Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A DNA-based fluorescent probe maps NOS3 activity with subcellular spatial resolution

Abstract

Nitric oxide synthase 3 (NOS3) produces the gasotransmitter nitric oxide (NO), which drives critical cellular signaling pathways by S-nitrosylating target proteins. Endogenous NOS3 resides at two distinct subcellular locations: the plasma membrane and the trans-Golgi network (TGN). However, NO generation arising from the activities of both these pools of NOS3 and its relative contribution to physiology or disease is not yet resolvable. We describe a fluorescent DNA-based probe technology, NOckout, that can be targeted either to the plasma membrane or the TGN, where it can quantitatively map the activities of endogenous NOS3 at these locations in live cells. We found that, although NOS3 at the Golgi is tenfold less active than at the plasma membrane, its activity is essential for the structural integrity of the Golgi. The newfound ability to spatially map NOS3 activity provides a platform to discover selective regulators of the distinct pools of NOS3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NOckout reporters image endogenous NO production at the plasma membrane and Golgi.
Fig. 2: Simultaneous, quantitative NO imaging at two distinct subcellular locations.
Fig. 3: Phosphorylated NOS3 is enriched at the plasma membrane.
Fig. 4: The Golgi is an S-nitrosylation hotspot in breast cancer cells.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other finding of this study are available from the corresponding author upon reasonable request.

References

  1. Hess, D. T., Matsumoto, A., Kim, S.-O., Marshall, H. E. & Stamler, J. S. Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell Biol. 6, 150–166 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Bredt, D. S. & Snyder, S. H. Nitric oxide: a physiologic messenger molecule. Annu. Rev. Biochem. 63, 175–195 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Lim, K.-H., Ancrile, B. B., Kashatus, D. F. & Counter, C. M. Tumour maintenance is mediated by eNOS. Nature 452, 646–649 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu, W., Liu, L. Z., Loizidou, M., Ahmed, M. & Charles, I. G. The role of nitric oxide in cancer. Cell Res. 12, 311–320 (2002).

    Article  PubMed  Google Scholar 

  5. Fukumura, D., Kashiwagi, S. & Jain, R. K. The role of nitric oxide in tumour progression. Nat. Rev. Cancer 6, 521–534 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Lahdenranta, J. et al. Endothelial nitric oxide synthase mediates lymphangiogenesis and lymphatic metastasis. Cancer Res. 69, 2801–2808 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ying, L. & Hofseth, L. J. An emerging role for endothelial nitric oxide synthase in chronic inflammation and cancer. Cancer Res. 67, 1407–1410 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Thomsen, L. L. et al. Nitric oxide synthase activity in human breast cancer. Br. J. Cancer 72, 41–44 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tschugguel, W. et al. Expression of inducible nitric oxide synthase in human breast cancer depends on tumor grade. Breast Cancer Res. Treat. 56, 145–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Martin, J. H., Begum, S., Alalami, O., Harrison, A. & Scott, K. W. Endothelial nitric oxide synthase: correlation with histologic grade, lymph node status and estrogen receptor expression in human breast cancer. Tumour Biol. 21, 90–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Choudhari, S. K., Chaudhary, M., Bagde, S., Gadbail, A. R. & Joshi, V. Nitric oxide and cancer: a review. World J. Surg. Oncol. 11, 118 (2013).

    Article  PubMed  Google Scholar 

  12. Sowa, G. et al. Trafficking of endothelial nitric-oxide synthase in living cells. Quantitative evidence supporting the role of palmitoylation as a kinetic trapping mechanism limiting membrane diffusion. J. Biol. Chem. 274, 22524–22531 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Sessa, W. C. et al. The Golgi association of endothelial nitric oxide synthase is necessary for the efficient synthesis of nitric oxide. J. Biol. Chem. 270, 17641–17644 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Q. et al. Functional relevance of Golgi- and plasma membrane-localized endothelial NO synthase in reconstituted endothelial cells. Arterioscler. Thromb. Vasc. Biol. 26, 1015–1021 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Jin, Z.-G. Where is endothelial nitric oxide synthase more critical: plasma membrane or Golgi? Arterioscler. Thromb. Vasc. Biol. 26, 959–961 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Modi, S. et al. A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat. Nanotechnol. 4, 325–330 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Surana, S., Bhat, J. M., Koushika, S. P. & Krishnan, Y. An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism. Nat. Commun. 2, 340 (2011).

    Article  PubMed  CAS  Google Scholar 

  18. Chakraborty, K., Leung, K. & Krishnan, Y. High lumenal chloride in the lysosome is critical for lysosome function. eLife 6, e28862 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Narayanaswamy, N. et al. A pH-correctable, DNA-based fluorescent reporter for organellar calcium. Nat. Methods 16, 95–102 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Leung, K., Chakraborty, K., Saminathan, A. & Krishnan, Y. A. DNA nanomachine chemically resolves lysosomes in live cells. Nat. Nanotechnol. 14, 176–183 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Thekkan, S. et al. A DNA-based fluorescent reporter maps HOCl production in the maturing phagosome. Nat. Chem. Biol. 15, 1165–1172 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Kojima, H. et al. Bioimaging of nitric oxide with fluorescent indicators based on the rhodamine chromophore. Anal. Chem. 73, 1967–1973 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Kojima, H. et al. Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal. Chem. 70, 2446–2453 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. You, M. et al. DNA probes for monitoring dynamic and transient molecular encounters on live cell membranes. Nat. Nanotechnol. 12, 453–459 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ferreira, C. S. M., Cheung, M. C., Missailidis, S., Bisland, S. & Gariépy, J. Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Res. 37, 866–876 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Yang, Y.-M., Huang, A., Kaley, G. & Sun, D. eNOS uncoupling and endothelial dysfunction in aged vessels. Am. J. Physiol. Heart Circ. Physiol. 297, H1829–H1836 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lundberg, J. O., Weitzberg, E. & Gladwin, M. T. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 7, 156–167 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Fulton, D., Gratton, J. P. & Sessa, W. C. Post-translational control of endothelial nitric oxide synthase: why isn’t calcium/calmodulin enough? J. Pharmacol. Exp. Ther. 299, 818–824 (2001).

    CAS  PubMed  Google Scholar 

  29. Fulton, D. et al. Localization of endothelial nitric-oxide synthase phosphorylated on serine 1179 and nitric oxide in Golgi and plasma membrane defines the existence of two pools of active enzyme. J. Biol. Chem. 277, 4277–4284 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Goldstein, S., Russo, A. & Samuni, A. Reactions of PTIO and carboxy-PTIO with *NO, *NO2, and O2-*. J. Biol. Chem. 278, 50949–50955 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Fulton, D. et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399, 597–601 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Veetil, A. T., Jani, M. S. & Krishnan, Y. Chemical control over membrane-initiated steroid signaling with a DNA nanocapsule. Proc. Natl Acad. Sci. USA 115, 9432–9437 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fulton, D. et al. Targeting of endothelial nitric-oxide synthase to the cytoplasmic face of the Golgi complex or plasma membrane regulates Akt- versus calcium-dependent mechanisms for nitric oxide release. J. Biol. Chem. 279, 30349–30357 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Lytton, J., Westlin, M. & Hanley, M. R. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J. Biol. Chem. 266, 17067–17071 (1991).

    CAS  PubMed  Google Scholar 

  35. Namin, S. M., Nofallah, S., Joshi, M. S., Kavallieratos, K. & Tsoukias, N. M. Kinetic analysis of DAF-FM activation by NO: toward calibration of a NO-sensitive fluorescent dye. Nitric Oxide 28, 39–46 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Jiang, S. et al. Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity. Nat. Commun. 4, 2225 (2013).

    Article  PubMed  CAS  Google Scholar 

  37. Ramamurthi, A. & Lewis, R. S. Measurement and modeling of nitric oxide release rates for nitric oxide donors. Chem. Res. Toxicol. 10, 408–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Modi, S., Halder, S., Nizak, C. & Krishnan, Y. Recombinant antibody mediated delivery of organelle-specific DNA pH sensors along endocytic pathways. Nanoscale 6, 1144–1152 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. García-Cardeña, G. et al. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392, 821–824 (1998).

    Article  PubMed  Google Scholar 

  40. Farber-Katz, S. E. et al. DNA damage triggers Golgi dispersal via DNA-PK and GOLPH3. Cell 156, 413–427 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, J. E. et al. Dependence of Golgi apparatus integrity on nitric oxide in vascular cells: implications in pulmonary arterial hypertension. Am. J. Physiol. Heart Circ. Physiol. 300, H1141–H1158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Blake, R. A. et al. SU6656, a selective src family kinase inhibitor, used to probe growth factor signaling. Mol. Cell. Biol. 20, 9018–9027 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Skupien, A. et al. CD44 regulates dendrite morphogenesis through Src tyrosine kinase-dependent positioning of the Golgi. J. Cell Sci. 127, 5038–5051 (2014).

    Article  PubMed  CAS  Google Scholar 

  44. Ye, X., Rubakhin, S. S. & Sweedler, J. V. Detection of nitric oxide in single cells. Analyst 133, 423–433 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Lim, M. H., Xu, D. & Lippard, S. J. Visualization of nitric oxide in living cells by a copper-based fluorescent probe. Nat. Chem. Biol. 2, 375–380 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Eroglu, E. et al. Development of novel FP-based probes for live-cell imaging of nitric oxide dynamics. Nat. Commun. 7, 10623 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vahora, H., Khan, M. A., Alalami, U. & Hussain, A. The potential role of nitric oxide in halting cancer progression through chemoprevention. J. Cancer Prev. 21, 1–12 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ellefsen, K. L. & Parker, I. Dynamic Ca2+ imaging with a simplified lattice light-sheet microscope: A sideways view of subcellular Ca2+ puffs. Cell Calcium 71, 34–44 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Lee, P. C. et al. Impaired wound healing and angiogenesis in eNOS-deficient mice. Am. J. Physiol. 277, H1600–H1608 (1999).

    CAS  PubMed  Google Scholar 

  50. Jani, M. S., Veetil, A. T. & Krishnan, Y. Precision immunomodulation with synthetic nucleic acid technologies. Nat. Rev. Mater. 4, 451–458 (2019).

    Article  Google Scholar 

  51. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Maragos, C. M. et al. Nitric oxide/nucleophile complexes inhibit the in vitro proliferation of A375 melanoma cells via nitric oxide release. Cancer Res. 53, 564–568 (1993).

    CAS  PubMed  Google Scholar 

  53. Awad, H. H. & Stanbury, D. M. Autoxidation of NO in aqueous solution. Int. J. Chem. Kinet. 25, 375–381 (1993).

    Article  CAS  Google Scholar 

  54. Lewis, R. S. & Deen, W. M. Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions. Chem. Res. Toxicol. 7, 568–574 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Brandes, R. P. & Janiszewski, M. Direct detection of reactive oxygen species ex vivo. Kidney Int. 67, 1662–1664 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Duarte, A. J. & da Silva, J. C. G. E. Reduced fluoresceinamine as a fluorescent sensor for nitric oxide. Sens. 10, 1661–1669 (2010).

    Article  CAS  Google Scholar 

  57. Debacq-Chainiaux, F., Erusalimsky, J. D., Campisi, J. & Toussaint, O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat. Protoc. 4, 1798–1806 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Kuriyan and W.C. Sessa for valuable discussions. We thank Y. Fang for technical discussions and for the reagents used in biochemical studies of NOS3. We thank the Integrated Light Microscopy facility and BioPhysics core facility at the University of Chicago. We thank M. Zajac for a critical reading of the manuscript. This work was supported by a research grant from the University of Pennsylvania Orphan Disease Center in partnership with the Andrew Coppola Foundation, the University of Chicago Women’s Board; a Pilot and Feasibility award from an NIDDK center grant no. P30DK42086 to the University of Chicago Digestive Diseases Research Core Center; the Chicago Biomedical Consortium, with support from the Searle Funds at The Chicago Community Trust, C-084; a Scientific Innovation Award from the Brain Research Foundation and the Mergel Funsky award to Y.K.

Author information

Authors and Affiliations

Authors

Contributions

M.S.J., A.T.V. and Y.K. designed studies. M.S.J., A.T.V. and J.Z. characterized the sensor. M.S.J. and A.T.V. performed imaging experiments. M.S.J. and J.Z performed quantitation of enzymatic rate. M.S.J. performed immunostaining and western blot based biochemical/cell biology assays. M.S.J., A.T.V., J.Z and Y.K. analyzed data. M.S.J. and Y.K. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Yamuna Krishnan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, Figs. 1–23, synthetic procedures and Note

Reporting Summary

Supplementary Video 1

NOckoutPM reports real-time change in NO levels at the plasma membrane on treatment with ionomycin in combination with cholesterol (500 μM)

Supplementary Video 2

NOckoutPM reports real-time change in NO levels at the plasma membrane on treatment with thapsigargin (1 μM). NOckoutPM signal from T-47D cell pulsed with NOckoutPM and NOckoutTGN is represented as the ratio of DAR intensity to that of A488

Supplementary Video 3

NOckoutTGN reports real-time change in NO levels at the TGN on treatment with thapsigargin (1 μM). NOckoutTGN signal from T-47D cell pulsed with NOckoutPM and NOckoutTGN is represented as the ratio of DAR intensity to that of A647

Supplementary Video 4

Pharmacological NO scavenging in T-47D cells using Methylene blue (20 μM) leads to Golgi fragmentation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jani, M.S., Zou, J., Veetil, A.T. et al. A DNA-based fluorescent probe maps NOS3 activity with subcellular spatial resolution. Nat Chem Biol 16, 660–666 (2020). https://doi.org/10.1038/s41589-020-0491-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-020-0491-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing