Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Perovskite light-emitting diodes

Abstract

Light-emitting diodes based on halide perovskites have undergone rapid development in recent years and can now offer external quantum efficiencies of over 23%. However, the practical application of such devices is still limited by a number of factors, including the poor efficiency of blue-emitting devices, difficulty in accessing emission wavelengths above 800 nm, a decrease in external quantum efficiency at high current density, a lack of understanding of the effect of the electric field on mobile ions present in the perovskite materials, and short device lifetimes. Here we review the development of perovskite light-emitting diodes. We examine the key challenges involved in creating efficient and stable devices, and consider methods to alleviate the poor efficiency of blue-emitting devices, leverage emission in the long infrared region and create spin-polarized light-emitting diodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Peak EQE of state-of-the-art PeLEDs.
Fig. 2: Recombination in low-dimensional perovskites.
Fig. 3: Emission from perovskite NCs.
Fig. 4: Photon-recycling and EQE roll-off in PeLEDs.
Fig. 5: Device lifetimes of blue, green, orange, red and NIR LEDs.

Similar content being viewed by others

References

  1. Biard, J. R. & Pittman, G. E. Semiconductor radiant diode. US patent US3293513A (1962).

  2. Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).

    Article  Google Scholar 

  3. Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).

    Article  Google Scholar 

  4. Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

    Article  Google Scholar 

  5. Kim, Y.-H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photon. 15, 148–155 (2021).

    Article  Google Scholar 

  6. Wang, Y.-K. et al. All-inorganic quantum-dot LEDs based on a phase-stabilized α-CsPbI3 perovskite. Angew. Chem. Int. Ed. 60, 16164–16170 (2021).

    Article  Google Scholar 

  7. Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon 13, 418–424 (2019).

    Article  Google Scholar 

  8. Kim, Y.-H., Cho, H. & Lee, T.-W. Metal halide perovskite light emitters. Proc. Natl Acad. Sci. USA 113, 11694–11702 (2016).

    Article  Google Scholar 

  9. Quan, L. N. et al. Perovskites for next-generation optical sources. Chem. Rev. 119, 7444–7477 (2019).

    Article  Google Scholar 

  10. Liu, X.-K. et al. Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2020).

    Article  Google Scholar 

  11. Liu, A. et al. Electroluminescence principle and performance improvement of metal halide perovskite light-emitting diodes. Adv. Opt. Mater. 9, 2002167 (2021).

    Article  Google Scholar 

  12. Ji, K., Anaya, M., Abfalterer, A. & Stranks, S. D. Halide perovskite light-emitting diode technologies. Adv. Opt. Mater. 9, 2002128 (2021).

    Article  Google Scholar 

  13. Fakharuddin, A. et al. Research update: behind the high efficiency of hybrid perovskite solar cells. APL Mater. 4, 091505 (2016).

    Article  Google Scholar 

  14. Fang, H. H. et al. Photophysics of organic-inorganic hybrid lead iodide perovskite single crystals. Adv. Funct. Mater. 25, 2378–2385 (2015).

    Article  Google Scholar 

  15. Adjokatse, S., Fang, H.-H. & Loi, M. A. Broadly tunable metal halide perovskites for solid-state light-emission applications. Mater. Today 20, 413–424 (2017).

    Article  Google Scholar 

  16. Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article  Google Scholar 

  17. Kim, Y.-H., Wolf, C., Kim, H. & Lee, T.-W. Charge carrier recombination and ion migration in metal-halide perovskite nanoparticle films for efficient light-emitting diodes. Nano Energy 52, 329–335 (2018).

    Article  Google Scholar 

  18. Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    Article  Google Scholar 

  19. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article  Google Scholar 

  20. Zhao, B. et al. High-efficiency perovskite-polymer bulk heterostructure light-emitting. Nat. Photon. 12, 783–789 (2018).

    Article  Google Scholar 

  21. Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photon. 12, 681–687 (2018).

    Article  Google Scholar 

  22. Zhang, X. et al. Bright orange electroluminescence from lead-free two-dimensional perovskites. ACS Energ. Lett. 4, 242–248 (2019).

    Article  Google Scholar 

  23. Slotcavage, D. J., Karunadasa, H. I. & McGehee, M. D. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1, 1199–1205 (2016).

    Article  Google Scholar 

  24. Xing, G. et al. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 8, 14558 (2017).

    Article  Google Scholar 

  25. Quan, L. N. et al. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Lett. 17, 3701–3709 (2017).

    Article  Google Scholar 

  26. Aydin, E., De Bastiani, M. & De Wolf, S. Defect and contact passivation for perovskite solar cells. Adv. Mater. 31, 1900428 (2019).

    Article  Google Scholar 

  27. Vasilopoulou, M. et al. Molecular materials as interfacial layers and additives in perovskite solar cells. Chem. Soc. Rev. 49, 4496–4526 (2020).

    Article  Google Scholar 

  28. Xu, L. et al. A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat. Commun. 11, 3902 (2020).

    Article  Google Scholar 

  29. Fang, Z. et al. Dual passivation of perovskite defects for light-emitting diodes with external quantum efficiency exceeding 20%. Adv. Funct. Mater. 30, 1909754 (2020).

    Article  Google Scholar 

  30. Vashishtha, P. & Halpert, J. E. Field-driven ion migration and color instability in red-emitting mixed halide perovskite nanocrystal light-emitting diodes. Chem. Mater. 29, 5965–5973 (2017).

    Article  Google Scholar 

  31. Dar, M. I. et al. Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites. Sci. Adv. 2, e1601156 (2016).

    Article  Google Scholar 

  32. Cho, H., Kim, Y.-H., Wolf, C., Lee, H.-D. & Lee, T.-W. Improving the stability of metal halide perovskite materials and light-emitting diodes. Adv. Mater. 30, 1704587 (2018).

    Article  Google Scholar 

  33. Tian, Y. et al. Highly efficient spectrally stable red perovskite light-emitting diodes. Adv. Mater. 30, 1707093 (2018).

    Article  Google Scholar 

  34. Zhao, X., Ng, J. D. A., Friend, R. H. & Tan, Z.-K. Opportunities and challenges in perovskite light-emitting devices. ACS Photon. 5, 3866–3875 (2018).

    Article  Google Scholar 

  35. Braly, I. L. et al. Current-induced phase segregation in mixed halide hybrid perovskites and its impact on two-terminal tandem solar cell design. ACS Energy Lett. 2, 1841–1847 (2017).

    Article  Google Scholar 

  36. Zhang, H. et al. Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nat. Commun. 10, 1088 (2019).

    Article  Google Scholar 

  37. Futscher, M. H. et al. Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements. Mater. Horiz. 6, 1497–1503 (2019).

    Article  Google Scholar 

  38. Bandiello, E. et al. Influence of mobile ions on the electroluminescence characteristics of methylammonium lead iodide perovskite diodes. J. Mater. Chem. A4, 18614–18620 (2016).

    Article  Google Scholar 

  39. Kumawat, N. K., Tress, W. & Gao, F. Mobile ions determine the luminescence yield of perovskite light-emitting diodes under pulsed operation. Nat. Commun. 12, 4899 (2021).

    Article  Google Scholar 

  40. Mosconi, E. & De Angelis, F. Mobile ions in organohalide perovskites: interplay of electronic structure and dynamics. ACS Energy Lett. 1, 182–188 (2016).

    Article  Google Scholar 

  41. Kim, H. et al. Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot. Nat. Commun. 11, 3378 (2020).

    Article  Google Scholar 

  42. Li, N. et al. Stabilizing perovskite light-emitting diodes by incorporation of binary alkali cations. Adv. Mater. 32, 1907786 (2020).

    Article  Google Scholar 

  43. Zou, Y., Yuan, Z., Bai, S., Gao, F. & Sun, B. Recent progress toward perovskite light-emitting diodes with enhanced spectral and operational stability. Mater. Today Nano 5, 100028 (2019).

    Article  Google Scholar 

  44. Mir, W. J. et al. Postsynthesis doping of Mn and Yb into CsPbX3 (X = Cl, Br or I) perovskite nanocrystals for downconversion emission. Chem. Mater. 30, 8170–8178 (2018).

    Article  Google Scholar 

  45. Byun, J. et al. Efficient visible quasi-2D perovskite light-emitting diodes. Adv. Mater. 28, 7515–7520 (2016).

    Article  Google Scholar 

  46. Gong, X. et al. Electron–phonon interaction in efficient perovskite blue emitters. Nat. Mater. 17, 550–556 (2018).

    Article  Google Scholar 

  47. Xue, J., Wang, R. & Yang, Y. The surface of halide perovskites from nano to bulk. Nat. Rev. Mater. 5, 809–827 (2020).

    Article  Google Scholar 

  48. Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018).

    Article  Google Scholar 

  49. Miao, Y. et al. Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency. Nat. Commun. 10, 3624 (2019).

    Article  Google Scholar 

  50. Yang, X. et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 9, 570 (2018).

    Article  Google Scholar 

  51. Ban, M. et al. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nat. Commun. 9, 3892 (2018).

    Article  Google Scholar 

  52. Karlsson, M. et al. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes. Nat. Commun. 12, 361 (2021).

    Article  Google Scholar 

  53. Fakharuddin, A. et al. Perovskite-polymer blends influencing microstructures, nonradiative recombination pathways, and photovoltaic performance of perovskite solar cells. ACS Appl. Mater. Interface 10, 42542–42551 (2018).

    Article  Google Scholar 

  54. Akkerman, Q. A., Rainò, G., Kovalenko, M. V. & Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018).

    Article  Google Scholar 

  55. Jagielski, J. et al. Aggregation-induced emission in lamellar solids of colloidal perovskite quantum wells. Sci. Adv. 3, eaaq0208 (2017).

    Article  Google Scholar 

  56. Wang, H.-C., Bao, Z., Tsai, H.-Y., Tang, A.-C. & Liu, R.-S. Perovskite quantum dots and their application in light-emitting diodes. Small 14, 1702433 (2018).

    Article  Google Scholar 

  57. Wei, Y., Cheng, Z. & Lin, J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 48, 310–350 (2019).

    Article  Google Scholar 

  58. Hassan, Y. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021).

    Article  Google Scholar 

  59. Sharma, D. K., Hirata, S., Biju, V. & Vacha, M. Stark effect and environment-induced modulation of emission in single halide perovskite nanocrystals. ACS Nano 13, 624–632 (2019).

    Article  Google Scholar 

  60. Li, G. et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv. Mater. 28, 3528–3534 (2016).

    Article  Google Scholar 

  61. Parobek, D. et al. Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals. Nano Lett. 16, 7376–7380 (2016).

    Article  Google Scholar 

  62. Liu, W. et al. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J. Am. Chem. Soc. 138, 14954–14961 (2016).

    Article  Google Scholar 

  63. Zou, S. et al. Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. J. Am. Chem. Soc. 139, 11443–11450 (2017).

    Article  Google Scholar 

  64. Hou, S., Gangishetty, M. K., Quan, Q. & Congreve, D. N. Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule 2, 2421–2433 (2018).

    Article  Google Scholar 

  65. Gangishetty, M. K., Sanders, S. N. & Congreve, D. N. Mn2+ doping enhances the brightness, efficiency and stability of bulk perovskite light-emitting diodes. ACS Photon. 6, 1111–1117 (2019).

    Article  Google Scholar 

  66. Van der Stam, W. et al. Highly emissive divalent-ion-doped colloidal CsPb1 – xMxBr3 perovskite nanocrystals through cation exchange. J. Am. Chem. Soc. 139, 4087–4097 (2017).

    Article  Google Scholar 

  67. Lu, M. et al. Simultaneous strontium doping and chlorine surface passivation improve luminescence intensity and stability of CsPbI3 nanocrystals enabling efficient light-emitting devices. Adv. Mater. 30, 1804691 (2018).

    Article  Google Scholar 

  68. Hu, Y., Zhang, X., Yang, C., Li, J. & Wang, L. Fe2+ doped in CsPbCl3 perovskite nanocrystals: impact on the luminescence and magnetic properties. RSC Adv. 9, 33017–33022 (2019).

    Article  Google Scholar 

  69. Shen, X. et al. Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices. Nano Lett. 19, 1552–1559 (2019).

    Article  Google Scholar 

  70. Behera, R. K. et al. Doping the smallest Shannon radii transition metal ion Ni(II) for stabilizing α-CsPbI3 perovskite nanocrystals. J. Phys. Chem. Lett. 10, 7916–7921 (2019).

    Article  Google Scholar 

  71. Bi, C. et al. Thermally stable copper(II)-doped cesium lead halide perovskite quantum dots with strong blue emission. J. Phys. Chem. Lett. 10, 943–952 (2019).

    Article  Google Scholar 

  72. Begum, R. et al. Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping. J. Am. Chem. Soc. 139, 731–737 (2017).

    Article  Google Scholar 

  73. Yong, Z.-J. et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield. J. Am. Chem. Soc. 140, 9942–9951 (2018).

    Article  Google Scholar 

  74. Yao, J.-S. et al. Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes. J. Am. Chem. Soc. 140, 3626–3634 (2018).

    Article  Google Scholar 

  75. Wang, Q. et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat. Commun. 10, 5633 (2019).

    Article  Google Scholar 

  76. Mahor, Y., Mir, W. J. & Nag, A. Synthesis and near-infrared emission of Yb-doped Cs2AgInCl6 double perovskite microcrystals and nanocrystals. J. Phys. Chem. C 123, 15787–15793 (2019).

    Article  Google Scholar 

  77. Schulz, P. et al. High-work-function molybdenum oxide hole extraction contacts in hybrid organic–inorganic perovskite solar cells. ACS Appl. Mater. Interfaces 8, 31491–31499 (2016).

    Article  Google Scholar 

  78. Shi, X.-B. et al. Optical energy losses in organic-inorganic hybrid perovskite light-emitting diodes. Adv. Opt. Mater. 6, 1800667 (2018).

    Article  Google Scholar 

  79. Richter, J. M. et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nat. Commun. 7, 13941 (2016).

    Article  Google Scholar 

  80. Jurow, M. J. et al. Manipulating the transition dipole moment of CsPbBr3 perovskite nanocrystals for superior optical properties. Nano Lett. 19, 2489–2496 (2019).

    Article  Google Scholar 

  81. Jurow, M. J. et al. Tunable anisotropic photon emission from self-organized CsPbBr3 perovskite nanocrystals. Nano Lett. 17, 4534–4540 (2017).

    Article  Google Scholar 

  82. Cho, C. et al. The role of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020).

    Article  Google Scholar 

  83. Zou, W. et al. Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 9, 608 (2018).

    Article  Google Scholar 

  84. Kim, K. et al. Hybrid perovskite light emitting diodes under intense electrical excitation. Nat. Commun. 9, 4893 (2018).

    Article  Google Scholar 

  85. Fakharuddin, A. et al. Reduced efficiency roll-off and improved stability of mixed 2D/3D perovskite light emitting diodes by balancing charge injection. Adv. Funct. Mater. 29, 1904101 (2019).

    Article  Google Scholar 

  86. Wang, Y. et al. Low roll-off perovskite quantum dot light-emitting diodes achieved by augmenting hole mobility. Adv. Funct. Mater. 30, 1910140 (2020).

    Article  Google Scholar 

  87. Tsai, H. et al. Stable light‐emitting diodes using phase‐pure Ruddlesden-Popper layered perovskites. Adv. Mater. 30, 1704217 (2018).

    Article  Google Scholar 

  88. Li, X. et al. Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. Nat. Photon. 12, 159–164 (2018).

    Article  Google Scholar 

  89. Yan, F. et al. Highly efficient visible colloidal lead-halide perovskite nanocrystal light-emitting diodes. Nano Lett. 18, 3157–3164 (2018).

    Article  Google Scholar 

  90. Zou, C., Liu, Y., Ginger, D. S. & Lin, L. Y. Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite light-emitting diodes. ACS Nano 14, 6076–6086 (2020).

    Article  Google Scholar 

  91. Zhao, L. et al. Thermal management enables bright and stable perovskite light-emitting diodes. Adv. Mater. 32, 2000752 (2020).

    Article  Google Scholar 

  92. Lu, M. et al. Bright CsPbI3 perovskite quantum dot light-emitting diodes with top-emitting structure and a low efficiency roll-off realized by applying zirconium acetylacetonate surface modification. Nano Lett. 20, 2829–2836 (2020).

    Article  Google Scholar 

  93. Shen, H. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photon. 13, 192–197 (2019).

    Article  Google Scholar 

  94. Woo, S.-J., Kim, J. S. & Lee, T.-W. Characterization of stability and challenges to improve lifetime in perovskite LEDs. Nat. Photon. 15, 630–634 (2021).

    Article  Google Scholar 

  95. Giuri, A. et al. Ultra-bright near-infrared perovskite light-emitting diodes with reduced efficiency roll-off. Sci. Rep. 8, 15496 (2018).

    Article  Google Scholar 

  96. Lee, S. et al. Amine-based passivating materials for enhanced optical properties and performance of organic-inorganic perovskites in light-emitting diodes. J. Phys. Chem. Lett. 8, 1784–1792 (2017).

    Article  Google Scholar 

  97. Back, H. et al. Achieving long-term stable perovskite solar cells via ion neutralization. Energ. Environ. Sci. 9, 1258–1263 (2016).

    Article  Google Scholar 

  98. Yang, M. et al. Reduced efficiency roll-off and enhanced stability in perovskite light-emitting diodes with multiple quantum wells. J. Phys. Chem. Lett. 9, 2038–2042 (2018).

    Article  Google Scholar 

  99. Yang, R. et al. Oriented quasi-2D perovskites for high performance optoelectronic devices. Adv. Mater. 30, 1804771 (2018).

    Article  Google Scholar 

  100. Dong, Y. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020).

    Article  Google Scholar 

  101. Qin, C. et al. Triplet management for efficient perovskite light-emitting diodes. Nat. Photon. 14, 70–75 (2020).

    Article  Google Scholar 

  102. Qin, C. et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53–57 (2020).

    Article  Google Scholar 

  103. Gao, L. et al. Efficient near-infrared light-emitting diodes based on quantum dots in layered perovskite. Nat. Photon. 14, 227–233 (2020).

    Article  Google Scholar 

  104. Vasilopoulou, M. et al. Efficient colloidal quantum dot light-emitting diodes operating in the second near-infrared biological window. Nat. Photon. 14, 50–56 (2020).

    Article  Google Scholar 

  105. Mohd Yusoff, A. R. B. et al. Observation of large Rashba spin-orbit coupling at room temperature in compositionally engineered perovskite single crystals and application in high performance photodetectors. Mater. Today 46, 18–27 (2021).

    Article  Google Scholar 

  106. Yaxin, Zhai et al. Giant Rashba splitting in 2D organic-inorganic halide perovskites measured by transient spectroscopies. Sci. Adv. 3, e1700704 (2017).

    Article  Google Scholar 

  107. Zhang, J., Zhu, X., Wang, M. & Hu, B. Establishing charge-transfer excitons in 2D perovskite heterostructures. Nat. Commun. 11, 2618 (2020).

    Article  Google Scholar 

  108. Sanchez, RafaelS. et al. Tunable light emission by exciplex state formation between hybrid halide perovskite and core/shell quantum dots: implications in advanced LEDs and photovoltaics. Sci. Adv. 2, e1501104 (2016).

    Article  Google Scholar 

  109. Wang, J. et al. Spin-optoelectronic devices based on hybrid organic–inorganic trihalide perovskites. Nat. Commun. 10, 129 (2019).

    Article  Google Scholar 

  110. Young-Hoon, Kim et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).

    Article  Google Scholar 

  111. Hayashi, K. et al. Suppression of roll-off characteristics of organic light-emitting diodes by narrowing current injection/transport area to 50 nm. Appl. Phys. Lett. 106, 093301 (2015).

    Article  Google Scholar 

  112. Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–112 (2014).

    Article  Google Scholar 

  113. Verzellesi, G. et al. Efficiency droop in InGaN/GaN blue light-emitting diodes: physical mechanisms and remedies. J. Appl. Phys. 114, 071101 (2013).

    Article  Google Scholar 

  114. Yuan, Z. et al. Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes. Nat. Commun. 10, 2818 (2019).

    Article  Google Scholar 

  115. Jiang, Y. et al. Spectra stable blue perovskite light-emitting diodes. Nat. Commun. 10, 1868 (2019).

    Article  Google Scholar 

  116. Jiang, Y. et al. Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nat. Commun. 12, 336 (2021).

    Article  Google Scholar 

  117. Du, J. S. et al. Halide perovskite nanocrystal arrays: multiplexed synthesis and size-dependent emission. Sci. Adv. 6, eabc4959 (2020).

    Article  Google Scholar 

  118. Ma, Z. et al. Electrically-driven violet light-emitting devices based on highly stable lead-free perovskite Cs3Sb2Br9 quantum dots. ACS Energy Lett. 5, 385–394 (2020).

    Article  Google Scholar 

  119. Bai, L. et al. Investigation on violet/blue all-inorganic light-emitting diodes based on CsPbCl3 films. J. Lumin. 226, 117422 (2020).

    Article  Google Scholar 

  120. Akkerman, Q. A. et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 137, 10276–10281 (2015).

    Article  Google Scholar 

  121. Harwell, J. et al. Patterning multicolor hybrid perovskite films via top-down lithography. ACS Nano 13, 3823–3829 (2019).

    Article  Google Scholar 

  122. Zou, C., Chang, C., Sun, D., Böhringer, K. F. & Lin, L. Y. Photolithographic patterning of perovskite thin films for multicolor display applications. Nano Lett. 20, 3710–3717 (2020).

    Article  Google Scholar 

  123. Pattison, P. M., Hansen, M. & Tsao, J. Y. LED lighting efficacy: status and directions. Comptes Rendus. Phys. 19, 134–145 (2017).

    Article  Google Scholar 

  124. Vasilopoulou, M. et al. Advances in solution-processed near-infrared light-emitting diodes. Nat. Photon. 15, 656–669 (2021).

    Article  Google Scholar 

  125. Tress, W. Metal halide perovskites as mixed electronic-ionic conductors: challenges and opportunities—from hysteresis to memristivity. J. Phys. Chem. Lett. 8, 3106–3114 (2017).

    Article  Google Scholar 

  126. Mizusaki, J., Arai, K. & Fueki, K. Ionic conduction of the perovskite-type halides. Solid State Ion. 11, 203–211 (1983).

    Article  Google Scholar 

  127. Pei, Q., Yu, G., Zhang, C., Yang, Y. & Heeger, A. J. Polymer light-emitting electrochemical cells. Science 269, 1086–1088 (1995).

    Article  Google Scholar 

  128. Zhang, H. et al. Organic-inorganic perovskite light-emitting electrochemical cells with a large capacitance. Adv. Funct. Mater. 25, 7226–7232 (2015).

    Article  Google Scholar 

  129. Chen, M., Shan, X., Geske, T., Li, J. & Yu, Z. Manipulating ion migration for highly stable light-emitting diodes with single-crystalline organometal halide perovskite microplatelets. ACS Nano 11, 6312–6318 (2017).

    Article  Google Scholar 

  130. Lenes, M. et al. Operating modes of sandwiched light-emitting electrochemical cells. Adv. Funct. Mater. 21, 1581–1586 (2011).

    Article  Google Scholar 

  131. Yang, T. Y., Gregori, G., Pellet, N., Grätzel, M. & Maier, J. The significance of ion conduction in a hybrid organic-inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. Int. Ed. 54, 7905–7910 (2015).

    Article  Google Scholar 

  132. Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

    Article  Google Scholar 

  133. Azpiroz, J. M., Mosconi, E., Bisquert, J. & De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015).

    Article  Google Scholar 

  134. Tress, W. et al. Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energ. Environ. Sci. 11, 151–165 (2018).

    Article  Google Scholar 

  135. Tress, W. et al. Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energ. Environ. Sci. 8, 995–1004 (2015).

    Article  Google Scholar 

  136. Gegevičius, R., Franckevičius, M., Chmeliov, J., Tress, W. & Gulbinas, V. Electroluminescence dynamics in perovskite solar cells reveals giant overshoot effect. J. Phys. Chem. Lett. 10, 1779–1783 (2019).

    Article  Google Scholar 

  137. Prakasam, V., Tordera, D., Bolink, H. J. & Gelinck, G. Degradation mechanisms in organic lead halide perovskite light-emitting diodes. Adv. Opt. Mater. 7, 1900902 (2019).

    Article  Google Scholar 

  138. Cheng, T. et al. Ion migration-induced degradation and efficiency roll-off in quasi-2D perovskite light-emitting diodes. ACS Appl. Mater. Interfaces 12, 33004–33013 (2020).

    Article  Google Scholar 

  139. Lee, H., Ko, D. & Lee, C. Direct evidence of ion-migration-induced degradation of ultrabright perovskite light-emitting diodes. ACS Appl. Mater. Interfaces 11, 11667–11673 (2019).

    Article  Google Scholar 

  140. Buin, A. et al. Materials processing routes to trap-free halide perovskites. Nano Lett. 14, 6281–6286 (2014).

    Article  Google Scholar 

  141. Xu, B. et al. Electric bias induced degradation in organic-inorganic hybrid perovskite light-emitting diodes. Sci. Rep. 8, 15799 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

A.F. acknowledges Ausschuss für Forschungsfragen (AFF) of the University of Konstanz for Young Scholar Fund and P. Heremans (imec) for valuable inputs and discussions. M.A.-J. acknowledges the Royal Society (RGS\R1\211068), European Commission under the Horizon 2020 (ERA-NET ACT 2021, NEXTCCUS project), Cambridge Materials Limited, Wolfson College, University of Cambridge and EPSRC for funding and technical support. S.C. and H.J.B. acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 834431) and the Spanish Ministry of Science, Innovation and Universities (MAT2017-88821-R and CEX2019-000919-M). F.D. acknowledges financial support from the European Research Council (ERC Starting Grant agreement no. 852084—TWIST) and the Deutsche Forschungsgemeinschaft (DFG) under the Emmy Noether Program (project 387651688).

Author information

Authors and Affiliations

Authors

Contributions

A.F. and M.V. conceived the idea and wrote the first version of the manuscript. A.F. drew the figures. M.K.G. and D.N.C. contributed to the section on nanocrystals. M.A.-J. contributed to the section on spectral stability. W.T. wrote the section on ion migration. F.D. contributed to the section on light outcoupling. S.-H.C. contributed to data collection. A.B.R.M.Y. contributed to the discussions on spin-LEDs, Rashba splitting and spin–orbit coupling. All authors contributed to manuscript writing and subsequent corrections. H.J.B. supervised the manuscript contents and writing, and contributed to the Outlook section.

Corresponding author

Correspondence to Azhar Fakharuddin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Tae-Woo Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakharuddin, A., Gangishetty, M.K., Abdi-Jalebi, M. et al. Perovskite light-emitting diodes. Nat Electron 5, 203–216 (2022). https://doi.org/10.1038/s41928-022-00745-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-022-00745-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing