Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Joint-on-chip platforms: entering a new era of in vitro models for arthritis

Abstract

Arthritis affects millions of people worldwide. With only a few disease-modifying drugs available for treatment of rheumatoid arthritis and none for osteoarthritis, a clear need exists for new treatment options. Current disease models used for drug screening and development suffer from several disadvantages and, most importantly, do not accurately emulate all facets of human joint diseases. A humanized joint-on-chip (JoC) model or platform could revolutionize research and drug development in rheumatic diseases. A JoC model is a multi-organ-on-chip platform that incorporates a range of engineered features to emulate essential aspects and functions of the human joint and faithfully recapitulates the joint’s physiological responses. In this Review, we propose an architecture for such a JoC platform, discuss the status of the engineering of individual joint tissues and the efforts to combine them in a functional JoC model and identify unresolved issues and challenges in constructing an accurate, physiologically relevant system. The goal is to ultimately obtain a reliable and ready-to-use humanized model of the joint for studying the pathophysiology of rheumatic diseases and screening drugs for treatment of these conditions.

Key points

  • Current in vitro and in vivo models only partly recapitulate the complexity of human arthritic diseases and consequently lack translational power in the development of new disease-modifying treatments.

  • Engineering a miniaturized version of the human joint as a joint-on-chip platform that faithfully emulates key aspects of a healthy joint and in which disease-specific triggers can be introduced could substantially advance research into arthritic diseases.

  • The minimal functional joint-on-chip requires an osteochondral unit and a synovial membrane unit that emulate the composition of the extracellular matrix and appropriate cell types in the respective tissues and that are connected to each other using microfluidic coupling.

  • The minimal joint-on-chip can be extended with additional tissue units, such as those emulating the meniscus, ligaments and Hoffa’s fat pad; inter-organ communication could be achieved by connecting the different tissue units to a motherboard with integrated sensors to enable real-time measurements.

  • Although promising and potentially revolutionary, multiple challenges must still be overcome to produce a reliable joint-on-chip model that could be used in arthritis research and drug development programmes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tissue units for establishing a joint-on-chip system.
Fig. 2: Preparation and organization of osteochondral and synovial membrane units of the joint-on-chip platform.
Fig. 3: Using organ-on-chip models to mimic pathogenetic features of rheumatoid arthritis.
Fig. 4: Architecture of a proposed joint-on-chip platform.

Similar content being viewed by others

References

  1. McDonough, C. M. & Jette, A. M. The contribution of osteoarthritis to functional limitations and disability. Clin. Geriatr. Med. 26, 387–399 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Guo, Q. et al. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 6, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen, D. et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res. 5, 16044 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Onishi, K. et al. Osteoarthritis: a critical review. Crit. Rev. Phys. Rehabil. Med. 24, 251–264 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Aletaha, D. & Smolen, J. S. Diagnosis and management of rheumatoid arthritis: a review. JAMA 320, 1360–1372 (2018).

    Article  PubMed  Google Scholar 

  6. Ghouri, A. & Conaghan, P. G. Update on novel pharmacological therapies for osteoarthritis. Ther. Adv. Musculoskelet. Dis. 11, 1759720–19864492 (2019).

    Article  Google Scholar 

  7. Low, L. A., Mummery, C., Berridge, B. R., Austin, C. P. & Tagle, D. A. Organs-on-chips: into the next decade. Nat. Rev. Drug Discov. 20, 345–361 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Jensen, C. & Teng, Y. Is it time to start transitioning from 2D to 3D cell culture? Front. Mol. Biosci. 7, 33 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kapalczynska, M. et al. 2D and 3D cell cultures — a comparison of different types of cancer cell cultures. Arch. Med. Sci. 14, 910–919 (2018).

    PubMed  Google Scholar 

  10. Duval, K. et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology 32, 266–277 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huh, D., Hamilton, G. A. & Ingber, D. E. From 3D cell culture to organs-on-chips. Trends Cell Biol. 21, 745–754 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Charlier, E. et al. Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem. Pharmacol. 165, 49–65 (2019).

    Article  PubMed  Google Scholar 

  13. Bessis, N., Decker, P., Assier, E., Semerano, L. & Boissier, M. C. Arthritis models: usefulness and interpretation. Semin. Immunopathol. 39, 469–486 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Malfait, A. M. & Little, C. B. On the predictive utility of animal models of osteoarthritis. Arthritis Res. Ther. 17, 225 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kuyinu, E. L., Narayanan, G., Nair, L. S. & Laurencin, C. T. Animal models of osteoarthritis: classification, update, and measurement of outcomes. J. Orthop. Surg. Res. 11, 19 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dolzani, P. et al. Ex vivo physiological compression of human osteoarthritis cartilage modulates cellular and matrix components. PLoS ONE 14, e0222947 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kleuskens, M. W. A., van Donkelaar, C. C., Kock, L. M., Janssen, R. P. A. & Ito, K. An ex vivo human osteochondral culture model. J. Orthop. Res. 39, 871–879 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Cope, P. J., Ourradi, K., Li, Y. & Sharif, M. Models of osteoarthritis: the good, the bad and the promising. Osteoarthritis Cartilage 27, 230–239 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sophia Fox, A. J., Bedi, A. & Rodeo, S. A. The basic science of articular cartilage: structure, composition, and function. Sports Health 1, 461–468 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Burr, D. B. Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis. Osteoarthritis Cartilage 12, S20–30 (2004).

    Article  PubMed  Google Scholar 

  21. Oegema, T. R. Jr, Carpenter, R. J., Hofmeister, F. & Thompson, R. C. Jr. The interaction of the zone of calcified cartilage and subchondral bone in osteoarthritis. Microsc. Res. Tech. 37, 324–332 (1997).

    Article  PubMed  Google Scholar 

  22. Bonewald, L. F. The amazing osteocyte. J. Bone Min. Res. 26, 229–238 (2011).

    Article  CAS  Google Scholar 

  23. Feng, X. & Teitelbaum, S. L. Osteoclasts: new insights. Bone Res. 1, 11–26 (2013).

    Article  PubMed  Google Scholar 

  24. Firestein, G. S. Evolving concepts of rheumatoid arthritis. Nature 423, 356–361 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Simkin, P. A. Physiology of normal and abnormal synovium. Semin. Arthritis Rheum. 21, 179–183 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Kurowska-Stolarska, M. & Alivernini, S. Synovial tissue macrophages: friend or foe? RMD Open 3, e000527 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Brindle, T., Nyland, J. & Johnson, D. L. The meniscus: review of basic principles with application to surgery and rehabilitation. J. Athl. Train. 36, 160–169 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lieben, L. Characterization of the infrapatellar fat pad. Nat. Rev. Rheumatol. 13, 571–571 (2017).

    Article  PubMed  Google Scholar 

  29. Labusca, L. & Zugun-Eloae, F. The unexplored role of intra-articular adipose tissue in the homeostasis and pathology of articular joints. Front. Vet. Sci. 5, 35 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Zheng, F. et al. Organ-on-a-chip systems: microengineering to biomimic living systems. Small 12, 2253–2282 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Bhise, N. S. et al. Organ-on-a-chip platforms for studying drug delivery systems. J. Control. Rel. 190, 82–93 (2014).

    Article  CAS  Google Scholar 

  33. Kimura, H., Sakai, Y. & Fujii, T. Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metab. Pharmacokinet. 33, 43–48 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Wilmer, M. J. et al. Kidney-on-a-chip technology for drug-induced nephrotoxicity screening. Trends Biotechnol. 34, 156–170 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Kaarj, K. & Yoon, J. Y. Methods of delivering mechanical stimuli to organ-on-a-chip. Micromachines 10, 700 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Thompson, C. L., Fu, S., Knight, M. M. & Thorpe, S. D. Mechanical stimulation: a crucial element of organ-on-chip models. Front. Bioeng. Biotechnol. 8, 602646 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wu, Q. et al. Organ-on-a-chip: recent breakthroughs and future prospects. Biomed. Eng. Online 19, 9 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Doryab, A., Amoabediny, G. & Salehi-Najafabadi, A. Advances in pulmonary therapy and drug development: lung tissue engineering to lung-on-a-chip. Biotechnol. Adv. 34, 588–596 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Shrestha, J. et al. Lung-on-a-chip: the future of respiratory disease models and pharmacological studies. Crit. Rev. Biotechnol. 40, 213–230 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Moradi, E., Jalili-Firoozinezhad, S. & Solati-Hashjin, M. Microfluidic organ-on-a-chip models of human liver tissue. Acta Biomater. 116, 67–83 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Kim, J. et al. Three-dimensional human liver-chip emulating premetastatic niche formation by breast cancer-derived extracellular vesicles. ACS Nano 14, 14971–14988 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Jellali, R. et al. Long-term human primary hepatocyte cultures in a microfluidic liver biochip show maintenance of mRNA levels and higher drug metabolism compared with Petri cultures. Biopharm. Drug Dispos. 37, 264–275 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Lee, J. & Kim, S. Kidney-on-a-chip: a new technology for predicting drug efficacy, interactions, and drug-induced nephrotoxicity. Curr. Drug Metab. 19, 577–583 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Ashammakhi, N., Wesseling-Perry, K., Hasan, A., Elkhammas, E. & Zhang, Y. S. Kidney-on-a-chip: untapped opportunities. Kidney Int. 94, 1073–1086 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bein, A. et al. Microfluidic organ-on-a-chip models of human intestine. Cell Mol. Gastroenterol. Hepatol. 5, 659–668 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Verhulsel, M. et al. Developing an advanced gut on chip model enabling the study of epithelial cell/fibroblast interactions. Lab. Chip 21, 365–377 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, Y. S. et al. From cardiac tissue engineering to heart-on-a-chip: beating challenges. Biomed. Mater. 10, 034006 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ribas, J. et al. Cardiovascular organ-on-a-chip platforms for drug discovery and development. Appl. Vitr. Toxicol. 2, 82–96 (2016).

    Article  Google Scholar 

  49. Ferraz, M. A. M. M. et al. An oviduct-on-a-chip provides an enhanced in vitro environment for zygote genome reprogramming. Nat. Commun. 9, 4934 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kim, S., Kim, W., Lim, S. & Jeon, J. S. Vasculature-on-a-chip for in vitro disease models. Bioengineering 4, 8 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Moses, S. R., Adorno, J. J., Palmer, A. F. & Song, J. W. Vessel-on-a-chip models for studying microvascular physiology, transport, and function in vitro. Am. J. Physiol. Cell Physiol. 320, C92–C105 (2021).

    PubMed  Google Scholar 

  52. Doherty, E. L., Aw, W. Y., Hickey, A. J. & Polacheck, W. J. Microfluidic and organ-on-a-chip approaches to investigate cellular and microenvironmental contributions to cardiovascular function and pathology. Front. Bioeng. Biotechnol. 9, 624435 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Oddo, A. et al. Advances in microfluidic blood-brain barrier (BBB) models. Trends Biotechnol. 37, 1295–1314 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Virumbrales-Munoz, M. et al. Multiwell capillarity-based microfluidic device for the study of 3D tumour tissue-2D endothelium interactions and drug screening in co-culture models. Sci. Rep. 7, 11998 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Liu, X. et al. Tumor-on-a-chip: from bioinspired design to biomedical application. Microsyst. Nanoeng. 7, 50 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sontheimer-Phelps, A., Hassell, B. A. & Ingber, D. E. Modelling cancer in microfluidic human organs-on-chips. Nat. Rev. Cancer 19, 65–81 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Picollet-D’hahan, N., Zuchowska, A., Lemeunier, I. & Le Gac, S. Multiorgan-on-a-chip: a systemic approach to model and decipher inter-organ communication. Trends Biotechnol. 39, 788–810 (2021).

    Article  PubMed  Google Scholar 

  58. Sung, J. H. et al. Recent advances in body-on-a-chip systems. Anal. Chem. 91, 330–351 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Piluso, S. et al. Mimicking the articular joint with in vitro models. Trends Biotechnol. 37, 1063–1077 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Longobardi, L. et al. Synovial joints: from development to homeostasis. Curr. Osteoporos. Rep. 13, 41–51 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ikada, Y. Challenges in tissue engineering. J. R. Soc. Interface 3, 589–601 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fu, Y. et al. Engineering cartilage tissue by co-culturing of chondrocytes and mesenchymal stromal cells. Methods Mol. Biol. 2221, 53–70 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Gartland, A., Rumney, R. M., Dillon, J. P. & Gallagher, J. A. Isolation and culture of human osteoblasts. Methods Mol. Biol. 806, 337–355 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Park, D., Lim, J., Park, J. Y. & Lee, S. H. Concise review: stem cell microenvironment on a chip: current technologies for tissue engineering and stem cell biology. Stem Cell Transl. Med. 4, 1352–1368 (2015).

    Article  CAS  Google Scholar 

  65. Pittenger, M. F. et al. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen. Med. 4, 22 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Augello, A. & De Bari, C. The regulation of differentiation in mesenchymal stem cells. Hum. Gene Ther. 21, 1226–1238 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. George, J., Kuboki, Y. & Miyata, T. Differentiation of mesenchymal stem cells into osteoblasts on honeycomb collagen scaffolds. Biotechnol. Bioeng. 95, 404–411 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Chen, Q. et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ. 23, 1128–1139 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Somoza, R. A., Welter, J. F., Correa, D. & Caplan, A. I. Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng. Part B Rev. 20, 596–608 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Karagiannis, P. et al. Induced pluripotent stem cells and their use in human models of disease and development. Physiol. Rev. 99, 79–114 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Guzzo, R. M. & Drissi, H. Differentiation of human induced pluripotent stem cells to chondrocytes. Methods Mol. Biol. 1340, 79–95 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Jeon, O. H. et al. Human iPSC-derived osteoblasts and osteoclasts together promote bone regeneration in 3D biomaterials. Sci. Rep. 6, 26761 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Williams, I. M. & Wu, J. C. Generation of endothelial cells from human pluripotent stem cells. Arterioscler. Thromb. Vasc. Biol. 39, 1317–1329 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gunhanlar, N. et al. A simplified protocol for differentiation of electrophysiologically mature neuronal networks from human induced pluripotent stem cells. Mol. Psychiatry 23, 1336–1344 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Nakajima, T. et al. Grafting of iPS cell-derived tenocytes promotes motor function recovery after Achilles tendon rupture. Nat. Commun. 12, 5012 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mukherjee, C., Hale, C. & Mukhopadhyay, S. A simple multistep protocol for differentiating human induced pluripotent stem cells into functional macrophages. Methods Mol. Biol. 1784, 13–28 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Doss, M. X. & Sachinidis, A. Current challenges of iPSC-based disease modeling and therapeutic implications. Cells 8, 403 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ben Jehuda, R., Shemer, Y. & Binah, O. Genome editing in induced pluripotent stem cells using CRISPR/Cas9. Stem Cell Rev. Rep. 14, 323–336 (2018).

    Article  PubMed  Google Scholar 

  79. Adkar, S. S. et al. Step-wise chondrogenesis of human induced pluripotent stem cells and purification via a reporter allele generated by CRISPR-Cas9 genome editing. Stem Cell 37, 65–76 (2019)

    Article  CAS  Google Scholar 

  80. Roeder, E., Matthews, B. G. & Kalajzic, I. Visual reporters for study of the osteoblast lineage. Bone 92, 189–195 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bader, D. L., Salter, D. M. & Chowdhury, T. T. Biomechanical influence of cartilage homeostasis in health and disease. Arthritis 2011, 979032 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Almqvist, K. F. et al. Treatment of cartilage defects in the knee using alginate beads containing human mature allogenic chondrocytes. Am. J. Sport. Med. 37, 1920–1929 (2009).

    Article  Google Scholar 

  83. Salati, M. A. et al. Agarose-based biomaterials: opportunities and challenges in cartilage tissue engineering. Polymers 12, 1150. (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jin, R. et al. Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering. Tissue Eng. Part A 16, 2429–2440 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Deshpande, M. C. et al. The effect of poly(ethylene glycol) molecular architecture on cellular interaction and uptake of DNA complexes. J. Control. Rel. 97, 143–156 (2004).

    Article  CAS  Google Scholar 

  86. Bougault, C., Paumier, A., Aubert-Foucher, E. & Mallein-Gerin, F. Molecular analysis of chondrocytes cultured in agarose in response to dynamic compression. BMC Biotechnol. 8, 71 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Benya, P. D. & Shaffer, J. D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30, 215–224 (1982).

    Article  CAS  PubMed  Google Scholar 

  88. Buschmann, M. D., Gluzband, Y. A., Grodzinsky, A. J., Kimura, J. H. & Hunziker, E. B. Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J. Orthop. Res. 10, 745–758 (1992).

    Article  CAS  PubMed  Google Scholar 

  89. Bougault, C. et al. Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes. PLoS ONE 7, e36964 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ashraf, S. & Walsh, D. A. Angiogenesis in osteoarthritis. Curr. Opin. Rheumatol. 20, 573–580 (2008).

    Article  PubMed  Google Scholar 

  91. Ahearne, M. Introduction to cell-hydrogel mechanosensing. Interface Focus. 4, 20130038 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wennink, J. W. H. et al. Injectable hydrogels by enzymatic co-crosslinking of dextran and hyaluronic acid tyramine conjugates. Macromol. Symp. 309–310, 213–221 (2011).

    Article  Google Scholar 

  93. Jin, R. et al. Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials 31, 3103–3113 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Occhetta, P. et al. Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model. Nat. Biomed. Eng. 3, 545–557 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Lee, D., Erickson, A., You, T., Dudley, A. T. & Ryu, S. Pneumatic microfluidic cell compression device for high-throughput study of chondrocyte mechanobiology. Lab. Chip 18, 2077–2086 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rosser, J. et al. Microfluidic nutrient gradient-based three-dimensional chondrocyte culture-on-a-chip as an in vitro equine arthritis model. Mater. Today Bio 4, 100023 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Paggi, C. A., Venzac, B., Karperien, M., Leijten, J. C. H. & Le Gac, S. Monolithic microfluidic platform for exerting gradients of compression on cell-laden hydrogels, and application to a model of the articular cartilage. Sens. Actuat. B Chem. 315, 127917 (2020).

    Article  CAS  Google Scholar 

  98. Jusoh, N., Oh, S., Kim, S., Kim, J. & Jeon, N. L. Microfluidic vascularized bone tissue model with hydroxyapatite-incorporated extracellular matrix. Lab. Chip 15, 3984–3988 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Yuan, H. et al. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc. Natl Acad. Sci. USA 107, 13614–13619 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Goncalves, A. M., Moreira, A., Weber, A., Williams, G. R. & Costa, P. F. Osteochondral tissue engineering: the potential of electrospinning and additive manufacturing. Pharmaceutics 13, 983 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mansoorifar, A., Gordon, R., Bergan, R. C. & Bertassoni, L. E. Bone-on-a-chip: microfluidic technologies and microphysiologic models of bone tissue. Adv. Funct. Mater. 14, e1702787 (2021).

    Google Scholar 

  102. Torisawa, Y. S. et al. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat. Methods 11, 663–669 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Bersini, S. et al. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35, 2454–2461 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Chou, D. B. et al. On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. Nat. Biomed. Eng. 4, 394–406 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yamada, A. et al. Transient microfluidic compartmentalization using actionable microfilaments for biochemical assays, cell culture and organs-on-chip. Lab. Chip 16, 4691–4701 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Hoemann, C. D., Lafantaisie-Favreau, C. H., Lascau-Coman, V., Chen, G. & Guzman-Morales, J. The cartilage-bone interface. J. Knee Surg. 25, 85–97 (2012).

    Article  PubMed  Google Scholar 

  107. Simkin, P. A. Consider the tidemark. J. Rheumatol. 39, 890–892 (2012).

    Article  PubMed  Google Scholar 

  108. Lin, H., Lozito, T. P., Alexander, P. G., Gottardi, R. & Tuan, R. S. Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1beta. Mol. Pharm. 11, 2203–2212 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pirosa, A. et al. An in vitro chondro-osteo-vascular triphasic model of the osteochondral complex. Biomaterials 272, 120773 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Lin, Z. et al. Osteochondral tissue chip derived from iPSCs: modeling OA pathologies and testing drugs. Front. Bioeng. Biotechnol. 7, 411 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Moraes, C., Mehta, G., Lesher-Perez, S. C. & Takayama, S. Organs-on-a-chip: a focus on compartmentalized microdevices. Ann. Biomed. Eng. 40, 1211–1227 (2012).

    Article  PubMed  Google Scholar 

  112. Rothbauer, M. et al. Monitoring tissue-level remodelling during inflammatory arthritis using a three-dimensional synovium-on-a-chip with non-invasive light scattering biosensing. Lab. Chip 20, 1461–1471 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Ma, H. P. et al. A microfluidic chip-based co-culture of fibroblast-like synoviocytes with osteoblasts and osteoclasts to test bone erosion and drug evaluation. R. Soc. Open Sci. 5, 180528 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kim, H. J., Huh, D., Hamilton, G. & Ingber, D. E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab. Chip 12, 2165–2174 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Sinha, R. et al. Endothelial cell alignment as a result of anisotropic strain and flow induced shear stress combinations. Sci. Rep. 6, 29510 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Petersen, W. & Tillmann, B. Structure and vascularization of the cruciate ligaments of the human knee joint. Anat. Embryol. 200, 325–334 (1999).

    Article  CAS  Google Scholar 

  118. Lee, P., Lin, R., Moon, J. & Lee, L. P. Microfluidic alignment of collagen fibers for in vitro cell culture. Biomed. Microdevices 8, 35–41 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Phan, D. T. T. et al. A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab. Chip 17, 511–520 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hsu, Y. H., Moya, M. L., Hughes, C. C. W., George, S. C. & Lee, A. P. A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab. Chip 13, 2990–2998 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yang, F. et al. A 3D human adipose tissue model within a microfluidic device. Lab. Chip 21, 435–446 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Clockaerts, S. et al. The infrapatellar fat pad should be considered as an active osteoarthritic joint tissue: a narrative review. Osteoarthritis Cartilage 18, 876–882 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Fontanella, C. G. et al. Biomechanical behavior of Hoffa’s fat pad in healthy and osteoarthritic conditions: histological and mechanical investigations. Australas. Phys. Eng. Sci. Med. 41, 657–667 (2018).

    Article  PubMed  Google Scholar 

  124. Kongsuphol, P. et al. In vitro micro-physiological model of the inflamed human adipose tissue for immune-metabolic analysis in type II diabetes. Sci. Rep. 9, 4887 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Liu, Y. et al. Adipose-on-a-chip: a dynamic microphysiological in vitro model of the human adipose for immune-metabolic analysis in type II diabetes. Lab. Chip 19, 241–253 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Loskill, P., Marcus, S. G., Mathur, A., Reese, W. M. & Healy, K. μOrgano: a Lego®-like plug & play system for modular multi-organ-chips. PLoS ONE 10, e0139587 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Zhang, Y. S. et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc. Natl Acad. Sci. USA 114, E2293–E2302 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Ong, L. J. Y. et al. Self-aligning Tetris-Like (TILE) modular microfluidic platform for mimicking multi-organ interactions. Lab. Chip 19, 2178–2191 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Esch, M. B., Ueno, H., Applegate, D. R. & Shuler, M. L. Modular, pumpless body-on-a-chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue. Lab. Chip 16, 2719–2729 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Materne, E. M. et al. A multi-organ chip co-culture of neurospheres and liver equivalents for long-term substance testing. J. Biotechnol. 205, 36–46 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Maschmeyer, I. et al. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab. Chip 15, 2688–2699 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Bortel, E. L., Charbonnier, B. & Heuberger, R. Development of a synthetic synovial fluid for tribological testing. Lubricants 3, 664–686 (2015).

    Article  Google Scholar 

  133. Park, D., Lee, J., Chung, J. J., Jung, Y. & Kim, S. H. Integrating organs-on-chips: multiplexing, scaling, vascularization, and innervation. Trends Biotechnol. 38, 99–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Moraes, C. et al. On being the right size: scaling effects in designing a human-on-a-chip. Integr. Biol. 5, 1149–1161 (2013).

    Article  CAS  Google Scholar 

  135. Harink, B., Le Gac, S., Barata, D., van Blitterswijk, C. & Habibovic, P. Microtiter plate-sized standalone chip holder for microenvironmental physiological control in gas-impermeable microfluidic devices. Lab. Chip 14, 1816–1820 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Palacio-Castaneda, V., Kooijman, L., Venzac, B., Verdurmen, W. P. R. & Le Gac, S. Metabolic switching of tumor cells under hypoxic conditions in a tumor-on-a-chip model. Micromachines 11, 382 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Sleeboom, J. J. F., Den Toonder, J. M. J. & Sahlgren, C. M. MDA-MB-231 breast cancer cells and their CSC population migrate towards low oxygen in a microfluidic gradient device. Int. J. Mol. Sci. 19, 3047 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Wilkins, R. J., Browning, J. A. & Ellory, J. C. Surviving in a matrix: membrane transport in articular chondrocytes. J. Membr. Biol. 177, 95–108 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Hall, A. C., Horwitz, E. R. & Wilkins, R. J. The cellular physiology of articular cartilage. Exp. Physiol. 81, 535–545 (1996).

    Article  CAS  PubMed  Google Scholar 

  140. Arnett, T. R. Extracellular pH regulates bone cell function. J. Nutr. 138, 415S–418S (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Goldie, I. & Nachemson, A. Synovial pH in rheumatoid knee-joints. I. The effect of synovectomy. Acta Orthop. Scand. 40, 634–641 (1969).

    Article  CAS  PubMed  Google Scholar 

  142. Konttinen, Y. T. et al. Acidic cysteine endoproteinase cathepsin K in the degeneration of the superficial articular hyaline cartilage in osteoarthritis. Arthritis Rheum. 46, 953–960 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Scherer, H. U. & Burmester, G. R. Adaptive immunity in rheumatic diseases: bystander or pathogenic player? Best Pract. Res. Clin. Rheumatol. 25, 785–800 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Mobasheri, A. et al. Recent advances in understanding the phenotypes of osteoarthritis. F1000Res. 8, 2091 (2019).

    Article  CAS  Google Scholar 

  145. Morsink, M. A. J., Willemen, N. G. A., Leijten, J., Bansal, R. & Shin, S. R. Immune organs and immune cells on a chip: an overview of biomedical applications. Micromachines 11, 849 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Torisawa, Y. S. et al. Modeling hematopoiesis and responses to radiation countermeasures in a bone marrow-on-a-chip. Tissue Eng. Part C. Methods 22, 509–515 (2016).

    Article  PubMed  Google Scholar 

  147. Bruce, A. et al. Three-dimensional microfluidic tri-culture model of the bone marrow microenvironment for study of acute lymphoblastic leukemia. PLoS ONE 10, e0140506 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Ramadan, Q. & Ting, F. C. In vitro micro-physiological immune-competent model of the human skin. Lab. Chip 16, 1899–1908 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Ramadan, Q. et al. NutriChip: nutrition analysis meets microfluidics. Lab. Chip 13, 196–203 (2013).

    Article  CAS  PubMed  Google Scholar 

  150. Mondadori, C. et al. Recapitulating monocyte extravasation to the synovium in an organotypic microfluidic model of the articular joint. Biofabrication 13, 045001 (2021).

    Article  CAS  Google Scholar 

  151. Hamza, B. & Irimia, D. Whole blood human neutrophil trafficking in a microfluidic model of infection and inflammation. Lab. Chip 15, 2625–2633 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Han, S. et al. A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils. Lab. Chip 12, 3861–3865 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Grässel, S. The role of peripheral nerve fibers and their neurotransmitters in cartilage and bone physiology and pathophysiology. Arthritis Res. Ther. 16, 485 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Eitner, A., Pester, J., Nietzsche, S., Hofmann, G. O. & Schaible, H. G. The innervation of synovium of human osteoarthritic joints in comparison with normal rat and sheep synovium. Osteoarthritis Cartilage 21, 1383–1391 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Gribi, S., du Bois de Dunilac, S., Ghezzi, D. & Lacour, S. P. A microfabricated nerve-on-a-chip platform for rapid assessment of neural conduction in explanted peripheral nerve fibers. Nat. Commun. 9, 4403 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Sharma, A. D. et al. Engineering a 3D functional human peripheral nerve in vitro using the Nerve-on-a-Chip platform. Sci. Rep. 9, 8921 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Park, S. E. et al. A three-dimensional in vitro model of the peripheral nervous system. NPG Asia Mater. 13, 2 (2021).

    Article  Google Scholar 

  158. Kundu, A. et al. Fabrication and characterization of 3D Printed, 3D microelectrode arrays for interfacing with a peripheral nerve-on-a-chip. ACS Biomater. Sci. Eng. 7, 3018–3029 (2021).

    Article  CAS  PubMed  Google Scholar 

  159. Marzioch, J. et al. On-chip photodynamic therapy — monitoring cell metabolism using electrochemical microsensors. Lab. Chip 18, 3353–3360 (2018).

    Article  CAS  PubMed  Google Scholar 

  160. Rivera, K. R., Yokus, M. A., Erb, P. D., Pozdin, V. A. & Daniele, M. Measuring and regulating oxygen levels in microphysiological systems: design, material, and sensor considerations. Analyst 144, 3190–3215 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bonk, S. M. et al. Design and characterization of a sensorized microfluidic cell-culture system with electro-thermal micro-pumps and sensors for cell adhesion, oxygen, and pH on a glass chip. Biosensors 5, 513–536 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kieninger, J., Weltin, A., Flamm, H. & Urban, G. A. Microsensor systems for cell metabolism — from 2D culture to organ-on-chip. Lab. Chip 18, 1274–1291 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Grist, S. M., Chrostowski, L. & Cheung, K. C. Optical oxygen sensors for applications in microfluidic cell culture. Sensors 10, 9286–9316 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhu, J. et al. An integrated adipose-tissue-on-chip nanoplasmonic biosensing platform for investigating obesity-associated inflammation. Lab. Chip 18, 3550–3560 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ragab, G., Elshahaly, M. & Bardin, T. Gout: an old disease in new perspective — a review. J. Adv. Res. 8, 495–511 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Quiros-Solano, W. F. et al. Microfabricated tuneable and transferable porous PDMS membranes for organs-on-chips. Sci. Rep. 8, 13524 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Becker, H. Mind the gap! Lab. Chip 10, 271–273 (2010).

    Article  CAS  PubMed  Google Scholar 

  168. Berthier, E., Young, E. W. & Beebe, D. Engineers are from PDMS-land, biologists are from polystyrenia. Lab. Chip 12, 1224–1237 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. van Meer, B. J. et al. Small molecule absorption by PDMS in the context of drug response bioassays. Biochem. Biophys. Res. Commun. 482, 323–328 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Ramadan, Q. & Zourob, M. Organ-on-a-chip engineering: toward bridging the gap between lab and industry. Biomicrofluidics 14, 041501 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Allwardt, V. et al. Translational roadmap for the organs-on-a-chip industry toward broad adoption. Bioengineering 7, 112 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ma, C., Peng, Y., Li, H. & Chen, W. Organ-on-a-chip: a new paradigm for drug development. Trends Pharmacol. Sci. 42, 119–133 (2021).

    Article  PubMed  Google Scholar 

  173. Zhou, T. et al. Generation of induced pluripotent stem cells from urine. J. Am. Soc. Nephrol. 22, 1221–1228 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Lozito, T. P. et al. Three-dimensional osteochondral microtissue to model pathogenesis of osteoarthritis. Stem Cell Res. Ther. 4, S6 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Dutch Arthritis Association (ReumaNetherlands grant LLP-25).

Author information

Authors and Affiliations

Authors

Contributions

C.A.P., S.L.G. and M.K. researched data for the article and contributed substantially to discussion of the content. All authors wrote the article, reviewed and/or edited the manuscript before submission and agree on the content of the submitted article.

Corresponding authors

Correspondence to Séverine Le Gac or Marcel Karperien.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks M. Goldring, A. Mainardi, who co-reviewed with I. Martin, and P. Ertl, for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Mechanical actuation module

The part of a microfluidic device that enables repeated (cyclic) application of mechanical loading on the cell-laden 3D hydrogel.

Microfluidic device

Module or system used to precisely control and manipulate fluids in micrometre-sized structures. Microfluidics is at the crossroad of different fields such as engineering, physics, chemistry, nano- and micro-biotechnology.

Uniaxial loading

Mechanical stimulation of the joint in one direction only (for example, compression or stretching). Referred to as uniaxial mechanical actuation when a tissue (cell-laden hydrogel or 3D cell construct) is stimulated in vitro.

Microfluidic chamber

Chamber of a microfluidic device of miniaturized dimensions in the micrometre range that is typically filled with a fluid (liquid or air) or a hydrogel material supplemented with cells.

Microfluidic motherboard

Module for controlling nutrient supply to single-tissue units, which can include analytical modalities, to characterize tissue communication and integrated sensors for real-time monitoring. Individual tissue units could be connected to the motherboard, which thereby provides a standardized connection between units.

Pumping module

In organ-on-chip, a module for pressure or flow control that allows application of constant or cyclic pressure for regulating fluid flow in the nutrient compartment and mechanical actuation.

Plug-and-play solution

System that allows easy addition or removal of a single organ-on-chip unit from the overall joint-on-chip device.

Sensing units

Devices and/or modules for detecting events or changes in the physical environment, such as pressure, temperature, oxygen or biomolecules.

Microfluidic circuitry

Micrometre-sized tubing or channels connecting a series of microfluidic and/or organ-on-chip platforms with each other, and possibly incorporating devices for molecular analysis and biochemical sensing.

Peltier element

A thermoelectric component capable of a temperature shift from one side of the system to the other using electrical energy.

Electrochemical microsensors

Micromachined, micrometer-sized (10−3–10−5 m) sensing structures for detecting and quantifying specific chemical and biochemical substances in fluids, through application of a potential to induce an oxidation or reduction reaction, and recording of a current. Typically fabricated from metal materials.

Non-fouling coatings

Chemical coatings that stop the interactions of molecules in solution with surfaces to notably prevent their non-desired adsorption on the surface.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paggi, C.A., Teixeira, L.M., Le Gac, S. et al. Joint-on-chip platforms: entering a new era of in vitro models for arthritis. Nat Rev Rheumatol 18, 217–231 (2022). https://doi.org/10.1038/s41584-021-00736-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-021-00736-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research