Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activity-based RNA-modifying enzyme probing reveals DUS3L-mediated dihydrouridylation

Abstract

Epitranscriptomic RNA modifications can regulate RNA activity; however, there remains a major gap in our understanding of the RNA chemistry present in biological systems. Here we develop RNA-mediated activity-based protein profiling (RNABPP), a chemoproteomic strategy that relies on metabolic RNA labeling, mRNA interactome capture and quantitative proteomics, to investigate RNA-modifying enzymes in human cells. RNABPP with 5-fluoropyrimidines allowed us to profile 5-methylcytidine (m5C) and 5-methyluridine (m5U) methyltransferases. Further, we uncover a new mechanism-based crosslink between 5-fluorouridine (5-FUrd)-modified RNA and the dihydrouridine synthase (DUS) homolog DUS3L. We investigate the mechanism of crosslinking and use quantitative nucleoside liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis and 5-FUrd-based crosslinking and immunoprecipitation (CLIP) sequencing to map DUS3L-dependent dihydrouridine (DHU) modifications across the transcriptome. Finally, we show that DUS3L-knockout (KO) cells have compromised protein translation rates and impaired cellular proliferation. Taken together, our work provides a general approach for profiling RNA-modifying enzyme activity in living cells and reveals new pathways for epitranscriptomic RNA regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RNABPP enables the chemoproteomic analysis of RNA-modifying enzymes in living cells.
Fig. 2: Proteomic analysis of 5-FCyd-reactive proteins on mRNA using RNABPP.
Fig. 3: NSUN2 and TRMT2A are the major RNA m5C and m5U methyltransferases, respectively.
Fig. 4: DUS3L installs DHU on human RNA.
Fig. 5: 5-FUrd-iCLIP sequencing of DUS3L substrates.
Fig. 6: DUS3L regulates cell proliferation and protein translation efficiency.

Similar content being viewed by others

Data availability

The sequencing data reported in this paper have been deposited in the NCBI Gene Expression Omnibus (accession code GSE175825). The proteomics data reported in this paper are available via ProteomeXchange with identifier PXD022645. Source data are provided with this paper.

References

  1. Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 46, D303–D307 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Nachtergaele, S. & He, C. The emerging biology of RNA post-transcriptional modifications. RNA Biol. 14, 156–163 (2017).

    Article  PubMed  Google Scholar 

  3. Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Delaunay, S. & Frye, M. RNA modifications regulating cell fate in cancer. Nat. Cell Biol. 21, 552–559 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Li, X., Xiong, X. & Yi, C. Epitranscriptome sequencing technologies: decoding RNA modifications. Nat. Methods 14, 23–31 (2016).

    Article  PubMed  CAS  Google Scholar 

  6. Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20, 608–624 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Cravatt, B. F., Wright, A. T. & Kozarich, J. W. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem. 77, 383–414 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Baltz, A. G. et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell 46, 674–690 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Pappireddi, N., Martin, L. & Wuhr, M. A review on quantitative multiplexed proteomics. ChemBioChem 20, 1210–1224 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Konig, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Liu, Y. & Santi, D. V. m5C RNA and m5C DNA methyl transferases use different cysteine residues as catalysts. Proc. Natl Acad. Sci. USA 97, 8263–8265 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khoddami, V. & Cairns, B. R. Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat. Biotechnol. 31, 458–464 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lu, L. J., Tseng, W. C. & Randerath, K. Effects of 5-fluorocytidine on mammalian transfer RNA and transfer RNA methyltransferases. Biochem. Pharmacol. 28, 489–495 (1979).

    Article  CAS  PubMed  Google Scholar 

  15. Hussain, S. et al. NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep. 4, 255–261 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang, T., Chen, W., Liu, J., Gu, N. & Zhang, R. Genome-wide identification of mRNA 5-methylcytosine in mammals. Nat. Struct. Mol. Biol. 26, 380–388 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Yang, X. et al. 5-Methylcytosine promotes mRNA export—NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res. 27, 606–625 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thompson, A. et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75, 1895–1904 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Schosserer, M. et al. Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Nat. Commun. 6, 6158 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Heissenberger, C. et al. Loss of the ribosomal RNA methyltransferase NSUN5 impairs global protein synthesis and normal growth. Nucleic Acids Res. 47, 11807–11825 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Herdy, B. et al. Analysis of NRAS RNA G-quadruplex binding proteins reveals DDX3X as a novel interactor of cellular G-quadruplex containing transcripts. Nucleic Acids Res. 46, 11592–11604 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tuorto, F. et al. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat. Struct. Mol. Biol. 19, 900–905 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Xue, S. et al. Depletion of TRDMT1 affects 5-methylcytosine modification of mRNA and inhibits HEK293 cell proliferation and migration. Biochem. Biophys. Res. Commun. 520, 60–66 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Nordlund, M. E., Johansson, J. O., von Pawel-Rammingen, U. & Bystrom, A. S. Identification of the TRM2 gene encoding the tRNA(m5U54)methyltransferase of Saccharomyces cerevisiae. RNA 6, 844–860 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carter, J. M. et al. FICC-Seq: a method for enzyme-specified profiling of methyl-5-uridine in cellular RNA. Nucleic Acids Res. 47, e113 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Powell, C. A. & Minczuk, M. TRMT2B is responsible for both tRNA and rRNA m5U-methylation in human mitochondria. RNA Biol. 17, 451–462 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cheng, Q. Y. et al. Chemical tagging for sensitive determination of uridine modifications in RNA. Chem. Sci. 11, 1878–1891 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lu, Z. H., Zhang, R. & Diasio, R. B. Purification and characterization of dihydropyrimidine dehydrogenase from human liver. J. Biol. Chem. 267, 17102–17109 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Xing, F., Hiley, S. L., Hughes, T. R. & Phizicky, E. M. The specificities of four yeast dihydrouridine synthases for cytoplasmic tRNAs. J. Biol. Chem. 279, 17850–17860 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Schweizer, U., Bohleber, S. & Fradejas-Villar, N. The modified base isopentenyladenosine and its derivatives in tRNA. RNA Biol. 14, 1197–1208 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wiener, D. & Schwartz, S. The epitranscriptome beyond m6A. Nat. Rev. Genet. 22, 119–131 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Yu, F. et al. Molecular basis of dihydrouridine formation on tRNA. Proc. Natl Acad. Sci. USA 108, 19593–19598 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rider, L. W., Ottosen, M. B., Gattis, S. G. & Palfey, B. A. Mechanism of dihydrouridine synthase 2 from yeast and the importance of modifications for efficient tRNA reduction. J. Biol. Chem. 284, 10324–10333 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huppertz, I. et al. iCLIP: protein–RNA interactions at nucleotide resolution. Methods 65, 274–287 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Frith, M. C. et al. A code for transcription initiation in mammalian genomes. Genome Res. 18, 1–12 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, J., Xu, Y., Stoleru, D. & Salic, A. Imaging protein synthesis in cells and tissues with an alkyne analog of puromycin. Proc. Natl Acad. Sci. USA 109, 413–418 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Kato, T. et al. A novel human tRNA-dihydrouridine synthase involved in pulmonary carcinogenesis. Cancer Res. 65, 5638–5646 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Schaefer, M. et al. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 24, 1590–1595 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bohnsack, K. E., Hobartner, C. & Bohnsack, M. T. Eukaryotic 5-methylcytosine (m5C) RNA methyltransferases: mechanisms, cellular functions, and links to disease. Genes 10, 102 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  41. Kuchino, Y. & Borek, E. Tumour-specific phenylalanine tRNA contains two supernumerary methylated bases. Nature 271, 126–129 (1978).

    Article  CAS  PubMed  Google Scholar 

  42. Madison, J. T. & Holley, R. W. The presence of 5,6-dihydrouridylic acid in yeast ‘soluble’ ribonucleic acid. Biochem. Biophys. Res. Commun. 18, 153–157 (1965).

    Article  CAS  PubMed  Google Scholar 

  43. Xing, F., Martzen, M. R. & Phizicky, E. M. A conserved family of Saccharomyces cerevisiae synthases effects dihydrouridine modification of tRNA. RNA 8, 370–381 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bishop, A. C., Xu, J., Johnson, R. C., Schimmel, P. & de Crecy-Lagard, V. Identification of the tRNA-dihydrouridine synthase family. J. Biol. Chem. 277, 25090–25095 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Alexandrov, A. et al. Rapid tRNA decay can result from lack of nonessential modifications. Mol. Cell 21, 87–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Lanning, B. R. et al. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat. Chem. Biol. 10, 760–767 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 534, 570–574 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Erlanson, D. A. et al. Site-directed ligand discovery. Proc. Natl Acad. Sci. USA 97, 9367–9372 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Trendel, J. et al. The human RNA-binding proteome and its dynamics during translational arrest. Cell 176, 391–403 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Gupta, M., Sonnett, M., Ryazanova, L., Presler, M. & Wuhr, M. Quantitative proteomics of Xenopus embryos I, sample preparation. Methods Mol. Biol. 1865, 175–194 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Sonnett, M., Yeung, E. & Wuhr, M. Accurate, sensitive, and precise multiplexed proteomics using the complement reporter ion cluster. Anal. Chem. 90, 5032–5039 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sonnett, M., Gupta, M., Nguyen, T. & Wuhr, M. Quantitative proteomics for Xenopus embryos II, data analysis. Methods Mol. Biol. 1865, 195–215 (1865).

    Article  CAS  Google Scholar 

  54. Huttlin, E. L. et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174–1189 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Adiconis, X. et al. Comparative analysis of RNA sequencing methods for degraded or low-input samples. Nat. Methods 10, 623–629 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Su, D. et al. Quantitative analysis of ribonucleoside modifications in tRNA by HPLC-coupled mass spectrometry. Nat. Protoc. 9, 828–841 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hidalgo San Jose, L. & Signer, R. A. J. Cell-type-specific quantification of protein synthesis in vivo. Nat. Protoc. 14, 441–460 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. DeCoste and K. Rittenbach at the Princeton University Flow Cytometry Resource Facility for assistance with flow cytometry analysis. We thank L. Ryazanova (supported by the Princeton Catalysis Initiative and the Lewis–Sigler Collaboration Fund) for technical assistance. R.E.K. acknowledges support from a National Science Foundation CAREER award (MCB-1942565), the National Institute of Health (R01GM132189), the Sidney Kimmel Foundation and the Alfred P. Sloan Foundation. This work was supported by NIH grant R35 GM128813 (to M.W.). T.N. was supported by the American Heart Association. W.D. was generously supported by the Edward C. Taylor 3rd Year Graduate Fellowship in Chemistry. A.L. was supported by the Princeton Catalysis Initiative. All authors thank Princeton University for financial support.

Author information

Authors and Affiliations

Authors

Contributions

R.E.K. conceived the study, analyzed data, wrote the manuscript and performed experiments. W.D. performed RNABPP experiments, nucleoside MS, crosslinking studies and protein translation assays. A.L. performed iCLIP experiments and bioinformatic analysis. R.W.L. performed the bioinformatic analysis. N.J.Y. performed cell viability assays and crosslinking studies. T.N. performed MS proteomics and associated data analysis. M.W. supervised T.N.

Corresponding author

Correspondence to Ralph E. Kleiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Peer review information Nature Chemical Biology thanks Jing Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–9 and Figs. 1–17.

Reporting Summary

Supplementary Data 1

LC–MS/MS proteomics data for Fig. 2a.

Supplementary Data 2

5-FUrd DUS3L iCLIP peak data.

Source data

Source Data Fig. 1

Unprocessed western blots.

Source Data Fig. 2

Unprocessed western blots.

Source Data Fig. 4

Unprocessed western blots.

Source Data Fig. 5

Unprocessed western blots.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, W., Li, A., Yu, N.J. et al. Activity-based RNA-modifying enzyme probing reveals DUS3L-mediated dihydrouridylation. Nat Chem Biol 17, 1178–1187 (2021). https://doi.org/10.1038/s41589-021-00874-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-021-00874-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing