Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bidirectional photocurrent in p–n heterojunction nanowires

Abstract

Semiconductor p–n junctions provide rectification behaviour and act as building blocks in many electronic devices. However, the typical junction configuration restricts the potential functionalities of devices. Here we report a light-detection electrochemical cell that is based on vertically aligned p-AlGaN/n-GaN p–n heterojunction nanowires in an electrolyte environment. After decorating the nanowires with platinum nanoparticles, the cell exhibits a photoresponse in which the photocurrent polarity is reversed depending on the wavelength of light. In particular, illumination of the device at two different wavelengths (254 nm and 365 nm) triggers different redox reactions at the nanowire/electrolyte interface, inducing polarity reversal of the photocurrent. The device offers a responsivity of up to −175 mA W−1 at 254 nm and 31 mA W−1 at 365 nm, both at 0 V.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of p-AlGaN/n-GaN nanowires for light-detection electrochemical cell.
Fig. 2: DFT calculations.
Fig. 3: Photodepositon process and structural characterization of nanowires.
Fig. 4: Spectrally distinctive photodetection characterization.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Zhang, Y. J. et al. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature 570, 349–353 (2019).

    Article  Google Scholar 

  2. Taniyasu, Y., Kasu, M. & Makimoto, T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441, 325–328 (2006).

    Article  Google Scholar 

  3. Choi, T., Lee, S., Choi, Y. J., Kiryukhin, V. & Cheong, S. W. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63–66 (2009).

    Article  Google Scholar 

  4. Bardeen, J. & Brattain, W. H. The transistor, a semi-conductor triode. Phys. Rev. 74, 230 (1948).

    Article  Google Scholar 

  5. Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5, 870–880 (2020).

    Article  Google Scholar 

  6. Lin, R. X. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy 4, 864–873 (2019).

    Article  Google Scholar 

  7. Guo, F. et al. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells. Nat. Commun. 6, 7730 (2015).

    Article  Google Scholar 

  8. Essig, S. et al. Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nat. Energy 2, 17144 (2017).

    Article  Google Scholar 

  9. Oh, N. et al. Double-heterojunction nanorod light-responsive LEDs for display applications. Science 355, 616–619 (2017).

    Article  Google Scholar 

  10. Chen, Y. et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature 577, 209–215 (2020).

    Article  Google Scholar 

  11. Gu, L. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278–282 (2020).

    Article  Google Scholar 

  12. García de Arquer, F. P., Armin, A., Meredith, P. & Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017).

    Article  Google Scholar 

  13. Ouyang, B., Zhang, K. & Yang, Y. Photocurrent polarity controlled by light wavelength in self-powered ZnO nanowires/SnS photodetector system. iScience 1, 16–23 (2018).

    Article  Google Scholar 

  14. Ouyang, B., Zhao, H., Wang, Z. L. & Yang, Y. Dual-polarity response in self-powered ZnO NWs/Sb2Se3 film heterojunction photodetector array for optical communication. Nano Energy 68, 104312 (2020).

    Article  Google Scholar 

  15. Ouyang, B., Wang, Y. H., Zhang, R. Y., Olin, H. & Yang, Y. Dual-polarity output response-based photoelectric devices. Cell Rep. Phys. Sci. 2, 100418 (2021).

    Article  Google Scholar 

  16. Wang, Y. J. et al. An In0.42Ga0.58N tunnel junction nanowire photocathode monolithically integrated on a nonplanar Si wafer. Nano Energy 57, 405–413 (2019).

    Article  Google Scholar 

  17. Fan, S. et al. High efficiency solar-to-hydrogen conversion on a monolithically integrated InGaN/GaN/Si adaptive tunnel junction photocathode. Nano Lett. 15, 2721–2726 (2015).

    Article  Google Scholar 

  18. Kibria, M. G. et al. Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays. Nat. Commun. 6, 6797 (2015).

    Article  Google Scholar 

  19. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, 6321 (2017).

    Article  Google Scholar 

  20. Chen, S. S., Takata, T. & Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017).

    Article  Google Scholar 

  21. He, Y. M. et al. Dependence of interface energetics and kinetics on catalyst loading in a photoelectrochemical system. Nano Res. 12, 2378–2384 (2019).

    Article  Google Scholar 

  22. Zhou, B. et al. Gallium nitride nanowire as a linker of molybdenum sulfides and silicon for photoelectrocatalytic water splitting. Nat. Commun. 9, 3856 (2018).

    Article  Google Scholar 

  23. Wenderich, K. & Mul, G. Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chem. Rev. 116, 14587–14619 (2016).

    Article  Google Scholar 

  24. Li, Z. et al. Surface-polarity-induced spatial charge separation boosts photocatalytic overall water splitting on GaN nanorod arrays. Angew. Chem. Int. Ed. 132, 945–952 (2020).

    Article  Google Scholar 

  25. Takata, T. et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020).

    Article  Google Scholar 

  26. Li, R. et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun. 4, 1432 (2013).

    Article  Google Scholar 

  27. Kibria, M. G. et al. Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting. Nat. Commun. 5, 3825 (2014).

    Article  Google Scholar 

  28. Cao, L. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 565, 631–635 (2019).

    Article  Google Scholar 

  29. Wang, Y. J. et al. A single-junction cathodic approach for stable unassisted solar water splitting. Joule 3, 2444–2456 (2019).

    Article  Google Scholar 

  30. Varadhan, P. et al. Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting. Nano Lett. 17, 1520–1528 (2017).

    Article  Google Scholar 

  31. Chowdhury, F. A., Trudeau, M. L., Guo, H. & Mi, Z. A photochemical diode artificial photosynthesis system for unassisted high efficiency overall pure water splitting. Nat. Commun. 9, 1707 (2018).

    Article  Google Scholar 

  32. Cao, Y. et al. Atomic-level insight into optimizing the hydrogen evolution pathway over a Co1-N4 single-site photocatalyst. Angew. Chem. Int. Ed. 56, 12191–12196 (2017).

    Article  Google Scholar 

  33. Liu, W. et al. Single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting. Angew. Chem. Int. Ed. 129, 9440–9445 (2017).

    Article  Google Scholar 

  34. Klahr, B., Gimenez, S., Fabregat-Santiago, F., Bisquert, J. & Hamann, T. W. Photoelectrochemical and impedance spectroscopic investigation of water oxidation with ‘Co–Pi’-coated hematite electrodes. J. Am. Chem. Soc. 134, 16693–16700 (2012).

    Article  Google Scholar 

  35. Dotan, H., Sivula, K., Grätzel, M., Rothschild, A. & Warren, S. C. Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 4, 958–964 (2011).

    Article  Google Scholar 

  36. Ma, N., Zhang, K. & Yang, Y. Photovoltaic–pyroelectric coupled effect induced electricity for self-powered photodetector system. Adv. Mater. 29, 1703694 (2017).

    Article  Google Scholar 

  37. Jiang, H. P., Su, Y. J., Zhu, J., Lu, H. M. & Meng, X. K. Piezoelectric and pyroelectric properties of intrinsic GaN nanowires and nanotubes: size and shape effects. Nano Energy 45, 359–367 (2018).

    Article  Google Scholar 

  38. Ra, Y. H. et al. An electrically pumped surface-emitting semiconductor green laser. Sci. Adv. 6, eaav7523 (2020).

    Article  Google Scholar 

  39. Xie, Z. J. et al. Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater. 28, 1705833 (2018).

    Article  Google Scholar 

  40. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  41. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  42. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  Google Scholar 

  43. Bernardini, F. & Fiorentini, V. Nonlinear macroscopic polarization in III-V nitride alloys. Phys. Rev. B 64, 085207 (2001).

    Article  Google Scholar 

  44. Liu, K. K. et al. Wurtzite BAlN and BGaN alloys for heterointerface polarization engineering. Appl. Phys. Lett. 111, 222106 (2017).

    Article  Google Scholar 

  45. Yin, C. R. et al. Alumina-supported sub-nanometer Pt10 clusters: amorphization and role of the support material in a highly active CO oxidation catalyst. J. Mater. Chem. A 5, 4923–4931 (2017).

    Article  Google Scholar 

  46. Imaoka, T. et al. Platinum clusters with precise numbers of atoms for preparative-scale catalysis. Nat. Commun. 8, 688 (2017).

    Article  Google Scholar 

  47. Zhu, Y. A., Chen, D., Zhou, X. G. & Yuan, W. K. DFT studies of dry reforming of methane on Ni catalyst. Catal. Today 148, 260–267 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (grant nos. 61905236 and 51961145110), the Fundamental Research Funds for the Central Universities (grant no. WK2100230020), USTC Research Funds of the Double First-Class Initiative (grant no. YD3480002002) and USTC National Synchrotron Radiation Laboratory (grant no. KY2100000099), and was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication. We thank W. Wu from USTC for the support of DFT calculation.

Author information

Authors and Affiliations

Authors

Contributions

H.S. developed the idea and designed the experiments. D.W., X.L., Y.K., Y.W., S.F., H.Y., M.H.M., H.Z. and Z.M. performed the MBE growth and characterizations, XPS measurement and photodetection experiments, as well as collected and analysed the data. D.W., X.L., Y.K. and S.F. performed Pt nanoparticle decoration and material investigation. X.W. and W.H. conducted and discussed the theoretical calculations. D.W. and H.S performed the aberration-corrected STEM characterization. D.W., L.F., S.L and H.S. co-wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Haiding Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks Ya Yang and Daoyou Guo for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Note and refs. 1–9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Liu, X., Kang, Y. et al. Bidirectional photocurrent in p–n heterojunction nanowires. Nat Electron 4, 645–652 (2021). https://doi.org/10.1038/s41928-021-00640-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-021-00640-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing