quellmalz, A. et al. Large-area integration of two-dimensional materials and their heterostructures by wafer bonding. Nat. Commun. 12, 917 (2021).

    Article  Google Scholar 

  46. Pi, L. et al. Highly in‐plane anisotropic 2D PdSe2 for polarized photodetection with orientation selectivity. Adv. Funct. Mater. 31, 2006774 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 52172144 (X.Z.), 21825103 (T.Z.), U21A2069 (T.Z.), 62122036 (S.-J.L.), 62034004 (F.M.) and 61974176 (S.-J.L.)), the Ministry of Science and Technology of China (2021YFA1200500 (X.Z.)) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB44000000 (F.M.)). We also thank the Analytical and Testing Center at Huazhong University of Science and Technology for their support.

Author information

Authors and Affiliations

Authors

Contributions

L.P., X.Z., S.-J.L. and T.Z. conceived the concept and designed the experiments. L.P. prepared the heterostructures, performed the optoelectronic measurements and fabricated the devices with the help of X.Z. and P.C. D.L. and Z.L. performed the Raman and AFM characterizations. H.W., P.W. and P.L. designed the schematic. P.W., S.-J.L. and F.M. performed the BCP for the photosensor. All the authors analysed the data and wrote the manuscript together with discussion.

Corresponding authors

Correspondence to Xing Zhou, Feng Miao or Tianyou Zhai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18 and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pi, L., Wang, P., Liang, SJ. et al. Broadband convolutional processing using band-alignment-tunable heterostructures. Nat Electron 5, 248–254 (2022). https://doi.org/10.1038/s41928-022-00747-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-022-00747-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing