Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains

An Author Correction to this article was published on 01 March 2023

This article has been updated

Abstract

Attention-deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder with a major genetic component. Here, we present a genome-wide association study meta-analysis of ADHD comprising 38,691 individuals with ADHD and 186,843 controls. We identified 27 genome-wide significant loci, highlighting 76 potential risk genes enriched among genes expressed particularly in early brain development. Overall, ADHD genetic risk was associated with several brain-specific neuronal subtypes and midbrain dopaminergic neurons. In exome-sequencing data from 17,896 individuals, we identified an increased load of rare protein-truncating variants in ADHD for a set of risk genes enriched with probable causal common variants, potentially implicating SORCS3 in ADHD by both common and rare variants. Bivariate Gaussian mixture modeling estimated that 84–98% of ADHD-influencing variants are shared with other psychiatric disorders. In addition, common-variant ADHD risk was associated with impaired complex cognition such as verbal reasoning and a range of executive functions, including attention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Results from GWAS meta-analysis of iPSYCH, deCODE and PGC cohorts including 38,899 cases and 186,843 controls in total.
Fig. 2: Venn diagrams showing MiXeR results for the estimated number of variants shared between ADHD and psychiatric disorders (with significant genetic correlations with ADHD) and phenotypes representing other domains with high genetic correlation with ADHD.
Fig. 3: Association of ADHD-PGS with measures of cognitive abilities in the PNC cohort (n = 4,973).

Similar content being viewed by others

Data availability

Summary statistics from the ADHD GWAS meta-analysis are available for download at the PGC website (https://www.med.unc.edu/pgc/download-results/). All relevant iPSYCH data are available from the authors after approval by the iPSYCH Data Access Committee and can only be accessed on the secured Danish server (GenomeDK; https://genome.au.dk) as the data are protected by Danish legislation. For data access and correspondence, please contact D.D. (ditte@biomed.au.dk) or A.D.B. (anders@biomed.au.dk).

Code availability

No previously unreported custom computer code or algorithm was used to generate results.

Change history

References

  1. Faraone, S. V. et al. Attention-deficit/hyperactivity disorder. Nat. Rev. Dis. Prim. 1, 15020 (2015).

    Article  PubMed  Google Scholar 

  2. Franke, B. et al. The genetics of attention deficit/hyperactivity disorder in adults, a review. Mol. Psychiatry 17, 960–987 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Dalsgaard, S., Leckman, J. F., Mortensen, P. B., Nielsen, H. S. & Simonsen, M. Effect of drugs on the risk of injuries in children with attention deficit hyperactivity disorder: a prospective cohort study. Lancet Psychiatry 2, 702–709 (2015).

    Article  PubMed  Google Scholar 

  4. Chang, Z., Lichtenstein, P., D’Onofrio, B. M., Sjolander, A. & Larsson, H. Serious transport accidents in adults with attention-deficit/hyperactivity disorder and the effect of medication: a population-based study. JAMA Psychiatry 71, 319–325 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Babinski, D. E., Neely, K. A., Ba, D. M. & Liu, G. Depression and suicidal behavior in young adult men and women with ADHD: evidence from claims data. J. Clin. Psychiatry 81, 19m13130 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Capusan, A. J., Bendtsen, P., Marteinsdottir, I. & Larsson, H. Comorbidity of adult ADHD and its subtypes with substance use disorder in a large population-based epidemiological study. J. Atten. Disord. 23, 1416–1426 (2019).

    Article  PubMed  Google Scholar 

  7. Boomsma, D. I., van Beijsterveldt, T., Odintsova, V. V., Neale, M. C. & Dolan, C. V. Genetically informed regression analysis: application to aggression prediction by inattention and hyperactivity in children and adults. Behav. Genet. 51, 250–263 (2021).

    Article  PubMed  Google Scholar 

  8. Dalsgaard, S., Ostergaard, S. D., Leckman, J. F., Mortensen, P. B. & Pedersen, M. G. Mortality in children, adolescents, and adults with attention deficit hyperactivity disorder: a nationwide cohort study. Lancet 385, 2190–2196 (2015).

    Article  PubMed  Google Scholar 

  9. Jangmo, A. et al. Attention-deficit/hyperactivity disorder and occupational outcomes: the role of educational attainment, comorbid developmental disorders, and intellectual disability. PLoS ONE 16, e0247724 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao, X. et al. Family burden of raising a child with ADHD. J. Abnorm. Child Psychol. 47, 1327–1338 (2019).

    Article  PubMed  Google Scholar 

  11. Le, H. H. et al. Economic impact of childhood/adolescent ADHD in a European setting: the Netherlands as a reference case. Eur. Child Adolesc. Psychiatry 23, 587–598 (2014).

    Article  PubMed  Google Scholar 

  12. Libutzki, B. et al. Direct medical costs of ADHD and its comorbid conditions on basis of a claims data analysis. Eur. Psychiatry 58, 38–44 (2019).

    Article  PubMed  Google Scholar 

  13. Faraone, S. V. & Larsson, H. Genetics of attention deficit hyperactivity disorder. Mol. Psychiatry 24, 562–575 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Pedersen, C. B. et al. The iPSYCH2012 case-cohort sample: new directions for unravelling genetic and environmental architectures of severe mental disorders. Mol. Psychiatry 23, 6–14 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Mattheisen, M. et al. Identification of shared and differentiating genetic architecture for autism spectrum disorder, attention-deficit hyperactivity disorder and case subgroups. Nat. Genet. 54, 1470–1478 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Satterstrom, F. K. et al. Autism spectrum disorder and attention deficit hyperactivity disorder have a similar burden of rare protein-truncating variants. Nat. Neurosci. 22, 1961–1965 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mullins, N. et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat. Genet. 53, 817–829 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343–352 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pardinas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381–389 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Trzaskowski, M. et al. Quantifying between-cohort and between-sex genetic heterogeneity in major depressive disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 180, 439–447 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Koopmans, F. et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 103, 217–234.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xie, Z. et al. Gene set knowledge discovery with enrichr. Curr. Protoc. 1, e90 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhang, W. et al. Integrative transcriptome imputation reveals tissue-specific and shared biological mechanisms mediating susceptibility to complex traits. Nat. Commun. 10, 3834 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang, D. et al. Comprehensive functional genomic resource and integrative model for the human brain. Science 362, eaat8464 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Meuleman, W. et al. Index and biological spectrum of human DNase I hypersensitive sites. Nature 584, 244–251 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Corces, M. R. et al. Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases. Nat. Genet. 52, 1158–1168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Watanabe, K., Umicevic Mirkov, M., de Leeuw, C. A., van den Heuvel, M. P. & Posthuma, D. Genetic mapping of cell type specificity for complex traits. Nat. Commun. 10, 3222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. La Manno, G. et al. Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 167, 566–580.e19 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272–279 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Frei, O. et al. Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation. Nat. Commun. 10, 2417 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Franke, B. et al. Live fast, die young? A review on the developmental trajectories of ADHD across the lifespan. Eur. Neuropsychopharmacol. 28, 1059–1088 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Satterthwaite, T. D. et al. Neuroimaging of the Philadelphia Neurodevelopmental Cohort. Neuroimage 86, 544–553 (2014).

    Article  PubMed  Google Scholar 

  39. Calkins, M. E. et al. The Philadelphia Neurodevelopmental Cohort: constructing a deep phenotyping collaborative. J. Child Psychol. Psychiatry 56, 1356–1369 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gur, R. C. et al. Age group and sex differences in performance on a computerized neurocognitive battery in children age 8-21. Neuropsychology 26, 251–265 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wilkinson, G. S. & Robertson, G. J. Wide Range Achievement Test (WRAT4) (Psychological Assessment Resources, 2006).

    Google Scholar 

  42. Uffelmann, E. et al. Genome-wide association studies. Nat. Rev. Methods Prim. 1, 59 (2021).

    Article  CAS  Google Scholar 

  43. Bataillon, T. et al. The effective size of the Icelandic population and the prospects for LD mapping: inference from unphased microsatellite markers. Eur. J. Hum. Genet. 14, 1044–1053 (2006).

    Article  CAS  Google Scholar 

  44. Gazal, S. et al. Linkage disequilibrium-dependent architecture of human complex traits shows action of negative selection. Nat. Genet. 49, 1421–1427 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hindley, G. et al. The shared genetic basis of mood instability and psychiatric disorders: a cross-trait genome-wide association analysis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 189, 207–218 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Plana-Ripoll, O. et al. Exploring comorbidity within mental disorders among a Danish national population. JAMA Psychiatry 76, 259–270 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zablotsky, B., Bramlett, M. D. & Blumberg, S. J. The co-occurrence of autism spectrum disorder in children with ADHD. J. Atten. Disord. 24, 94–103 (2020).

    Article  PubMed  Google Scholar 

  48. Jensen, C. M. & Steinhausen, H. C. Comorbid mental disorders in children and adolescents with attention-deficit/hyperactivity disorder in a large nationwide study. Atten. Defic. Hyperact. Disord. 7, 27–38 (2015).

    Article  PubMed  Google Scholar 

  49. Chen, Q. et al. Common psychiatric and metabolic comorbidity of adult attention-deficit/hyperactivity disorder: a population-based cross-sectional study. PLoS ONE 13, e0204516 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cross-Disorder Group of the Psychiatric Genomics Consortium. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell 179, 1469–1482.e11 (2019).

    Article  PubMed Central  Google Scholar 

  51. Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Controls 19, 716–723 (1974).

    Article  Google Scholar 

  53. Yao, X. et al. Integrative analysis of genome-wide association studies identifies novel loci associated with neuropsychiatric disorders. Transl. Psychiatry 11, 69 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Johnson, E. C. et al. A large-scale genome-wide association study meta-analysis of cannabis use disorder. Lancet Psychiatry 7, 1032–1045 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Araujo, D. J. et al. FoxP1 orchestration of ASD-relevant signaling pathways in the striatum. Genes Dev. 29, 2081–2096 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fong, W. L., Kuo, H. Y., Wu, H. L., Chen, S. Y. & Liu, F. C. Differential and overlapping pattern of Foxp1 and Foxp2 expression in the striatum of adult mouse brain. Neuroscience 388, 214–223 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Sollis, E. et al. Equivalent missense variant in the FOXP2 and FOXP1 transcription factors causes distinct neurodevelopmental disorders. Hum. Mutat. 38, 1542–1554 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Mostafavi, H., Spence, J. P., Naqvi, S. & Pritchard, J. K. Limited overlap of eQTLs and GWAS hits due to systematic differences in discovery. Preprint at bioRxiv https://doi.org/10.1101/2022.05.07.491045 (2022).

  60. Satterstrom, F. K. et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180, 568–584.e23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Singh, T. et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 604, 509–516 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sazonovs, A. et al. Large-scale sequencing identifies multiple genes and rare variants associated with Crohn’s disease susceptibility. Nat. Genet. 54, 1275–1283 (2021).

    Article  Google Scholar 

  63. Bahmani, Z. et al. Prefrontal contributions to attention and working memory. Curr. Top. Behav. Neurosci. 41, 129–153 (2019).

    Article  PubMed  Google Scholar 

  64. Sonne, J., Reddy, V. & Beato, M. R. Substantia nigra. in StatPearls (StatPearls Publishing, 2021).

    Google Scholar 

  65. Morales, M. & Margolis, E. B. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat. Rev. Neurosci. 18, 73–85 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Chang, S., Yang, L., Wang, Y. & Faraone, S. V. Shared polygenic risk for ADHD, executive dysfunction and other psychiatric disorders. Transl. Psychiatry 10, 182 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Nigg, J. T. et al. Working memory and vigilance as multivariate endophenotypes related to common genetic risk for attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 57, 175–182 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Aguilar-Lacasana, S. et al. Polygenic risk for ADHD and ASD and their relation with cognitive measures in school children. Psychol. Med. 52, 1356–1364 (2022).

    Article  PubMed  Google Scholar 

  69. Martin, J., Hamshere, M. L., Stergiakouli, E., O’Donovan, M. C. & Thapar, A. Neurocognitive abilities in the general population and composite genetic risk scores for attention-deficit hyperactivity disorder. J. Child Psychol. Psychiatry 56, 648–656 (2015).

    Article  PubMed  Google Scholar 

  70. Bybjerg-Grauholm, J. et al. The iPSYCH2015 case-cohort sample: updated directions for unravelling genetic and environmental architectures of severe mental disorders. Preprint at medRxiv https://doi.org/10.1101/2020.11.30.20237768 (2020).

  71. Mors, O., Perto, G. P. & Mortensen, P. B. The Danish psychiatric central research register. Scand. J. Public Health 39, 54–57 (2011).

    Article  PubMed  Google Scholar 

  72. Lynge, E., Sandegaard, J. L. & Rebolj, M. The Danish national patient register. Scand. J. Public Health 39, 30–33 (2011).

    Article  PubMed  Google Scholar 

  73. Price, A. L. et al. The impact of divergence time on the nature of population structure: an example from Iceland. PLoS Genet. 5, e1000505 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Greenbaum, J. & Deng, H. W. A statistical approach to fine mapping for the identification of potential causal variants related to bone mineral density. J. Bone Miner. Res. 32, 1651–1658 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Chen, W. et al. Fine mapping causal variants with an approximate Bayesian method using marginal test statistics. Genetics 200, 719–736 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wang, J. et al. CAUSALdb: a database for disease/trait causal variants identified using summary statistics of genome-wide association studies. Nucleic Acids Res. 48, D807–D816 (2020).

    CAS  PubMed  Google Scholar 

  79. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362, eaat8127 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

  84. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237–244 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in approximately 700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Okbay, A. et al. Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nat. Genet. 54, 437–449 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mills, M. C. et al. Identification of 371 genetic variants for age at first sex and birth linked to externalising behaviour. Nat. Hum. Behav. 5, 1717–1730 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Watanabe, K. et al. Genome-wide meta-analysis of insomnia prioritizes genes associated with metabolic and psychiatric pathways. Nat. Genet. 54, 1125–1132 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Als, T. D. et al. Identification of 64 new risk loci for major depression, refinement of the genetic architecture and risk prediction of recurrence and comorbidities. Preprint at medRxiv https://doi.org/10.1101/2022.08.24.22279149 (2022).

  92. Ge, T., Chen, C. Y., Ni, Y., Feng, Y. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank additional members of the ADHD working group of the PGC who are not named as coauthors under the working group banner for their contributions. We would like to thank the employees and research participants of 23andMe for making this work possible. D.D. was supported by the Novo Nordisk Foundation (NNF20OC0065561), the Lundbeck Foundation (R344-2020-1060) and the European Union’s Horizon 2020 research and innovation program under grant agreement no. 965381 (TIMESPAN). The iPSYCH team was supported by grants from the Lundbeck Foundation (R102-A9118, R155-2014-1724 and R248-2017-2003), National Institutes of Health (NIH)/National Institute of Mental Health (NIMH) (1U01MH109514-01 and 1R01MH124851-01 to A.D.B.) and the Universities and University Hospitals of Aarhus and Copenhagen. The Danish National Biobank resource was supported by the Novo Nordisk Foundation. High-performance computer capacity for handling and statistical analysis of iPSYCH data on the GenomeDK HPC facility was provided by the Center for Genomics and Personalized Medicine and the Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark (grant to A.D.B.). Research reported in this publication was supported by the NIMH of the NIH under award number R01MH124851. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. B.F. was also supported by funding from the European Community’s Horizon 2020 Programme (H2020/2014 – 2020) under grant agreements no. 728018 (Eat2beNICE) and no. 847879 (PRIME). B.F. also received relevant funding from the Netherlands Organization for Scientific Research for the Dutch National Science Agenda NeurolabNL project (grant 400-17-602). S.E.M. was funded by National Health and Medical Research Council grants APP1172917, APP1158125 and APP1103623. This work was supported by the Instituto de Salud Carlos III (PI19/01224, PI20/0004); by the Pla Estratègic de Recerca i Innovació en Salut, Generalitat de Catalunya (METAL-Cat; SLT006/17/287); by the Agència de Gestió d’Ajuts Universitaris i de Recerca AGAUR, Generalitat de Catalunya (2017SGR1461), Ministry of Science, Innovation and Universities (IJC2018-035346-I to M.S.A.); by the European Regional Development Fund and by ‘la Marató de TV3’ (092330/31) and the European College of Neuropsychopharmacology Network ‘ADHD across the Lifespan’ (https://www.ecnp.eu/researchinnovation/ECNP-networks/List-ECNP-Networks/). T.Z. was funded by NIH, grant no. R37MH107649-07S1 and by Research Council of Norway, NRC, Grant No. 288083. This study was also supported by the NIH, Bethesda, MD, under award numbers T32MH087004 (to K.T.), K08MH122911 (to G.V.), R01MH125246 (to P.R.) and U01MH116442 (to P.R.).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

D.D., G.B.W., G.A., R.W., K.T., L.F., G.V., J.B., B.Z., W.Z., J.D., S.H.M. and T.T.N. performed the analysis. D.D., G.B.W., J.G., T.D.A., J.D., F.K.S., J.B.-G., M.B.-H., O.O.G., G.B., K.D., G.S.H., ADHD Working Group of the PGC, iPSYCH-Broad Consortium, E.A., G.E.H., M.N., O.M., D.M.H., P.B.M., M.J.D., H.S., T.W., B.M.N., K.S. and A.D.B. performed sample and/or data provision and processing. D.D., G.B.W., K.T., G.A., G.V., J.B., H.S. and A.D.B. wrote the manuscript. D.D., G.B.W., G.A., R.W., K.T., G.V., J.B., S.D., J.M., M.R., F.K.S., D.I.B., M.S.A., N.R.M., D.H., S.E.M., T.Z., V.M.R., S.V.F., H.S., P.R., B.F., B.M.N., K.S. and A.D.B. performed core revision of the manuscript. D.D. and A.D.B. provided study direction. D.D., G.B.W., H.S., P.R., B.F., T.W., B.M.N., K.S. and A.D.B. supervised the study. All authors contributed to critical revision of the manuscript.

Corresponding authors

Correspondence to Ditte Demontis or Anders D. Børglum.

Ethics declarations

Competing interests

B.M.N. currently serves as a member of the scientific advisory board at Deep Genomics and Neumora (previously RBNC) and as a consultant for Camp4 Therapeutics, Takeda Pharmaceutical and Biogen. All deCODE-affiliated authors are employees of deCODE/Amgen.

Peer review

Peer review information

Nature Genetics thanks Andrew McQuillin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note and Figs. 1–14.

Reporting Summary

Peer Review File

Supplementary Data 1

Regional association plots.

Supplementary Data 2

Forest plots.

Supplementary Tables

Supplementary Tables 1–20.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demontis, D., Walters, G.B., Athanasiadis, G. et al. Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains. Nat Genet 55, 198–208 (2023). https://doi.org/10.1038/s41588-022-01285-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-022-01285-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing