Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cross-linking mass spectrometry: methods and applications in structural, molecular and systems biology

Abstract

Over the past decade, cross-linking mass spectrometry (CLMS) has developed into a robust and flexible tool that provides medium-resolution structural information. CLMS data provide a measure of the proximity of amino acid residues and thus offer information on the folds of proteins and the topology of their complexes. Here, we highlight notable successes of this technique as well as common pipelines. Novel CLMS applications, such as in-cell cross-linking, probing conformational changes and tertiary-structure determination, are now beginning to make contributions to molecular biology and the emerging fields of structural systems biology and interactomics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General CLMS workflow.
Fig. 2: CLMS applications.
Fig. 3: Visualization solutions for CLMS data.
Fig. 4: CLMS data acquisition and analysis workflows.

Similar content being viewed by others

References

  1. Leitner, A., Faini, M., Stengel, F. & Aebersold, R. Crosslinking and mass spectrometry: an integrated technology to understand the structure and function of molecular machines. Trends Biochem. Sci. 41, 20–32 (2016). A comprehensive review of advances in CLMS applied to protein assemblies.

    CAS  PubMed  Google Scholar 

  2. Pham, N. D., Parker, R. B. & Kohler, J. J. Photocrosslinking approaches to interactome mapping. Curr. Opin. Chem. Biol. 17, 90–101 (2013).

    CAS  PubMed  Google Scholar 

  3. Yu, C. & Huang, L. Cross-linking mass spectrometry: an emerging technology for interactomics and structural biology. Anal. Chem. 90, 144–165 (2018). A comprehensive review of experimental advances in the CLMS workflow.

    CAS  PubMed  Google Scholar 

  4. Schweppe, D. K. et al. Mitochondrial protein interactome elucidated by chemical cross-linking mass spectrometry. Proc. Natl Acad. Sci. USA 114, 1732–1737 (2017).

    CAS  PubMed  Google Scholar 

  5. Chavez, J. D. et al. Quantitative interactome analysis reveals a chemoresistant edgotype. Nat. Commun. 6, 7928 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu, F., Rijkers, D. T. S., Post, H. & Heck, A. J. R. Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. Nat. Methods 12, 1179–1184 (2015).

    CAS  PubMed  Google Scholar 

  7. Belsom, A., Schneider, M., Fischer, L., Brock, O. & Rappsilber, J. Serum albumin domain structures in human blood serum by mass spectrometry and computational biology. Mol. Cell. Proteomics 15, 1105–1116 (2016).

    CAS  PubMed  Google Scholar 

  8. Greber, B. J. et al. The complete structure of the 55S mammalian mitochondrial ribosome. Science 348, 303–308 (2015).

    CAS  PubMed  Google Scholar 

  9. Plaschka, C. et al. Architecture of the RNA polymerase II–Mediator core initiation complex. Nature 518, 376–380 (2015).

    CAS  PubMed  Google Scholar 

  10. Bui, K. H. et al. Integrated structural analysis of the human nuclear pore complex scaffold. Cell 155, 1233–1243 (2013).

    CAS  PubMed  Google Scholar 

  11. Kosinski, J. et al. Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science 352, 363–365 (2016).

    CAS  PubMed  Google Scholar 

  12. Kim, S. J. et al. Integrative structure and functional anatomy of a nuclear pore complex. Nature 555, 475–482 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, Z. A. et al. Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry. EMBO J. 29, 717–726 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Herzog, F. et al. Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry. Science 337, 1348–1352 (2012).

    CAS  PubMed  Google Scholar 

  15. Joachimiak, L. A., Walzthoeni, T., Liu, C. W., Aebersold, R. & Frydman, J. The structural basis of substrate recognition by the eukaryotic chaperonin TRiC/CCT. Cell 159, 1042–1055 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kalisman, N., Adams, C. M. & Levitt, M. Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling. Proc. Natl Acad. Sci. USA 109, 2884–2889 (2012).

    CAS  PubMed  Google Scholar 

  17. Leitner, A. et al. The molecular architecture of the eukaryotic chaperonin TRiC/CCT. Structure 20, 814–825 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lasker, K. et al. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc. Natl Acad. Sci. USA 109, 1380–1387 (2012).

    CAS  PubMed  Google Scholar 

  19. Erzberger, J. P. et al. Molecular architecture of the 40S·eIF1·eIF3 translation initiation complex. Cell 158, 1123–1135 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Nguyen, V. Q. et al. Molecular architecture of the ATP-dependent chromatin-remodeling complex SWR1. Cell 154, 1220–1231 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tosi, A. et al. Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex. Cell 154, 1207–1219 (2013).

    CAS  PubMed  Google Scholar 

  22. Martinez-Rucobo, F. W. et al. Molecular basis of transcription-coupled pre-mRNA capping. Mol. Cell 58, 1079–1089 (2015).

    CAS  PubMed  Google Scholar 

  23. Yan, C. et al. Structure of a yeast spliceosome at 3.6-angstrom resolution. Science 349, 1182–1191 (2015).

    CAS  PubMed  Google Scholar 

  24. Ferber, M. et al. Automated structure modeling of large protein assemblies using crosslinks as distance restraints. Nat. Methods 13, 515–520 (2016).

    CAS  PubMed  Google Scholar 

  25. Karaca, E., Rodrigues, J. P. G. L. M., Graziadei, A., Bonvin, A. M. J. J. & Carlomagno, T. M3: an integrative framework for structure determination of molecular machines. Nat. Methods 14, 897–902 (2017).

    CAS  PubMed  Google Scholar 

  26. Politis, A. et al. A mass spectrometry-based hybrid method for structural modeling of protein complexes. Nat. Methods 11, 403–406 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Konermann, L., Pan, J. & Liu, Y.-H. Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem. Soc. Rev. 40, 1224–1234 (2011).

    CAS  PubMed  Google Scholar 

  28. Han, Y., Luo, J., Ranish, J. & Hahn, S. Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex. EMBO J. 33, 2534–2546 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Algret, R. et al. Molecular architecture and function of the SEA complex, a modulator of the TORC1 pathway. Mol. Cell. Proteomics 13, 2855–2870 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Maiolica, A. et al. Structural analysis of multiprotein complexes by cross-linking, mass spectrometry, and database searching. Mol. Cell. Proteomics 6, 2200–2211 (2007).

    CAS  PubMed  Google Scholar 

  31. Merkley, E. D. et al. Mixed-isotope labeling with LC-IMS-MS for characterization of protein-protein interactions by chemical cross-linking. J. Am. Soc. Mass Spectrom. 24, 444–449 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pettelkau, J. et al. Structural analysis of guanylyl cyclase-activating protein-2 (GCAP-2) homodimer by stable isotope-labeling, chemical cross-linking, and mass spectrometry. J. Am. Soc. Mass Spectrom. 24, 1969–1979 (2013).

    CAS  PubMed  Google Scholar 

  33. Arlt, C., Ihling, C. H. & Sinz, A. Structure of full-length p53 tumor suppressor probed by chemical cross-linking and mass spectrometry. Proteomics 15, 2746–2755 (2015).

    CAS  PubMed  Google Scholar 

  34. Barysz, H. et al. Three-dimensional topology of the SMC2/SMC4 subcomplex from chicken condensin I revealed by cross-linking and molecular modeling. Open Biol. 5, 150005 (2015).

    PubMed  PubMed Central  Google Scholar 

  35. Belsom, A., Schneider, M., Brock, O. & Rappsilber, J. Blind evaluation of hybrid protein structure analysis methods based on cross-linking. Trends Biochem. Sci. 41, 564–567 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schneider, M., Belsom, A. & Rappsilber, J. Protein tertiary structure by crosslinking/mass spectrometry. Trends Biochem. Sci. 43, 157–169 (2018). A comprehensive review on applying CLMS to solve protein tertiary structure.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Young, M. M. et al. High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry. Proc. Natl Acad. Sci. USA 97, 5802–5806 (2000).

    CAS  PubMed  Google Scholar 

  38. Singh, P., Nakatani, E., Goodlett, D. R. & Catalano, C. E. A pseudo-atomic model for the capsid shell of bacteriophage lambda using chemical cross-linking/mass spectrometry and molecular modeling. J. Mol. Biol. 425, 3378–3388 (2013).

    CAS  PubMed  Google Scholar 

  39. Dos Santos, R. N. et al. Enhancing protein fold determination by exploring the complementary information of chemical cross-linking and coevolutionary signals. Bioinformatics 34, 2201–2208 (2018).

    PubMed  Google Scholar 

  40. Schneider, M., Belsom, A., Rappsilber, J. & Brock, O. Blind testing of cross-linking/mass spectrometry hybrid methods in CASP11. Proteins 84 (Suppl. 1), 152–163 (2016).

  41. Belsom, A. et al. Blind testing cross-linking/mass spectrometry under the auspices of the 11th critical assessment of methods of protein structure prediction (CASP11). Wellcome Open Res. 1, 24 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Ding, Y.-H. et al. Modeling protein excited-state structures from “over-length” chemical cross-links. J. Biol. Chem. 292, 1187–1196 (2017).

    CAS  PubMed  Google Scholar 

  43. Komolov, K. E. et al. Structural and functional analysis of a β2-adrenergic receptor complex with GRK5. Cell 169, 407–421.e16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, Z.A. & Rappsilber, J. Protein dynamics in solution by quantitative cross-linking/mass spectrometry. Trends Biochem. Sci. https://doi.org/10.1016/j.tibs.2018.09.003 (2018). A comprehensive review of advances in quantitative CLMS.

  45. Fischer, L., Chen, Z. A. & Rappsilber, J. Quantitative cross-linking/mass spectrometry using isotope-labelled cross-linkers. J. Proteomics 88, 120–128 (2013). A description of various levels of error that need to be accounted for in CLMS data analysis.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen, Z. A. et al. Structure of complement C3(H2O) revealed by quantitative cross-linking/mass spectrometry and modeling. Mol. Cell. Proteomics 15, 2730–2743 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Schmidt, C. et al. Comparative cross-linking and mass spectrometry of an intact F-type ATPase suggest a role for phosphorylation. Nat. Commun. 4, 1985 (2013).

    PubMed  PubMed Central  Google Scholar 

  48. Walzthoeni, T. et al. xTract: software for characterizing conformational changes of protein complexes by quantitative cross-linking mass spectrometry. Nat. Methods 12, 1185–1190 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, Z. A., Fischer, L., Cox, J. & Rappsilber, J. Quantitative cross-linking/mass spectrometry using isotope-labeled cross-linkers and MaxQuant. Mol. Cell. Proteomics 15, 2769–2778 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tomko, R. J. Jr. et al. A single α helix drives extensive remodeling of the proteasome lid and completion of regulatory particle assembly. Cell 163, 432–444 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu, C. et al. Gln40 deamidation blocks structural reconfiguration and activation of SCF ubiquitin ligase complex by Nedd8. Nat. Commun. 6, 10053 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen, Z. et al. Quantitative cross-linking/mass spectrometry reveals subtle protein conformational changes. Wellcome Open Res. 1, 5 (2016).

    PubMed  PubMed Central  Google Scholar 

  53. Gavin, A.-C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).

    CAS  PubMed  Google Scholar 

  54. Krogan, N. J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006).

    CAS  PubMed  Google Scholar 

  55. Havugimana, P. C. et al. A census of human soluble protein complexes. Cell 150, 1068–1081 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kristensen, A. R., Gsponer, J. & Foster, L. J. A high-throughput approach for measuring temporal changes in the interactome. Nat. Methods 9, 907–909 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chavez, J. D. & Bruce, J. E. Chemical cross-linking with mass spectrometry: a tool for systems structural biology. Curr. Opin. Chem. Biol. 48, 8–18 (2018). A comprehensive review of CLMS applied to complex samples.

    PubMed  Google Scholar 

  58. Makowski, M. M., Willems, E., Jansen, P. W. T. C. & Vermeulen, M. Cross-linking immunoprecipitation-MS (xIP-MS): topological analysis of chromatin-associated protein complexes using single affinity purification. Mol. Cell. Proteomics 15, 854–865 (2016).

    CAS  PubMed  Google Scholar 

  59. Shi, Y. et al. A strategy for dissecting the architectures of native macromolecular assemblies. Nat. Methods 12, 1135–1138 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Häupl, B., Ihling, C. H. & Sinz, A. Protein interaction network of human protein kinase D2 revealed by chemical cross-linking/mass spectrometry. J. Proteome Res. 15, 3686–3699 (2016).

    PubMed  Google Scholar 

  61. Wang, X. et al. Molecular details underlying dynamic structures and regulation of the human 26S proteasome. Mol. Cell. Proteomics 16, 840–854 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tan, D. et al. Trifunctional cross-linker for mapping protein-protein interaction networks and comparing protein conformational states. eLife 5, e12509 (2016).

    PubMed  PubMed Central  Google Scholar 

  63. Yang, B. et al. Identification of cross-linked peptides from complex samples. Nat. Methods 9, 904–906 (2012).

    CAS  Google Scholar 

  64. Liu, F., Lössl, P., Scheltema, R., Viner, R. & Heck, A. J. R. Optimized fragmentation schemes and data analysis strategies for proteome-wide cross-link identification. Nat. Commun. 8, 15473 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kastritis, P. L. et al. Capturing protein communities by structural proteomics in a thermophilic eukaryote. Mol. Syst. Biol. 13, 936 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. Kaake, R. M. et al. A new in vivo cross-linking mass spectrometry platform to define protein-protein interactions in living cells. Mol. Cell. Proteomics 13, 3533–3543 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chavez, J. D., Weisbrod, C. R., Zheng, C., Eng, J. K. & Bruce, J. E. Protein interactions, post-translational modifications and topologies in human cells. Mol. Cell. Proteomics 12, 1451–1467 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wu, X. et al. In vivo protein interaction network analysis reveals porin-localized antibiotic inactivation in Acinetobacter baumannii strain AB5075. Nat. Commun. 7, 13414 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu, F., Lössl, P., Rabbitts, B. M., Balaban, R. S. & Heck, A. J. R. The interactome of intact mitochondria by cross-linking mass spectrometry provides evidence for coexisting respiratory supercomplexes. Mol. Cell. Proteomics 17, 216–232 (2018).

    CAS  PubMed  Google Scholar 

  70. Chavez, J. D., Schweppe, D. K., Eng, J. K. & Bruce, J. E. In vivo conformational dynamics of Hsp90 and its interactors. Cell. Chem. Biol. 23, 716–726 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Schweppe, D. K. et al. Host-microbe protein interactions during bacterial infection. Chem. Biol. 22, 1521–1530 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. TranB. Q., GoodlettD. R.. & GooY. A. Advances in protein complex analysis by chemical cross-linking coupled with mass spectrometry (CXMS) and bioinformatics. Biochim. Biophys. Acta 1864, 123–129 (2016).

    CAS  PubMed  Google Scholar 

  73. Fischer, L. & Rappsilber, J. Quirks of error estimation in cross-linking/mass spectrometry. Anal. Chem. 89, 3829–3833 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Walzthoeni, T. et al. False discovery rate estimation for cross-linked peptides identified by mass spectrometry. Nat. Methods 9, 901–903 (2012).

    CAS  PubMed  Google Scholar 

  75. Suchanek, M., Radzikowska, A. & Thiele, C. Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells. Nat. Methods 2, 261–267 (2005).

    CAS  PubMed  Google Scholar 

  76. Götze, M. et al. StavroX: a software for analyzing crosslinked products in protein interaction studies. J. Am. Soc. Mass Spectrom. 23, 76–87 (2012).

    PubMed  Google Scholar 

  77. Du, X. et al. Xlink-identifier: an automated data analysis platform for confident identifications of chemically cross-linked peptides using tandem mass spectrometry. J. Proteome Res. 10, 923–931 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Panchaud, A., Singh, P., Shaffer, S. A. & Goodlett, D. R. xComb: a cross-linked peptide database approach to protein-protein interaction analysis. J. Proteome Res. 9, 2508–2515 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Singh, P. et al. Characterization of protein cross-links via mass spectrometry and an open-modification search strategy. Anal. Chem. 80, 8799–8806 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Giese, S. H., Fischer, L. & Rappsilber, J. A study into the collision-induced dissociation (CID) behavior of cross-linked peptides. Mol. Cell. Proteomics 15, 1094–1104 (2016).

    CAS  PubMed  Google Scholar 

  81. Ji, C., Li, S., Reilly, J. P., Radivojac, P. & Tang, H. XLSearch: a probabilistic database search algorithm for identifying cross-linked peptides. J. Proteome Res. 15, 1830–1841 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Trnka, M. J., Baker, P. R., Robinson, P. J. J., Burlingame, A. L. & Chalkley, R. J. Matching cross-linked peptide spectra: only as good as the worse identification. Mol. Cell. Proteomics 13, 420–434 (2014).

    CAS  PubMed  Google Scholar 

  83. Yu, F., Li, N. & Yu, W. Exhaustively identifying cross-linked peptides with a linear computational complexity. J. Proteome Res. 16, 3942–3952 (2017).

    CAS  PubMed  Google Scholar 

  84. Hoopmann, M. R. et al. Kojak: efficient analysis of chemically cross-linked protein complexes. J. Proteome Res. 14, 2190–2198 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Yuan, Z. et al. Structural basis of Mcm2–7 replicative helicase loading by ORC–Cdc6 and Cdt1. Nat. Struct. Mol. Biol. 24, 316–324 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Petrotchenko, E. V., Olkhovik, V. K. & Borchers, C. H. Isotopically coded cleavable cross-linker for studying protein-protein interaction and protein complexes. Mol. Cell. Proteomics 4, 1167–1179 (2005).

    CAS  PubMed  Google Scholar 

  87. Zelter, A. et al. Isotope signatures allow identification of chemically cross-linked peptides by mass spectrometry: a novel method to determine interresidue distances in protein structures through cross-linking. J. Proteome Res. 9, 3583–3589 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ihling, C. et al. Isotope-labeled cross-linkers and Fourier transform ion cyclotron resonance mass spectrometry for structural analysis of a protein/peptide complex. J. Am. Soc. Mass Spectrom. 17, 1100–1113 (2006).

    CAS  PubMed  Google Scholar 

  89. Holding, A. N., Lamers, M. H., Stephens, E. & Skehel, J. M. Hekate: software suite for the mass spectrometric analysis and three-dimensional visualization of cross-linked protein samples. J. Proteome Res. 12, 5923–5933 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Rinner, O. et al. Identification of cross-linked peptides from large sequence databases. Nat. Methods 5, 315–318 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Leitner, A., Walzthoeni, T. & Aebersold, R. Lysine-specific chemical cross-linking of protein complexes and identification of cross-linking sites using LC-MS/MS and the xQuest/xProphet software pipeline. Nat. Protoc. 9, 120–137 (2014).

    CAS  PubMed  Google Scholar 

  92. Kao, A. et al. Development of a novel cross-linking strategy for fast and accurate identification of cross-linked peptides of protein complexes. Mol. Cell. Proteomics 10, 002212 (2011).

    PubMed  Google Scholar 

  93. Soderblom, E. J. & Goshe, M. B. Collision-induced dissociative chemical cross-linking reagents and methodology: applications to protein structural characterization using tandem mass spectrometry analysis. Anal. Chem. 78, 8059–8068 (2006).

    CAS  PubMed  Google Scholar 

  94. Buncherd, H., Roseboom, W., de Koning, L. J., de Koster, C. G. & de Jong, L. A gas phase cleavage reaction of cross-linked peptides for protein complex topology studies by peptide fragment fingerprinting from large sequence database. J. Proteomics 108, 65–77 (2014).

    CAS  PubMed  Google Scholar 

  95. Müller, M. Q., Dreiocker, F., Ihling, C. H., Schäfer, M. & Sinz, A. Cleavable cross-linker for protein structure analysis: reliable identification of cross-linking products by tandem MS. Anal. Chem. 82, 6958–6968 (2010).

    PubMed  Google Scholar 

  96. Yu, C., Kandur, W., Kao, A., Rychnovsky, S. & Huang, L. Developing new isotope-coded mass spectrometry-cleavable cross-linkers for elucidating protein structures. Anal. Chem. 86, 2099–2106 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Dreiocker, F., Müller, M. Q., Sinz, A. & Schäfer, M. Collision-induced dissociative chemical cross-linking reagent for protein structure characterization: applied Edman chemistry in the gas phase. J. Mass Spectrom. 45, 178–189 (2010).

    CAS  PubMed  Google Scholar 

  98. Petrotchenko, E. V., Serpa, J. J. & Borchers, C. H. An isotopically coded CID-cleavable biotinylated cross-linker for structural proteomics. Mol. Cell. Proteomics 10, 001420 (2011).

    PubMed  Google Scholar 

  99. Hage, C., Falvo, F., Schäfer, M. & Sinz, A. Novel concepts of MS-cleavable cross-linkers for improved peptide structure analysis. J. Am. Soc. Mass Spectrom. 28, 2022–2038 (2017).

    CAS  PubMed  Google Scholar 

  100. Hage, C., Iacobucci, C., Rehkamp, A., Arlt, C. & Sinz, A. The first zero-length mass spectrometry-cleavable cross-linker for protein structure analysis. Angew. Chem. Int. Ed. Engl. (2017).

  101. Clifford-Nunn, B., Showalter, H. D. H. & Andrews, P. C. Quaternary diamines as mass spectrometry cleavable crosslinkers for protein interactions. J. Am. Soc. Mass Spectrom. 23, 201–212 (2012).

    CAS  PubMed  Google Scholar 

  102. Chakrabarty, J. K., Naik, A. G., Fessler, M. B., Munske, G. R. & Chowdhury, S. M. Differential tandem mass spectrometry-based cross-linker: a new approach for high confidence in identifying protein cross-linking. Anal. Chem. 88, 10215–10222 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Tang, X. & Bruce, J. E. A new cross-linking strategy: protein interaction reporter (PIR) technology for protein-protein interaction studies. Mol. Biosyst. 6, 939–947 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Petrotchenko, E. V. & Borchers, C. H. ICC-CLASS: isotopically-coded cleavable crosslinking analysis software suite. BMC Bioinformatics 11, 64 (2010).

    PubMed  PubMed Central  Google Scholar 

  105. Götze, M. et al. Automated assignment of MS/MS cleavable cross-links in protein 3D-structure analysis. J. Am. Soc. Mass Spectrom. 26, 83–97 (2015).

    PubMed  Google Scholar 

  106. Hoopmann, M. R., Weisbrod, C. R. & Bruce, J. E. Improved strategies for rapid identification of chemically cross-linked peptides using protein interaction reporter technology. J. Proteome Res. 9, 6323–6333 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Anderson, G. A., Tolic, N., Tang, X., Zheng, C. & Bruce, J. E. Informatics strategies for large-scale novel cross-linking analysis. J. Proteome Res. 6, 3412–3421 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kolbowski, L., Combe, C. & Rappsilber, J. xiSPEC: web-based visualization, analysis and sharing of proteomics data. Nucleic Acids Res. 46, W473–W478 (2018).

    PubMed  PubMed Central  Google Scholar 

  109. Combe, C. W., Fischer, L. & Rappsilber, J. xiNET: cross-link network maps with residue resolution. Mol. Cell. Proteomics 14, 1137–1147 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Grimm, M., Zimniak, T., Kahraman, A. & Herzog, F. xVis: a web server for the schematic visualization and interpretation of crosslink-derived spatial restraints. Nucleic Acids Res. 43, W362–9 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kosinski, J. et al. Xlink Analyzer: software for analysis and visualization of cross-linking data in the context of three-dimensional structures. J. Struct. Biol. 189, 177–183 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Zheng, C. et al. XLink-DB: database and software tools for storing and visualizing protein interaction topology data. J. Proteome Res. 12, 1989–1995 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Kahraman, A., Malmström, L. & Aebersold, R. Xwalk: computing and visualizing distances in cross-linking experiments. Bioinformatics 27, 2163–2164 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Courcelles, M. et al. CLMSVault: a software suite for protein cross-linking mass-spectrometry data analysis and visualization. J. Proteome Res. 16, 2645–2652 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Riffle, M., Jaschob, D., Zelter, A. & Davis, T. N. ProXL (protein cross-linking database): a platform for analysis, visualization, and sharing of protein cross-linking mass spectrometry data. J. Proteome Res. 15, 2863–2870 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Vizcaíno, J. A. et al. The mzIdentML data standard version 1.2, supporting advances in proteome informatics. Mol. Cell. Proteomics 16, 1275–1285 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Einstein Foundation, the DFG (RA 2365/4-1) and the Wellcome Trust through a Senior Research Fellowship to J.R. (103139). The Wellcome Centre for Cell Biology is supported by core funding from the Wellcome Trust (203149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juri Rappsilber.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Reilly, F.J., Rappsilber, J. Cross-linking mass spectrometry: methods and applications in structural, molecular and systems biology. Nat Struct Mol Biol 25, 1000–1008 (2018). https://doi.org/10.1038/s41594-018-0147-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-018-0147-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing