Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Astrocytes mediate long-lasting synaptic regulation of ventral tegmental area dopamine neurons

An Author Correction to this article was published on 25 April 2023

This article has been updated

Abstract

The plasticity of glutamatergic transmission in the ventral tegmental area (VTA) represents a fundamental mechanism in the modulation of dopamine neuron burst firing and phasic dopamine release at target regions. These processes encode basic behavioral responses, including locomotor activity, learning and motivated behaviors. Here we describe a hitherto unidentified mechanism of long-term synaptic plasticity in mouse VTA. We found that the burst firing in individual dopamine neurons induces a long-lasting potentiation of excitatory synapses on adjacent dopamine neurons that crucially depends on Ca2+ elevations in astrocytes, mediated by endocannabinoid CB1 and dopamine D2 receptors co-localized at the same astrocytic process, and activation of pre-synaptic metabotropic glutamate receptors. Consistent with these findings, selective in vivo activation of astrocytes increases the burst firing of dopamine neurons in the VTA and induces locomotor hyperactivity. Astrocytes play, therefore, a key role in the modulation of VTA dopamine neuron functional activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Astrocyte recruitment by DA neuron burst firing induces LTP of excitatory synapses onto adjacent DA neurons in young female mice.
Fig. 2: Generation of bLTP requires eCB and DA signaling coupled with mGluR1 activation.
Fig. 3: Chemogenetic selective activation of astrocytes induces bLTP in young male mice.
Fig. 4: bLTP is expressed in both female and male, control and IP3R2−/− adult mice and requires astrocyte Ca2+ elevations.
Fig. 5: Chemogenetic activation of astrocytes in vivo favors burst and overall firing activity in VTA DA neurons.
Fig. 6: Chemogenetic activation in vivo of astrocytes induces a long-lasting motor hyperactivity.
Fig. 7: Proposed mechanism of bLTP generation.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Change history

References

  1. Pignatelli, M. & Bonci, A. Role of dopamine neurons in reward and aversion: a synaptic plasticity perspective. Neuron 86, 1145–1157 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Thiele, A. & Bellgrove, M. A. Neuromodulation of attention. Neuron 97, 769–785 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Runegaard, A. H. et al. Modulating dopamine signaling and behavior with chemogenetics: concepts, progress, and challenges. Pharmacol. Rev. 71, 123–156 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Paladini, C. A. & Roeper, J. Generating bursts (and pauses) in the dopamine midbrain neurons. Neuroscience 282, 109–121 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Morales, M. & Margolis, E. B. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat. Rev. Neurosci. 18, 73–85 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Poulin, J. F. et al. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat. Neurosci. 21, 1260–1271 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Beier, K. T. et al. Circuit architecture of VTA dopamine neurons revealed by systematic input–output mapping. Cell 162, 622–634 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Watabe-Uchida, M., Zhu, L., Ogawa, S. K., Vamanrao, A. & Uchida, N. Whole-brain mapping of direct inputs to midbrain dopamine. Neurons Neuron 74, 858–873 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Morikawa, H. & Paladini, C. A. Dynamic regulation of midbrain dopamine neuron activity: intrinsic, synaptic, and plasticity mechanisms. Neuroscience 198, 95–111 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Bonci, A. & Malenka, R. C. Properties and plasticity of excitatory synapses on dopaminergic and GABAergic cells in the ventral tegmental area. J. Neurosci. 19, 3723–3730 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gomez, J. A. et al. Ventral tegmental area astrocytes orchestrate avoidance and approach behavior. Nat. Commun. 10, 1455 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Octeau, J. C. et al. Transient, consequential increases in extracellular potassium ions accompany channelrhodopsin2 excitation. Cell Rep. 27, 2249–2261 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Araque, A. et al. Gliotransmitters travel in time and space. Neuron 81, 728–739 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bazargani, N. & Attwell, D. Astrocyte calcium signaling: the third wave. Nat. Neurosci. 19, 182–189 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Volterra, A., Liaudet, N. & Savtchouk, I. Astrocyte Ca2+ signalling: an unexpected complexity. Nat. Rev. Neurosci. 15, 327–335 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Melis, M. et al. Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. J. Neurosci. 24, 53–62 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Busquets-Garcia, A., Bains, J. & Marsicano, G. CB1 receptor signaling in the brain: extracting specificity from ubiquity. Neuropsychopharmacology 43, 4–20 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Navarrete, M. & Araque, A. Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron 68, 113–126 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Gómez-Gonzalo, M. et al. Endocannabinoids induce lateral long-term potentiation of transmitter release by stimulation of gliotransmission. Cereb. Cortex 25, 3699–3712 (2015).

  20. Martín, R., Bajo-Grañeras, R., Moratalla, R., Perea, G. & Araque, A. Circuit-specific signaling in astrocyte–neuron networks in basal ganglia pathways. Science 349, 730–734 (2015).

    Article  PubMed  Google Scholar 

  21. Wang, H. & Lupica, C. R. Release of endogenous cannabinoids from ventral tegmental area dopamine neurons and the modulation of synaptic processes. Prog. Neuropsychopharmacol. Biol. Psychiatry 52, 24–27 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rice, M. E. & Patel, J. C. Somatodendritic dopamine release: recent mechanistic insights. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140185 (2015).

  23. Lalive, A. L. et al. Firing modes of dopamine neurons drive bidirectional GIRK channel plasticity. J. Neurosci. 34, 5107–5114 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lohani, S. et al. Burst activation of dopamine neurons produces prolonged post-burst availability of actively released dopamine. Neuropsychopharmacology 43, 2083–2092 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dahan, L. et al. Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology 32, 1232–1241 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Srinivasan, R. et al. Ca2+ signaling in astrocytes from Ip3r2−/− mice in brain slices and during startle responses in vivo. Nat. Neurosci. 18, 708–717 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Agarwal, A. et al. Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron 93, 587–605 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Serrano, A., Haddjeri, N., Lacaille, J. C. & Robitaille, R. GABAergic network activation of glial cells underlies hippocampal heterosynaptic depression. J. Neurosci. 26, 5370–5382 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lüscher, C. & Malenka, R. C. NMDA receptor-dependent long-term potentation and long-term depression (LTP/LTD). Cold Spring Harb. Perspect. Biol. 4, a005710 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hardingham, N., Dachtler, J. & Fox, K. The role of nitric oxide in pre-synaptic plasticity and homeostasis. Front. Cell. Neurosci. 7, 190 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pasti, L., Pozzan, T. & Carmignoto, G. Long-lasting changes of calcium oscillations in astrocytes. A new form of glutamate-mediated plasticity. J. Biol. Chem. 270, 15203–15210 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Yu, X. et al. Reducing astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior. Neuron 99, 1170–1187 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grace, A. A., Floresco, S. B., Goto, Y. & Lodge, D. J. Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci. 30, 220–227 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Boekhoudt, L. et al. Chemogenetic activation of dopamine neurons in the ventral tegmental area, but not substantia nigra, induces hyperactivity in rats. Eur. Neuropsychopharmacol. 26, 1784–1793 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Jing, M. Y. et al. Re-examining the role of ventral tegmental area dopaminergic neurons in motor activity and reinforcement by chemogenetic and optogenetic manipulation in mice. Metab. Brain Dis. 34, 1421–1430 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Nagai, J. et al. Behaviorally consequential astrocytic regulation of neural circuits. Neuron 109, 576–596 (2021).

  37. Kofuji, P. & Araque, A. Astrocytes and behavior. Annu. Rev. Neurosci. 44, 49–67 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martin-Fernandez, M. et al. Synapse-specific astrocyte gating of amygdala-related behavior. Nat. Neurosci. 20, 1540–1548 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Adamsky, A. et al. Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell 174, 59–71 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Nagai, J. et al. Hyperactivity with disrupted attention by activation of an astrocyte synaptogenic cue. Cell 177, 1280–1292 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jennings, A. et al. Dopamine elevates and lowers astroglial Ca2+ through distinct pathways depending on local synaptic circuitry. Glia 65, 447–459 (2017).

    Article  PubMed  Google Scholar 

  42. Xin, W. et al. Ventral midbrain astrocytes display unique physiological features and sensitivity to dopamine D2 receptor signaling. Neuropsychopharmacology 44, 344–355 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Cui, Q. et al. Blunted mGluR activation disinhibits striatopallidal transmission in parkinsonian mice. Cell Rep. 17, 2431–2444 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Corkrum, M. et al. Dopamine-evoked synaptic regulation in the nucleus accumbens requires astrocyte activity. Neuron 105, 1036–1047 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fuxe, K., Agnati, L. F., Marcoli, M. & Borroto-Escuela, D. O. Volume transmission in central dopamine and noradrenaline neurons and its astroglial targets. Neurochem. Res. 40, 2600–2614 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Kearn, C. S., Blake-Palmer, K., Daniel, E., Mackie, K. & Glass, M. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol. Pharmacol. 67, 1697–1704 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Mariotti, L. et al. Interneuron-specific signaling evokes distinctive somatostatin-mediated responses in adult cortical astrocytes. Nat. Commun. 9, 82 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Min, R. & Nevian, T. Astrocyte signaling controls spike timing-dependent depression at neocortical synapses. Nat. Neurosci. 15, 746–753 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Boender, A. J., Bontempi, L., Nava, L., Pelloux, Y. & Tonini, R. Striatal astrocytes shape behavioral flexibility via regulation of the glutamate transporter EAAT2. Biol. Psychiatry 89, 1045–1057 (2020).

  50. Henneberger, C. et al. LTP Induction boosts glutamate spillover by driving withdrawal of perisynaptic astroglia. Neuron 108, 919–936 (2020).

  51. Shigetomi, E., Jackson-Weaver, O., Huckstepp, R. T., O’Dell, T. J. & Khakh, B. S. TRPA1 channels are regulators of astrocyte basal calcium levels and long-term potentiation via constitutive d-serine release. J. Neurosci. 33, 10143–10153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Engelhard, B. et al. Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. Nature 570, 509–513 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, X., Zima, A. V., Sheikh, F., Blatter, L. A. & Chen, J. Endothelin-1-induced arrhythmogenic Ca2+ signaling is abolished in atrial myocytes of inositol-1,4,5-trisphosphate(IP3)-receptor type 2-deficient mice. Circ. Res. 96, 1274–1281 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Marsicano, G. et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Bello, E. P. et al. Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors. Nat. Neurosci. 14, 1033–1038 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dugué, G. P., Dumoulin, A., Triller, A. & Dieudonné, S. Target-dependent use of coreleased inhibitory transmitters at central synapses. J. Neurosci. 25, 6490–6498 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bellone, C., Mameli, M. & Lüscher, C. In utero exposure to cocaine delays postnatal synaptic maturation of glutamatergic transmission in the VTA. Nat. Neurosci. 14, 1439–1446 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Chieng, B., Azriel, Y., Mohammadi, S. & Christie, M. J. Distinct cellular properties of identified dopaminergic and GABAergic neurons in the mouse ventral tegmental area. J. Physiol. 589, 3775–3787 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Halassa, M. M., Fellin, T., Takano, H., Dong, J. H. & Haydon, P. G. Synaptic islands defined by the territory of a single astrocyte. J. Neurosci. 27, 6473–6477 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Faber, D. S. & Korn, H. Applicability of the coefficient of variation method for analyzing synaptic plasticity. Biophys. J. 60, 1288–1294 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, Y. et al. Accurate quantification of astrocyte and neurotransmitter fluorescence dynamics for single-cell and population-level physiology. Nat. Neurosci. 22, 1936–1944 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Haustein, M. D. et al. Conditions and constraints for astrocyte calcium signaling in the hippocampal mossy fiber pathway. Neuron 82, 413–429 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Melone, M., Bellesi, M. & Conti, F. Synaptic localization of GLT-1a in the rat somatic sensory cortex. Glia 57, 108–117 (2009).

    Article  PubMed  Google Scholar 

  64. Murphy, M. J. M. & Deutch, A. Y. Organization of afferents to the orbitofrontal cortex in the rat. J. Comp. Neurol. 526, 1498–1526 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Phend, K. D., Rustioni, A. & Weinberg, R. J. An osmium-free method of epon embedment that preserves both ultrastructure and antigenicity for post-embedding immunocytochemistry. J. Histochem. Cytochem. 43, 283–292 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Melone, M., Ciriachi, C., Pietrobon, D. & Conti, F. Heterogeneity of astrocytic and neuronal GLT-1 at cortical excitatory synapses, as revealed by its colocalization with Na+/K+-ATPase α isoforms. Cereb. Cortex 29, 3331–3350 (2019).

    Article  PubMed  Google Scholar 

  67. Peters, A., Palay, S. L. & Webster, H. D. The fine structure of the nervous system: the neurons and supporting cells. Ann. Neurol. 4, 588 (1978).

    Google Scholar 

  68. DeFelipe, J. Estimation of the number of synapses in the cerebral cortex: methodological considerations. Cereb. Cortex 9, 722–732 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Hervé, D., Pickel, V. M., Joh, T. H. & Beaudet, A. Serotonin axon terminals in the ventral tegmental area of the rat: fine structure and synaptic input to dopaminergic neurons. Brain Res. 435, 71–83 (1987).

    Article  PubMed  Google Scholar 

  70. Tamiya, R., Hanada, M., Kawai, Y., Inagaki, S. & Takagi, H. Substance P afferents have synaptic contacts with dopaminergic neurons in the ventral tegmental area of the rat. Neurosci. Lett. 110, 11–15 (1990).

    Article  CAS  PubMed  Google Scholar 

  71. Tagliaferro, P. & Morales, M. Synapses between corticotropin-releasing factor-containing axon terminals and dopaminergic neurons in the ventral tegmental area are predominantly glutamatergic. J. Comp. Neurol. 506, 616–626 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Racz, B. & Weinberg, R. J. The subcellular organization of cortactin in hippocampus. J. Neurosci. 24, 10310–10317 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Petrescu, A. D. et al. Physical and functional interaction of Acyl-CoA-binding protein with hepatocyte nuclear factor-4α. J. Biol. Chem. 278, 51813–51824 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Storey, S. M. et al. Loss of intracellular lipid binding proteins differentially impacts saturated fatty acid uptake and nuclear targeting in mouse hepatocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G837–G850 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Laffray, S. et al. Impairment of GABAB receptor dimer by endogenous 14-3-3ζ in chronic pain conditions. EMBO J. 31, 3239–3251 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Amiry-Moghaddam, M. & Ottersen, O. P. Immunogold cytochemistry in neuroscience. Nat. Neurosci. 16, 798–804 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Ohtani, Y. et al. The synaptic targeting of mGluR1 by its carboxyl-terminal domain is crucial for cerebellar function. J. Neurosci. 34, 2702–2712 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Garcia-Ovejero, D., Arevalo-Martin, A., Paniagua-Torija, B., Sierra-Palomares, Y. & Molina-Holgado, E. A cell population that strongly expresses the CB1 cannabinoid receptor in the ependyma of the rat spinal cord. J. Comp. Neurol. 521, 233–251 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Stojanovic, T. et al. Validation of dopamine receptor DRD1 and DRD2 antibodies using receptor deficient mice. Amino Acids 49, 1101–1109 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Solís, O., Garcia-Montes, J. R., González-Granillo, A., Xu, M. & Moratalla, R. Dopamine D3 receptor modulates l-DOPA-induced dyskinesia by targeting D1 receptor-mediated striatal signaling. Cereb. Cortex 27, 435–446 (2017).

    PubMed  Google Scholar 

  81. Castro-Hernández, J. et al. Prolonged treatment with pramipexole promotes physical interaction of striatal dopamine D3 autoreceptors with dopamine transporters to reduce dopamine uptake. Neurobiol. Dis. 74, 325–335 (2015).

    Article  PubMed  Google Scholar 

  82. Barili, P., Bronzetti, E., Ricci, A., Zaccheo, D. & Amenta, F. Microanatomical localization of dopamine receptor protein immunoreactivity in the rat cerebellar cortex. Brain Res. 854, 130–138 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Grace, A. A. & Bunney, B. S. Intracellular and extracellular electrophysiology of nigral dopaminergic neurons—1. Identification and characterization. Neuroscience 10, 301–315 (1983).

    Article  CAS  PubMed  Google Scholar 

  84. Ungless, M. A., Magill, P. J. & Bolam, J. P. Uniform Inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303, 2040–2042 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Ungless, M. A. & Grace, A. A. Are you or aren’t you? Challenges associated with physiologically identifying dopamine neurons. Trends Neurosci. 35, 422–430 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lecca, S., Melis, M., Luchicchi, A., Muntoni, A. L. & Pistis, M. Inhibitory inputs from rostromedial tegmental neurons regulate spontaneous activity of midbrain dopamine cells and their responses to drugs of abuse. Neuropsychopharmacology 37, 1164–1176 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Grace, A. A. & Bunney, B. S. The control of firing pattern in nigral dopamine neurons: burst firing. J. Neurosci. 4, 2877–2890 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mannaioni, G., Marino, M. J., Valenti, O., Traynelis, S. F. & Conn, P. J. Metabotropic glutamate receptors 1 and 5 differentially regulate CA1 pyramidal cell function. J. Neurosci. 21, 5925–5934 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bridi, M. et al. Transcriptional corepressor SIN3A regulates hippocampal synaptic plasticity via Homer1/mGluR5 signaling. JCI Insight 5, e92385 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Salah, A. & Perkins, K. L. Effects of subtype-selective group I mGluR antagonists on synchronous activity induced by 4-aminopyridine/CGP 55845 in adult guinea pig hippocampal slices. Neuropharmacology 55, 47–54 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pfeiffer, S., Leopold, E., Schmidt, K., Brunner, F. & Mayer, B. Inhibition of nitric oxide synthesis by NG-nitro-L-arginine methyl ester (L-NAME): requirement for bioactivation to the free acid, NG-nitro-L-arginine. Br. J. Pharmacol. 118, 1433–1440 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lu, Q. et al. Nitric oxide induces hypoxia ischemic injury in the neonatal brain via the disruption of neuronal iron metabolism. Redox Biol. 6, 112–121 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ivanova, V. O., Balaban, P. M. & Bal, N. V. Nitric oxide regulates GluA2-lacking AMPAR contribution to synaptic transmission of CA1 apical but not basal dendrites. Front. Synaptic Neurosci. 13, 1–12 (2021).

    Article  Google Scholar 

  94. Congiu, M., Trusel, M., Pistis, M., Mameli, M. & Lecca, S. Opposite responses to aversive stimuli in lateral habenula neurons. Eur. J. Neurosci. 50, 2921–2930 (2019).

    Article  PubMed  Google Scholar 

  95. Sagheddu, C. et al. Inhibition of N-acylethanolamine acid amidase reduces nicotine-induced dopamine activation and reward. Neuropharmacology 144, 327–336 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Poyraz, F. C. et al. Decreasing striatopallidal pathway function enhances motivation by energizing the initiation of goal-directed action. J. Neurosci. 36, 5988–6001 (2016).

    Article  CAS  Google Scholar 

  97. Boekhoudt, L. et al. Enhancing excitability of dopamine neurons promotes motivational behaviour through increased action initiation. Eur. Neuropsychopharmacol. 28, 171–184 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors dedicate the present study to the memory of Tullio Pozzan, internationally recognized as one of the most eminent cell biologists of our time, great mentor and dear friend of many of us. We are grateful to M. Melis, M. Sessolo, G. Colombo, M. Zordan, M. Santoni and P. Magalhães for helpful discussions and suggestions. We also thank T. Pozzan for valuable comments on the manuscript and discussions; M. Morini, D. Cantatore, B. Chiarenza, A. Monteforte and C. Chiabrera for technical support; and J. Chen for kindly providing IP3R2−/− mice. This research was supported by the European Commission (H2020-MSCA-ITN and 722053 EU-GliaPhD), PRIN 2015-W2N883_001, Premiale CNR-TERABIO, 2017 Premiale MIUR - nano4BRAIN and PRIN 2017 Prot. 20175C22WM to G.C., the Istituto Italiano di Tecnologia and the Ministero della Salute italiano (project GR-2016-02362413) to F.P., grants from UNIVPM (PSA 040046), Fondazione di Medicina Molecolare to F.C., the European Brain Research Institute (EBRI)/National Research Council of Italy (CNR) collaborative agreement to A.L.M. and G.C. and the Euro Bio-Imaging Project Roadmap/ESFRI from the European Commission. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

L.M.R., M.G.G. and G.C. designed the study. L.M.R. and M.G.G. performed the electrophysiological experiments in brain slices, with the collaboration of M.S. and G.L. L.M.R., M.G.G. and M.S. performed the Ca2+ imaging experiments in brain slices, with the collaboration of A.L. and M.Z. L.M.R. and M.G.G. performed the AAV injections, with the collaboration of A.L. and V.H. A.C. performed the immunohistochemistry experiments. F.M., G.P. and F.P. performed the behavioral experiments. M.C. and A.L.M. performed the in vivo single-unit recordings. M.M., A.P. and F.C. performed the electron microscopy experiments. G.M. provided the Cnr1-floxed mice. All authors discussed the results. M.G.G. and G.C. wrote the paper, with input from all authors.

Corresponding authors

Correspondence to Marta Gómez-Gonzalo or Giorgio Carmignoto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Neuroscience thanks Camilla Bellone and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Electrophysiological properties of DA neurons recorded from VTA slice preparations.

a) Differential interference contrast image of the lateral VTA showing the recording pipettes on a pair of DA neurons and the theta-capillary for extracellular stimulation of rostral glutamatergic afferents (mt, medial terminal nucleus of the accessory optical tract). Scale bar, 100 µm. b) Representative large Ih current elicited by a hyperpolarizing step. Scale bars, 200 pA, 500 ms. c) Representative slow depolarizing potential preceding the action potential during a depolarizing current step injection. Scale bars, 10 mV, 200 ms. d) Representative spontaneous low-frequency tonic firing. Scale bars, 20 mV, 2 s. e) Representative burst and tonic firing evoked by current step injections. Scale bars, 20 mV, 100 ms. f) EPSC amplitude after tonic firing protocol in wt female mice (n = 8 from 5 mice, p = 0.169, two-tailed paired t-test). g) Time course of paired-pulse ratio (PPR) values in female mice (n = 8), before and after tonic firing protocol (arrowhead). Right, mean PPR values before and 30 min after tonic firing (p = 0.827, two-tailed paired t-test). Data are represented as mean ± SEM.

Source data

Extended Data Fig. 2 bLTP can be evoked in IP3R2+/+ but not in IP3R2−/− young female littermates.

a) Example of mouse genotyping by PCR amplification of the IP3R2 wt (~200 bp) and mutant (~400 bp) alleles from genomic DNA. b) Top, bLTP can be evoked in IP3R2+/+ (n = 8 from 8 mice, p = 0.029, two-tailed One Sample t-test), but not in IP3R2−/− (n = 5 from 4 mice, p = 0.524, two-tailed One Sample t-test) young female littermates. Bottom, the bLTP in IP3R2+/+ female mice is accompanied by a reduced PPR (p = 0.031, two-tailed paired t-test), similarly to that observed in C57BL/6J young female mice (see Fig. 1). Analysis of the coefficient of variation of EPSCs, 45 min after burst firing for potentiated cells in IP3R2+/+ young mice (black circle, mean value). c) DA neuron bursts evoke an increase of the Ca2+ spike probability/min in astrocytes from IP3R2+/+ (n = 9 from 5 mice, p = 0.017, two-tailed paired t-test), but not in astrocytes from IP3R2−/− (n = 6 from 4 mice, p = 0.533, two-tailed paired t-test) young female littermates. Data are represented as mean ± SEM.

Source data

Extended Data Fig. 3 Expression of CB1, D2, D3, D4, D1, mGluR1α and mGluR1β receptors in neuronal and astrocytic compartments in the VTA of P16 female and male mice.

a) EM image showing CB1, D2, D3 and D4R immunoreactivity at neuronal compartments (Den, dendrites; Ax, axons; AxT, axon terminals) and astrocytic processes (AsP), in the lateral VTA of P16 female and male mice. Quantitative analysis of the distribution of immunoreactive profiles in female and male mice is reported in Supplementary Table 1. Scale bar, 250 nm. b) Representative pre-embedding EM images showing the expression of D3 and D4Rs at astrocytic processes (AsP) from the lateral VTA of a P16 female mouse. Green arrows indicate the presence of immunopositive products in AsP (AsP+). Scale bar, 300 nm. c) EM images of mGlu1α and mGlu1βR-immunoreactivity in the lateral VTA of P16 female and male mice. mGluR1α is largely detectable in dendrites (Den), in some astrocytic processes (AsP) and axons (Ax; see Supplementary Table 3 for quantitative distribution of mGluR1α immunoreactivity in both female and male). The mGluR1β is detectable in AsP, AxT (including those making an asymmetric synaptic contact) and Den (see Supplementary Table 3 for quantitative distribution of mGluR1β immunoreactivity in both female and male). Scale bar, 250 nm. d) Upper panel, the same as in (b), but in the lateral VTA of a P16 male mouse. Lower panel, quantification and comparison (two sided contingency Fisher’s test) of D3 (p < 0.0001) and D4R (p > 0.999) expression in female and male young mice. e) Representative ultrastructural fields of D1 immunoreactivity in the neuropil of lateral VTA in P16 female mice. Examples of neuronal (Den, dendrites) and astroglial (AsP, astrocytic processes) D1 immunoreactivity are illustrated. Quantitative analysis of the distribution of immunoreactive profiles is reported in Supplementary Table 4. Scale bar: 250 nm. f) Upper panel, representative fluorescence images showing two SR-101-positive astrocytes and the Ca2+ increase evoked in one of them (arrowhead, detected with Fluo-4), after locally applying the D1-type R agonist SKF 38393 (1 mM in glass pipette). Scale bar, 5 μm. Lower panel, time course of the Ca2+ transient shown on the left. Scale bars, 10 s, 10 %. g) Left, time course of the mean Ca2+ spike probability, in 10 sec bins, at basal conditions and after SKF 38393 challenge, both in the absence and presence of the D1-type R antagonist SCH-23390 (10 μM). Right, bar chart of the mean Ca2+ spike probability/min before and immediately after SKF 38393 challenge to show the Ca2+ response of VTA astrocytes to SKF 38393 (without SCH-23390, n = 6 from 4 mice, p = 0.022; with SCH-23390, n = 6 from 4 mice, p = 0.325; two-tailed paired t-test). h) Same as in g), but after ATP (4 mM in glass pipette) in five of the six slices previously challenged with SKF 38393 (n = 5 from 3 mice, p = 0.007, two-tailed paired t-test). Note that, compared to the strong astrocyte response to ATP, VTA astrocytes show a small, but significant Ca2+ response to D1-type receptor activation that is abolished in the presence of the D1-type receptor antagonist SCH-23390. Data are represented as mean ± SEM.

Source data

Extended Data Fig. 4 Targeted expression of mCherry-hM3D in VTA astrocytes from young male mice.

a) High magnification fluorescence images of the VTA from a mouse injected with AAV-9/2-hGFAP-hM3D(Gq)_mCherry-WPRE-hGHp(A), showing colocalization in astrocyte processes of mCherry-hM3D and the astrocyte marker S100β. Scale bar, upper panel 20 μm, lower panel 10 μm. b) Bar chart showing the percentage of mCherry positive cells that are astrocytes (S100β positive) or neurons (NeuN positive). ɑS100β; n = 1106 mCherry-hM3D+ cells from 4 mice, 8 slices; ɑNeuN, n = 1039 mCherry-hM3D+ cells from 4 mice, 8 slices. Data are represented as mean ± SEM.

Source data

Extended Data Fig. 5 Effects of the NO synthase inhibitor L-NAME on bLTP and astrocyte Ca2+ response to DA neuron burst firing.

a) Time course and bar chart of EPSC amplitude in the presence of the NO synthase inhibitor L-NAME (100 μM in the patch pipette of the burst firing DA neuron, n = 12 from 9 mice, p = 0.277; two-tailed One sample t-test). b) Mean amplitude of normalized EPSCs in female mice, 6 min after bursts, in the presence of different antagonists (AM251, n = 7 from 4 mice, p = 0.105; eticlopride, n = 10 from 8 mice, p = 0.291; LY-367385, n = 12 from 9 mice, p = 0.215; L-NAME, n = 12, from 9 mice p = 0.044; two-tailed One sample t-test). c) Time course and bar chart of astrocytic Ca2+ spike probability/min in the presence of L-NAME before and after burst firing (100 μM, n = 7 from 4 mice, p = 0.075; two-tailed paired t-test). d) Mean astrocytic Ca2+ spike probability/min in female mice, at basal conditions and 4.5 min after burst, in the presence of different antagonists (AM251, n = 6 from 3 mice, p = 0.671; eticlopride, n = 6 from 3 mice, p = 0.673; LY-367385, n = 6 from 4 mice, p = 0.048; L-NAME, n = 7 from 4 mice, p = 0.009; two-tailed paired t-test). e) A 5 min bath perfusion of CNO (10 μM), in the absence and presence of DEA NONOate (10 μM), transiently (in the first 9 min) increases EPSC amplitude of DA neurons in male mice expressing hM3D in astrocytes (CNO, n = 7 from 6 mice, p = 0.016, two-tailed One sample Wilcoxon Signed Rank test; CNO + DEA NONOate, n = 13 from 9 mice, p = 0.013, two-tailed One sample t-test). These experiments were performed in the presence of AM251 and eticlopride. Data are represented as mean ± SEM.

Source data

Extended Data Fig. 6 The mechanism of bLTP generation in young female mice is preserved in adult mice.

a) Representative EM images of mGluR1β expression at axon terminals (AxT+) forming asymmetric synaptic contacts (arrowheads) with dendrites (Den) and CB1 and D2R localization at astrocytic processes (AsP+) from adult female and male mice. Green and blue arrows indicate the presence of immunopositive products in female and male, respectively. Scale bar, 300 nm. b) Time course and bar chart of the mean amplitude of normalized EPSCs in adult male mice in the presence of different antagonists (L-741,626 (D2R) 10 µM, n = 9 from 7 mice, p = 0.34, two-tailed One Sample t-test; AM251 (CB1R), n = 11 from 8 mice, p = 0.24, two-tailed One Sample Wilcoxon signed Rank test; LY-367385 (mGluR1), n = 8 from 7 mice, p = 0.096, two-tailed One Sample t-test; L-NAME (NO synthase), n = 7 from 5 mice, p = 0.604, two-tailed One Sample t-test). As in young mice, bLTP generation in adult mice requires eCB-DA signaling and mGluR activation. Data are represented as mean ± SEM.

Source data

Extended Data Fig. 7 Targeted expression of mCherry-Cre, GCaMP6f and mCherry-hPMCA2w/b in VTA astrocytes from adult mice.

a) High magnification fluorescence images of the VTA from an adult male mouse injected with AAV9-hGFAP-mCherry_iCre-WPRE-hGHp(A), illustrating the nuclear localization of mCherry-Cre in GFAP-positive astrocytes. Scale bar, 10 μm. b) Bar chart showing the percentage of nuclear mCherry-Cre positive cells that are astrocytes (GFAP positive) or neurons (NeuN positive). αGFAP; n = 1265 mCherry-Cre+ cells from three mice, 8 slices; αNeuN, n = 747 mCherry-Cre+ cells from three mice, 5 slices. c) Confocal microscope fluorescence images of the VTA from an adult male mouse injected with AAV5.GfaABC1D.cytoGCaMP6f.SV40, showing the green fluorescence of GCaMP6f (α-GFP), nuclear Top-Ro3 (blue) and the specific red staining for either neurons (α-NeuN) or astrocytes (α-S100β). Merged images, localization of GCaMP6f in astrocytes (S100β-positive cells) and not in neurons (NeuN-positive cells). Scale bar, 25 μm. d) Bar chart showing the percentage of GCaMP6f positive cells that are astrocytes (S100β positive) or neurons (NeuN positive). αS100β; n = 1383 GCaMP6f+ cells from four mice, 10 slices; αNeuN, n = 1586 GCaMP6f+ cells from four mice, 12 slices. e) High magnification fluorescence images of the VTA from an IP3R2−/− adult mouse injected with AAV5-GfaABC1D-mCherry-hPMCA2w/b.SV40, showing the expression of the Ca2+ pump hPMCA2w/b (α-RFP red staining) in GLT1-positive astrocytic processes. Scale bar, 10 μm. f) Bar chart showing the percentage of cells expressing the Ca2+ pump hPMCA2w/b that are astrocytes (GLT-1 positive) or neurons (NeuN positive). αGLT1; n = 2164 mCherry-hPMCA2w/b(αRFP)+ cells from four mice, 13 slices; αNeuN, n = 1902 mCherry-hPMCA2w/b(αRFP)+ cells from four mice, 12 slices. Data are represented as mean ± SEM.

Source data

Extended Data Fig. 8 Area, amplitude and duration of Ca2+ events extracted by AQuA before and after DA neuron burst.

a) Cumulative distributions of the area (μm2), amplitude (∆F/F0) and duration (s) of Ca2+ events extracted by AQuA, before and after DA neuron burst in IP3R2+/+ mice (before burst, 6942 events; after burst, 10760 events; area, p = 0.218; amplitude, p < 0.0001; duration, p = 0.968; two-tailed Kolmogorov-Smirnov test). b) Same as in a), but from IP3R2−/− mice (before burst, 2483 events; after burst, 4483 events; area, p = 0.083; ∆F/F0, p < 0.0001; duration, p = 0.967; two-tailed Kolmogorov-Smirnov test).

Source data

Extended Data Fig. 9 Targeted expression of mCherry-hM3D in VTA astrocytes from adult male mice.

a) Confocal microscope fluorescence images of the VTA from an adult mouse injected with AAV-9/2-hGFAP-hM3D(Gq)_mCherry-WPRE-hGHp(A), showing the red fluorescence of mCherry-hM3D (red), nuclear Top-Ro3 (blue) and the specific green staining for either neurons (α-NeuN) or astrocytes (α-GFAP). Merged images, localization of hM3D in astrocytes (GFAP-positive cells) and not in neurons (NeuN-positive cells). Scale bars, 50 μm. b) High magnifications of the VTA from a mouse injected with AAV-9/2-hGFAP-hM3D(Gq)_mCherry-WPRE-hGHp(A), illustrating the colocalization of mCherry-hM3D with the astrocyte marker GFAP in astrocyte processes. Scale bars, 10 μm. c) Bar chart showing the percentage of mCherry-hM3D positive cells that are astrocytes (GFAP positive) or neurons (NeuN positive). αGFAP; n = 683 mCherry-hM3D+ cells from 3 mice, 6 slices; αNeuN, n = 1127 mCherry-hM3D+ cells from five mice, 10 slices. Data are represented as mean ± SEM.

Source data

Extended Data Fig. 10 DA neuron burst firing modulation of excitatory synapses onto adjacent DA neurons in adult IP3R2+/+ and IP3R2−/− littermates and non-littermates female and male mice.

a, b) Time course and bar chart of the mean amplitude of normalized EPSCs in adult female and male C57BL/6J (a) and IP3R2−/− (b) non littermates mice (C57BL/6J; female mice, n = 7 from 6 mice, p = 0.019; male mice, n = 7 from 5 mice, p = 0.01; IP3R2−/−; female mice, n = 9 from 7 mice, p = 0.108; male mice, n = 9 from 9 mice, p = 0.194; two-tailed One sample t-test). c, d) Same as in a, b) but from adult female and male IP3R2+/+ (c) and IP3R2−/− (d) littermate mice (IP3R2+/+; female mice, n = 8 from 7 mice, p = 0.028; male mice, n = 7 from 5 mice, p = 0.021; IP3R2−/−; female mice, n = 8 from 7 mice, p = 0.087; male mice, n = 9 from 7 mice, p = 0.112; two-tailed One sample t-test). Data are represented as mean ± SEM.

Source data

Supplementary information

Supplementary Information

Supplementary Tables 1–7 and Supplementary Notes 1–3

Reporting Summary

Source data

Source Data Fig. 1

Statistical Source Data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 3

Statistical Source Data

Source Data Fig. 4

Statistical Source Data

Source Data Fig. 5

Statistical Source Data

Source Data Fig. 6

Statistical Source Data

Source Data Extended Data Fig. 1

Statistical Source Data

Source Data Extended Data Fig. 2

Statistical Source Data

Source Data Extended Data Fig. 3

Statistical Source Data

Source Data Extended Data Fig. 4

Statistical Source Data

Source Data Extended Data Fig. 5

Statistical Source Data

Source Data Extended Data Fig. 6

Statistical Source Data

Source Data Extended Data Fig. 7

Statistical Source Data

Source Data Extended Data Fig. 8

Statistical Source Data

Source Data Extended Data Fig. 9

Statistical Source Data

Source Data Extended Data Fig. 10

Statistical Source Data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Requie, L.M., Gómez-Gonzalo, M., Speggiorin, M. et al. Astrocytes mediate long-lasting synaptic regulation of ventral tegmental area dopamine neurons. Nat Neurosci 25, 1639–1650 (2022). https://doi.org/10.1038/s41593-022-01193-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-022-01193-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing