Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Addressing agricultural nitrogen losses in a changing climate

Abstract

Losses of nitrogen from agriculture are a major threat to environmental and human health at local, regional and global scales. Emerging evidence shows that climate change and intensive agricultural management will interact to increase the harmful effects and undermine current mitigation efforts. Identifying effective mitigation strategies and supporting policies requires an integrated understanding of the processes underlying potential agricultural nitrogen responses to climate change. In this Review, we describe these processes, propose a set of multi-scale principles to guide research and policy for decreasing nitrogen losses in the future, and describe the economic factors that could constrain or enable their implementation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Controls of water fluxes and soil moisture on plant–soil N processes.
Fig. 2: Total aboveground N uptake in maize at harvest increases with total growing season precipitation (May–September).
Fig. 3: Conceptual diagram of the response of plant–soil–microorganism N cycling to changes in soil moisture dynamics resulting from fewer but more intense rain events expected in the future.
Fig. 4: Conceptual diagram showing the relationship between adverse weather and interconnected effects on crop biomass production, yields and NUE in more or less resilient agroecosystems, and management strategies that increase drivers of resilience.

Similar content being viewed by others

References

  1. Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. Lond. Ser. B 368, 20130164 (2013).

    Article  CAS  Google Scholar 

  2. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    CAS  Google Scholar 

  3. Erisman, J. W. et al. Consequences of human modification of the global nitrogen cycle. Philos. Trans. R. Soc. Lond. Ser. B 368, 20130116 (2014).

    Article  CAS  Google Scholar 

  4. Vermeulen, S. J. et al. Addressing uncertainty in adaptation planning for agriculture. Proc. Natl Acad. Sci. USA 110, 8357–8362 (2013).

    Article  Google Scholar 

  5. Robertson, G. P. & Vitousek, P. M. Nitrogen in agriculture: balancing the cost of an essential resource. Annu. Rev. Environ. Resour. 34, 97–125 (2009).

    Article  Google Scholar 

  6. Stuart, D. et al. The need for a coupled human and natural systems understanding of agricultural nitrogen loss. Bioscience 65, 571–578 (2015).

    Article  Google Scholar 

  7. Austin, A. T. et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141, 221–235 (2004).

    Article  Google Scholar 

  8. Greaver, T. L. et al. Key ecological responses to nitrogen are altered by climate change. Nat. Clim. Change 6, 836–843 (2016).

    Article  CAS  Google Scholar 

  9. Kirtman, B. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. et al.) 953–1028 (IPCC, Cambridge Univ. Press, 2013).

  10. Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change 4, 17–22 (2014).

    Article  Google Scholar 

  11. Fay, P. A. et al. Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function. Biogeosciences 8, 3053–3068 (2011).

    Article  CAS  Google Scholar 

  12. Sinha, E., Michalak, A. M. & Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 357, 405–408 (2017).

    Article  CAS  Google Scholar 

  13. Lam, S. K., Chen, D., Norton, R., Armstrong, R. & Mosier, A. R. Nitrogen dynamics in grain crop and legume pasture systems under elevated atmospheric carbon dioxide concentration: a meta-analysis. Glob. Change Biol. 18, 2853–2859 (2012).

    Article  Google Scholar 

  14. Steward, D. R. et al. Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110. Proc. Natl Acad. Sci. USA 110, E3477–E3486 (2013).

    Article  Google Scholar 

  15. Cassman, K. G., Dobermann, A. & Walters, D. T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31, 132–140 (2002).

    Article  Google Scholar 

  16. Turner, R. E. & Rabalais, N. N. Linking landscape and water quality in the Mississippi River Basin for 200 years. Bioscience 53, 563–572 (2003).

    Article  Google Scholar 

  17. Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J. & Hungate, B. A. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob. Change Biol. 17, 927–942 (2011).

    Article  Google Scholar 

  18. Deser, C., Knutti, R., Solomon, S. & Phillips, A. S. Communication of the role of natural variability in future North American climate. Nat. Clim. Change 2, 775–779 (2012).

    Article  Google Scholar 

  19. Harding, K. J. & Snyder, P. K. Examining future changes in the character of Central U.S. warm-season precipitation using dynamical downscaling. J. Geophys. Res. Atmos. 119, 13116–13136 (2014).

    Article  Google Scholar 

  20. Patricola, C. M. & Cook, K. H. Mid-twenty-first century warm season climate change in the Central United States. Part I: regional and global model predictions. Clim. Dyn. 40, 551–568 (2013).

    Article  Google Scholar 

  21. Feng, Z. et al. More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nat. Commun. 7, 13429 (2016).

    Article  CAS  Google Scholar 

  22. Swain, S. & Hayhoe, K. CMIP5 projected changes in spring and summer drought and wet conditions over North America. Clim. Dyn. 44, 2737–2750 (2015).

    Article  Google Scholar 

  23. Villarini, G. et al. On the frequency of heavy rainfall for the Midwest of the United States. J. Hydrol. 400, 103–120 (2011).

    Article  Google Scholar 

  24. Manzoni, S., Moyano, F., Kätterer, T. & Schimel, J. Modeling coupled enzymatic and solute transport controls on decomposition in drying soils. Soil Biol. Biochem. 95, 275–287 (2016).

    Article  CAS  Google Scholar 

  25. Manzoni, S., Schimel, J. P. & Porporato, A. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93, 930–938 (2012).

    Article  Google Scholar 

  26. Schimel, J., Balser, T. C. & Wallenstein, M. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88, 1386–1394 (2007).

    Article  Google Scholar 

  27. Stark, J. M. & Firestone, M. K. Mechanisms for soil moisture effects on activity of nitrifying bacteria. Appl. Environ. Microbiol. 61, 218–221 (1995).

    CAS  Google Scholar 

  28. Larsen, K. S. et al. Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: synthesizing results of the CLIMAITE project after two years of treatments. Glob. Change Biol. 17, 1884–1899 (2011).

    Article  Google Scholar 

  29. Gonzalez-Dugo, V., Durand, J. & Gastal, F. Water deficit and nitrogen nutrition of crops. A review. Agron. Sustain. Dev. 30, 529–544 (2010).

    Article  CAS  Google Scholar 

  30. Liu, J. et al. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl Acad. Sci. USA 107, 8035–8040 (2010).

    Article  CAS  Google Scholar 

  31. Grandy, A., Kallenbach, C., Loecke, T. D., Snapp, S. S. & Smith, R. G. Microbial Ecology in Sustainable Agroecosystems (eds Cheeke, T. E., Coleman, D. C. & Wall, D. H.) 113–132 (CRC Press, Boca Raton, 2012).

  32. Pang, X. & Letey, J. Organic farming: challenge of timing nitrogen availability to crop nitrogen requirements. Soil Sci. Soc. Am. J 64, 247–253 (2000).

    Article  CAS  Google Scholar 

  33. Sawyer, J. et al. Concepts and Rationale for Regional Nitrogen Rate Guidelines for Corn Concepts and Rationale for Regional Nitrogen Rate Guidelines for Corn (Iowa State Univ. Extension, 2006).

  34. Drinkwater, L. E. & Snapp, S. Nutrients in agroecosystems: rethinking the management paradigm. Adv. Agron. 92, 163–186 (2007).

    Article  CAS  Google Scholar 

  35. Basche, A. D., Miguez, F. E., Kaspar, T. C. & Castellano, M. J. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. J. Soil Water Conserv. 69, 471–482 (2014).

    Article  Google Scholar 

  36. Castellano, M. J., Lewis, D. B., Andrews, D. M. & McDaniel, M. D. in Hydropedology (ed. Lin, H.) 711–735 (Elsevier, Oxford, 2012).

  37. Hansen, M., Clough, T. J. & Elberling, B. Flooding-induced N2O emission bursts controlled by pH and nitrate in agricultural soils. Soil Biol. Biochem. 69, 17–24 (2014).

    Article  CAS  Google Scholar 

  38. Chen, Z. et al. Increased N2O emissions during soil drying after waterlogging and spring thaw in a record wet year. Soil Biol. Biochem. 101, 152–164 (2016).

    Article  CAS  Google Scholar 

  39. Congreves, K. A. et al. How does climate variability influence nitrogen loss in temperate agroecosystems under contrasting management systems? Agric. Ecosyst. Environ. 227, 33–41 (2016).

    Article  CAS  Google Scholar 

  40. Wang, Z., Qi, Z., Xue, L., Bukovsky, M. & Helmers, M. J. Modeling the impacts of climate change on nitrogen losses and crop yield in a subsurface drained field. Clim. Change 129, 323–335 (2015).

    Article  CAS  Google Scholar 

  41. Patil, R. H., Laegdsmand, M., Olesen, J. E. & Porter, J. R. Effect of soil warming and rainfall patterns on soil N cycling in Northern Europe. Agric. Ecosyst. Environ. 139, 195–205 (2010).

    Article  CAS  Google Scholar 

  42. Jabloun, M., Schelde, K., Tao, F. & Olesen, J. E. Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark. Eur. J. Agron. 62, 55–64 (2015).

    Article  CAS  Google Scholar 

  43. Nangia, V., Gowda, P. H., Mulla, D. J. & Sands, G. R. Modeling impacts of tile drain spacing and depth on nitrate-nitrogen losses. Vadose Zone J. 9, 61–72 (2010).

    Article  CAS  Google Scholar 

  44. Castellano, M. J. et al. Hydrological and biogeochemical controls on the timing and magnitude of nitrous oxide flux across an agricultural landscape. Glob. Change Biol. 16, 2711–2720 (2010).

    Article  Google Scholar 

  45. Butterbach-Bahl, K. & Dannenmann, M. Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate. Curr. Opin. Environ. Sustain. 3, 389–395 (2011).

    Article  Google Scholar 

  46. Akiyama, H., Yagi, K. & Yan, X. Direct N2O emissions from rice paddy fields: summary of available data. Glob. Biogeochem. Cycles 19, 1–10 (2005).

    Article  CAS  Google Scholar 

  47. Hatfield, J. L. et al. Climate impacts on agriculture: implications for crop production. Agron. J. 103, 351–370 (2011).

    Article  Google Scholar 

  48. Dannenmann, M. et al. Climate change impairs nitrogen cycling in european beech forests. PLoS ONE 11, 1–24 (2016).

    Article  CAS  Google Scholar 

  49. Liang, L. L., Grantz, D. A. & Jenerette, G. D. Multivariate regulation of soil CO2 and N2O pulse emissions from agricultural soils. Glob. Change Biol. 22, 1286–1298 (2016).

    Article  Google Scholar 

  50. Gelfand, I., Cui, M., Tang, J. & Robertson, G. P. Short-term drought response of N2O and CO2 emissions from mesic agricultural soils in the US Midwest. Agric. Ecosyst. Environ. 212, 127–133 (2015).

    Article  CAS  Google Scholar 

  51. Gentry, L. E., David, M. B., Smith, K. M. & Kovacic, D. A. Nitrogen cycling and tile drainage nitrate loss in a corn/soybean watershed. Agric. Ecosyst. Environ. 68, 85–97 (1998).

    Article  CAS  Google Scholar 

  52. Morecroft, M. D., Burt, T. P., Taylor, M. E. & Rowland, A. P. Effects of the 1995–1997 drought on nitrate leaching in lowland England. Soil Use Manag. 16, 117–123 (2000).

    Article  Google Scholar 

  53. Loecke, T. D. et al. Weather whiplash in agricultural regions drives deterioration of water quality. Biogeochemistry 133, 7–15 (2017).

    Article  CAS  Google Scholar 

  54. Mazdiyasni, O. & AghaKouchak, A. Substantial increase in concurrent droughts and heatwaves in the United States. Proc. Natl Acad. Sci. USA 112, 11484–11489 (2015).

    Article  CAS  Google Scholar 

  55. Jin, Z. et al. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO2. Glob. Change Biol. 23, 2687–2704 (2017).

    Article  Google Scholar 

  56. Ainsworth, E. & Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant. Cell Environ. 30, 258–270 (2007).

    Article  CAS  Google Scholar 

  57. Leakey, A. D. B. et al. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot. 60, 2859–2876 (2009).

    Article  CAS  Google Scholar 

  58. Shimono, H., Nakamura, H., Hasegawa, T. & Okada, M. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice. Glob. Change Biol. 19, 2444–2453 (2013).

    Article  Google Scholar 

  59. Gray, S. B. et al. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants 2, 16132 (2016).

    Article  CAS  Google Scholar 

  60. Jin, Z., Ainsworth, E. A., Leakey, A. D. B. & Lobell, D. B. Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest. Glob. Change Biol. 24, e522–e533 (2018).

    Article  Google Scholar 

  61. Gardner, J. B. & Drinkwater, L. E. The fate of nitrogen in grain cropping systems: a meta-analysis of 15N field experiments. Ecol. Appl. 19, 2167–2184 (2009).

    Article  Google Scholar 

  62. Mclellan, E. et al. Reducing nitrogen export from the corn belt to the Gulf of Mexico: agricultural strategies for remediating hypoxia. J. Am. Water Resour. Assoc. 51, 263–289 (2015).

    Article  CAS  Google Scholar 

  63. Scavia, D. et al. Ensemble modeling informs hypoxia management in the northern Gulf of Mexico. Proc. Natl Acad. Sci. USA 114, 201705293 (2017).

    Article  CAS  Google Scholar 

  64. Iqbal, J. et al. Extreme weather-year sequences have non-additive effects on environmental nitrogen losses. Glob. Change Biol. 24, e303–e317 (2018).

    Article  Google Scholar 

  65. Slingo, J. & Palmer, T. Uncertainty in weather and climate prediction. Philos. Trans. R. Soc. Lond. Ser. A 369, 4751–4767 (2011).

    Article  Google Scholar 

  66. Sela, S. et al. Adapt-N outperforms grower-selected nitrogen rates in Northeast and Midwestern United States strip trials. Agron. J. 108, 1726–1734 (2016).

    Article  CAS  Google Scholar 

  67. Lynch, J. P. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 112, 347–357 (2013).

    Article  CAS  Google Scholar 

  68. Colmer, T. D. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 26, 17–36 (2003).

    Article  CAS  Google Scholar 

  69. Koebernick, N. et al. High-resolution synchrotron imaging shows that root hairs influence rhizosphere soil structure formation. New Phytol. 216, 124–135 (2017).

    Article  Google Scholar 

  70. Ahmed, M. A., Kroener, E., Holz, M., Zarebanadkouki, M. & Carminati, A. Mucilage exudation facilitates root water uptake in dry soils. Funct. Plant Biol. 41, 1129–1137 (2014).

    Article  Google Scholar 

  71. Zhu, B. et al. Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biol. Biochem. 76, 183–192 (2014).

    Article  CAS  Google Scholar 

  72. Austin, E. E., Wickings, K., McDaniel, M. D., Robertson, G. P. & Grandy, A. S. Cover crop root contributions to soil carbon in a no-till corn bioenergy cropping system. Glob. Change Biol. Bioenergy 9, 1252–1263 (2017).

    Article  CAS  Google Scholar 

  73. Lin, B. B. Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience 61, 183–193 (2011).

    Article  Google Scholar 

  74. Liebman, M. & Schulte, L. A. Enhancing agroecosystem performance and resilience through increased diversification of landscapes and cropping systems. Elementa 3, 1–7 (2015).

    Google Scholar 

  75. Gentry, L. F., Ruffo, M. L. & Below, F. E. Identifying factors controlling the continuous corn yield penalty. Agron. J. 105, 295–303 (2013).

    Article  Google Scholar 

  76. Gaudin, A. C. M. et al. Increasing crop diversity mitigates weather variations and improves yield stability. PLoS ONE 10, e0113261 (2015).

    Article  CAS  Google Scholar 

  77. McDaniel, M., Tiemann, L. & Grandy, A. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 24, 560–570 (2014).

    Article  CAS  Google Scholar 

  78. Grandy, A. S., Robertson, G. P. & Philip, G. Land-use intensity effects on soil organic carbon accumulation rates and mechanisms. Ecosystems 10, 58–73 (2007).

    Article  CAS  Google Scholar 

  79. Bowles, T. M., Jackson, L. E., Loeher, M. & Cavagnaro, T. R. Ecological intensification and arbuscular mycorrhizas: a meta-analysis of tillage and cover crop effects. J. Appl. Ecol. 54, 1785–1793 (2017).

    Article  Google Scholar 

  80. Rawls, W. J., Pachepsky, Y. A., Ritchie, J. C., Sobecki, T. M. & Bloodworth, H. Effect of soil organic carbon on soil water retention. Geoderma 116, 61–76 (2003).

    Article  CAS  Google Scholar 

  81. Basche, A. D. et al. Soil water improvements with the long-term use of a winter rye cover crop. Agric. Water Manag. 172, 40–50 (2016).

    Article  Google Scholar 

  82. Daigh, A. L. et al. Soil water during the drought of 2012 as affected by rye cover crops in fields in Iowa and Indiana. J. Soil Water Conserv. 69, 564–573 (2014).

    Article  Google Scholar 

  83. Bowles, T. M., Barrios-Masias, F. H., Carlisle, E. A., Cavagnaro, T. R. & Jackson, L. E. Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Sci. Total Environ. 566–567, 1223–1234 (2016).

    Article  CAS  Google Scholar 

  84. Bowles, T. M., Jackson, L. E. & Cavagnaro, T. R. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes. Glob. Change Biol. 24, e171–e182 (2018).

    Article  Google Scholar 

  85. Cavagnaro, T. R., Bender, S. F., Asghari, H. R. & van der Heijden, M. G. A. The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci. 20, 283–290 (2015).

    Article  CAS  Google Scholar 

  86. Williams, A. et al. Reconciling opposing soil processes in row-crop agroecosystems via soil functional zone management. Agric. Ecosyst. Environ. 236, 99–107 (2017).

    Article  Google Scholar 

  87. Kallenbach, C. & Grandy, A. S. Controls over soil microbial biomass responses to carbon amendments in agricultural systems: a meta-analysis. Agric. Ecosyst. Environ. 144, 241–252 (2011).

    Article  Google Scholar 

  88. Kallenbach, C. M., Grandy, A. S., Frey, S. D. & Diefendorf, A. F. Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol. Biochem. 91, 279–290 (2015).

    Article  CAS  Google Scholar 

  89. Reese, C. L. et al. Winter cover crops impact on corn production in semiarid regions. Agron. J. 106, 1479–1488 (2014).

    Article  CAS  Google Scholar 

  90. Qi, Z., Helmers, M. J. & Kaleita, A. L. Soil water dynamics under various agricultural land covers on a subsurface drained field in north-central Iowa, USA. Agric. Water Manag. 98, 665–674 (2011).

    Article  Google Scholar 

  91. Tonitto, C., David, M. B. & Drinkwater, L. E. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: a meta-analysis of crop yield and N dynamics. Agric. Ecosyst. Environ. 112, 58–72 (2006).

    Article  Google Scholar 

  92. Panagopoulos, Y. et al. Surface water quality and cropping systems sustainability under a changing climate in the Upper Mississippi River Basin. J. Soil Water Conserv. 69, 483–494 (2014).

    Article  Google Scholar 

  93. Williams, A. et al. A comparison of soil hydrothermal properties in zonal and uniform tillage systems across the US Corn Belt. Geoderma 273, 12–19 (2016).

    Article  Google Scholar 

  94. Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).

    Article  Google Scholar 

  95. Nearing, M. A. et al. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 61, 131–154 (2005).

    Article  Google Scholar 

  96. Zhou, X. et al. Nutrient removal by prairie filter strips in agricultural landscapes. J. Soil Water Conserv. 69, 54–64 (2014).

    Article  Google Scholar 

  97. Addy, K. et al. Denitrifying bioreactors for nitrate removal: a meta-analysis. J. Environ. Qual. 45, 873 (2016).

    Article  CAS  Google Scholar 

  98. Hansen, A. T., Dolph, C. L., Foufoula-Georgiou, E. & Finlay, J. C. Contribution of wetlands to nitrate removal at the watershed scale. Nat. Geosci. 11, 127–132 (2018).

    Article  CAS  Google Scholar 

  99. Samuelson, W. & Zeckhauser, R. Status quo bias in decision making. J. Risk Uncertain. 1, 7–59 (1988).

    Article  Google Scholar 

  100. Barbier, E. B. Valuing ecosystem services as productive inputs. Econ. Policy 22, 178–229 (2007).

    Article  Google Scholar 

  101. Atallah, S. S., Gómez, M. I. & Jaramillo, J. A Bioeconomic model of ecosystem services provision: coffee berry borer and shade-grown coffee in Colombia. Ecol. Econ. 144, 129–138 (2018).

    Article  Google Scholar 

  102. Rejesus, R. M. & Hornbaker, R. H. Economic and environmental evaluation of alternative pollution-reducing nitrogen management practices in central Illinois. Agric. Ecosyst. Environ. 75, 41–53 (1999).

    Article  Google Scholar 

  103. Di Falco, S. & Chavas, J.-P. On crop biodiversity, risk exposure, and food security in the highlands of Ethiopia. Am. J. Agric. Econ. 91, 599–611 (2009).

    Article  Google Scholar 

  104. Di Falco, S. On the value of agricultural biodiversity. Annu. Rev. Resour. Econ. 4, 207–223 (2012).

    Article  Google Scholar 

  105. Stuart, D. & Gillon, S. Scaling up to address new challenges to conservation on US farmland. Land Use Policy 31, 223–236 (2013).

    Article  Google Scholar 

  106. Reimer, A. & Prokopy, L. One federal policy, four different policy contexts: an examination of agri-environmental policy implementation in the Midwestern United States. Land Use Policy 38, 605–614 (2014).

    Article  Google Scholar 

  107. Healthly Soils Program California Department of Food and Agriculture https://www.cdfa.ca.gov/oefi/healthysoils/ (2017).

  108. Cassidy, E. S., West, P. C., Gerber, J. S. & Foley, J. A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 034015 (2013).

    Article  Google Scholar 

  109. Muller, A. et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 8, 1290 (2017).

    Article  CAS  Google Scholar 

  110. Del Grosso, S. J. et al. Introducing the GRACEnet/REAP Data Contribution, Discovery, and Retrieval System. J. Environ. Qual. 42, 1274–1280 (2013).

  111. Logan, T. J., Eckert, D. J. & Beak, D. G. Tillage, crop and climatic effects of runoff and tile drainage losses of nitrate and four herbicides. Soil Tillage Res. 30, 75–103 (1994).

    Article  Google Scholar 

  112. Lawlor, P. A., Helmers, M. J., Baker, J. L., Melvin, S. W. & Lemke, D. W. Nitrogen application rate effect on nitrate-nitrogen concentration and loss in subsurface drainage for a corn-soybean rotation. Trans. ASABE 51, 83–94 (2008).

    Article  CAS  Google Scholar 

  113. Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos. Trans. R. Soc. Lond. Ser. B 368, 20130122 (2013).

    Article  CAS  Google Scholar 

  114. Kleber, M. et al. in Advances in Agronomy Vol. 130 (ed. Sparks, D. L.) Ch. 1, 1–140 (Elsevier, Oxford, 2015).

Download references

Acknowledgements

We acknowledge funding to T.M.B. from a US Department of Agriculture Agriculture and Food Research Initiative Education and Literacy Initiative (AFRI ELI) postdoctoral fellowship (2017-67012-26094), to A.S.G. from US Department of Agriculture National Institute of Food and Agriculture Agriculture Experiment Station (NIFA AES) project CA-D-PLS-2332-H, and to W.R.W. from US Department of Agriculture (NIFA 2015-67003-23485) and US Environmental Protection Agency. We thank C. Stewart and V. Jin for providing data and assistance with DAYCENT modelling. We acknowledge the Kellogg Biological Station Long-term Ecological Research Program and GRACEnet for data used to make Fig. 2a and Fig. 2b,c, respectively.

Author information

Authors and Affiliations

Authors

Contributions

T.M.B. and A.S.G. conceived the framework and led the writing of the manuscript. T.M.B. analysed the data and made all figures. E.E.C. and W.R.W. conducted the modelling. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Timothy M. Bowles.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections A–C, Supplementary Figure 1, Supplementary References 1–6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowles, T.M., Atallah, S.S., Campbell, E.E. et al. Addressing agricultural nitrogen losses in a changing climate. Nat Sustain 1, 399–408 (2018). https://doi.org/10.1038/s41893-018-0106-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-018-0106-0

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene