Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

IL-17 in the immunopathogenesis of spondyloarthritis

Abstract

Spondyloarthritis (SpA) is a term that refers to a group of inflammatory diseases that includes psoriatic arthritis, axial SpA and nonradiographic axial SpA, reactive arthritis, enteropathic arthritis and undifferentiated SpA. The disease subtypes share clinical and immunological features, including joint inflammation (peripheral and axial skeleton); skin, gut and eye manifestations; and the absence of diagnostic autoantibodies (seronegative). The diseases also share genetic factors. The aetiology of SpA is still the subject of research by many groups worldwide. Evidence from genetic, experimental and clinical studies has accumulated to indicate a clear role for the IL-17 pathway in the pathogenesis of SpA. The IL-17 family consists of IL-17A, IL-17B, IL-17C, IL-17D, IL-17E and IL-17F, of which IL-17A is the best studied. IL-17A is a pro-inflammatory cytokine that also has the capacity to promote angiogenesis and osteoclastogenesis. Of the six family members, IL-17A has the strongest homology with IL-17F. In this Review, we discuss how IL-17A and IL-17F and their cellular sources might contribute to the immunopathology of SpA.

Key points

  • Genetic and animal model studies indicate that the IL-23–IL-17 axis is involved in the pathogenesis of spondyloarthritis (SpA).

  • IL-17A has been identified directly in the blood and synovial fluid of patients with SpA, with T cells representing a key source of this cytokine.

  • IL-17A and IL-17F act in synergy with other pro-inflammatory mediators to induce pro-inflammatory responses across a range of cell types.

  • IL-23–IL-17-targeted therapies have been shown to be effective in psoriatic arthritis and ankylosing spondylitis.

  • Increased understanding of the pathogenic role of the IL-23–IL-17 axis, the cellular sources of these cytokines and their molecular regulation in SpA is essential to develop novel therapeutic strategies that target this pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key discoveries in the biology of IL-17A and IL-17-producing T cells.
Fig. 2: Hypothetical depiction of how spondyloarthritis susceptibility genes might influence IL-23–IL-17-mediated immune responses.
Fig. 3: Potential synergistic activity of IL-17A and TNF in the spondyloarthritis joint.

Similar content being viewed by others

References

  1. Rouvier, E., Luciani, M. F., Mattei, M. G., Denizot, F. & Golstein, P. CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J. Immunol. 150, 5445–5456 (1993).

    PubMed  CAS  Google Scholar 

  2. Murphy, C. A. et al. Divergent pro-and anti-inflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198, 1951–1958 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Lubberts, E. The IL-23–IL-17 axis in inflammatory arthritis. Nat. Rev. Rheumatol. 11, 562 (2015).

    Article  PubMed  Google Scholar 

  4. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V. K. IL-17 and Th17 Cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    Article  PubMed  CAS  Google Scholar 

  5. Yao, Z. et al. Human IL-17: a novel cytokine derived from T cells. J. Immunol. 155, 5483–5486 (1995).

    PubMed  CAS  Google Scholar 

  6. Kao, C. Y. et al. Up-regulation of CC chemokine ligand 20 expression in human airway epithelium by IL-17 through a JAK-independent but MEK/NF-κB-dependent signaling pathway. J. Immunol. 175, 6676–6685 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. Shahrara, S. et al. IL-17-mediated monocyte migration occurs partially through CC chemokine ligand 2/monocyte chemoattractant protein-1 induction. J. Immunol. 184, 4479–4487 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Hartupee, J., Liu, C., Novotny, M., Li, X. & Hamilton, T. IL-17 enhances chemokine gene expression through mRNA stabilization. J. Immunol. 179, 4135–4141 (2007).

    Article  PubMed  CAS  Google Scholar 

  9. Schwarzenberger, P. et al. IL-17 stimulates granulopoiesis in mice: use of an alternate, novel gene therapy-derived method for in vivo evaluation of cytokines. J. Immunol. 161, 6383–6389 (1998).

    PubMed  CAS  Google Scholar 

  10. Liang, S. C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Chabaud, M. et al. Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis. Cytokine 12, 1092–1099 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. Koenders, M. I. et al. Interleukin-17 receptor deficiency results in impaired synovial expression of interleukin-1 and matrix metalloproteinases 3, 9, and 13 and prevents cartilage destruction during chronic reactivated streptococcal cell wall-induced arthritis. Arthritis Rheum. 52, 3239–3247 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. Kotake, S. et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Invest. 103, 1345–1352 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Pickens, S. R. et al. IL-17 contributes to angiogenesis in rheumatoid arthritis. J. Immunol. 184, 3233–3241 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Gullick, N. J. et al. Linking power Doppler ultrasound to the presence of Th17 cells in the rheumatoid arthritis joint. PLOS One 5, e12516 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Chang, S. H. & Dong, C. A novel heterodimeric cytokine consisting of IL-17 and IL-17F regulates inflammatory responses. Cell Res. 17, 435–440 (2007).

    Article  PubMed  CAS  Google Scholar 

  17. Yang, X. O. et al. Regulation of inflammatory responses by IL-17F. J. Exp. Med. 205, 1063–1075 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kawaguchi, M., Adachi, M., Oda, N., Kokubu, F. & Huang, S. K. IL-17 cytokine family. J. Allergy Clin. Immunol. 114, 1265–1273 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. Sorbello, V. et al. Nasal IL-17F is related to bronchial IL-17F/neutrophilia and exacerbations in stable atopic severe asthma. Allergy 70, 236–240 (2015).

    Article  PubMed  CAS  Google Scholar 

  20. Garrod, A. B. The Nature and Treatment of Rheumatic Gout or Chronic Rheumatic Arthritis of all the Joints. (Walton and Maberly, 1857).

  21. Buchanan, W. W. Rheumatoid arthritis: another new world disease? Semin. Arthritis Rheum. 23, 289–294 (1994).

    Article  PubMed  CAS  Google Scholar 

  22. Dörner, T., Egerer, K., Feist, E. & Burmester, G. R. Rheumatoid factor revisited. Curr. Opin. Rheumatol. 16, 246–253 (2004).

    Article  PubMed  Google Scholar 

  23. Brewerton, D. A. et al. Ankylosing spondylitis and HL-A 27. Lancet 1, 904–907 (1973).

    Article  PubMed  CAS  Google Scholar 

  24. Schlosstein, L., Terasaki, P. I., Bluestone, R. & Pearson, C. M. High association of an HL-A antigen, W27, with ankylosing spondylitis. N. Engl. J. Med. 288, 704–706 (1973).

    Article  PubMed  CAS  Google Scholar 

  25. Moll, J. M. H. & Wright, V. Psoriatic arthritis. Semin. Arthritis Rheum. 3, 55–78 (1973).

    Article  PubMed  CAS  Google Scholar 

  26. Taylor, W. et al. Classification criteria for psoriatic arthritis: development of new criteria from a large international study. Arthritis Rheum. 54, 2665–2673 (2006).

    Article  PubMed  Google Scholar 

  27. Rudwaleit, M. et al. The Assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann. Rheum. Dis. 70, 25–31 (2011).

    Article  PubMed  CAS  Google Scholar 

  28. Baeten, D., Breban, M., Lories, R., Schett, G. & Sieper, J. Are spondylarthritides related but distinct conditions or a single disease with a heterogeneous phenotype? Arthritis Rheum. 65, 12–20 (2013).

    Article  PubMed  Google Scholar 

  29. Lim, C. S. E., Sengupta, R. & Gaffney, K. The clinical utility of human leucocyte antigen B27 in axial spondyloarthritis. Rheumatology 57, 959–968 (2018).

    Article  PubMed  Google Scholar 

  30. Cortes, A. et al. Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1. Nat. Commun. 6, 7146 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brewerton, D. A., Caffrey, M., Nicholls, A., Walters, D. & James, D. C. HL-A 27 and arthropathies associated with ulcerative colitis and psoriasis. Lancet 1, 956–958 (1974).

    Article  PubMed  CAS  Google Scholar 

  32. Brown, M. A. et al. HLA class I associations of ankylosing spondylitis in the white population in the United Kingdom. Ann. Rheum. Dis. 55, 268–270 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Winchester, R. et al. HLA associations reveal genetic heterogeneity in psoriatic arthritis and in the psoriasis phenotype. Arthritis Rheum. 64, 1134–1144 (2012).

    Article  PubMed  CAS  Google Scholar 

  34. Haroon, M., Winchester, R., Giles, J. T., Heffernan, E. & FitzGerald, O. Certain class I HLA alleles and haplotypes implicated in susceptibility play a role in determining specific features of the psoriatic arthritis phenotype. Ann. Rheum. Dis. 75, 155–162 (2016).

    Article  PubMed  CAS  Google Scholar 

  35. Jadon, D. R. et al. Axial Disease in Psoriatic Arthritis study: defining the clinical and radiographic phenotype of psoriatic spondyloarthritis. Ann. Rheum. Dis. 76, 701–707 (2017).

    Article  PubMed  Google Scholar 

  36. Bowes, J. et al. Cross-phenotype association mapping of the MHC identifies genetic variants that differentiate psoriatic arthritis from psoriasis. Ann. Rheum. Dis. 76, 1774–1779 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Winchester, R. et al. Implications of the diversity of class I HLA associations in psoriatic arthritis. Clin. Immunol. 172, 29–33 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Fiorillo, M. T., Maragno, M., Butler, R., Dupuis, M. L. & Sorrentino, R. CD8+ T cell autoreactivity to an HLA-B27-restricted self-epitope correlates with ankylosing spondylitis. J. Clin. Invest. 106, 47–53 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Allen, R. L., O’Callaghan, C. A., McMichael, A. J. & Bowness, P. Cutting edge: HLA-B27 can form a novel β2-microglobulin-free heavy chain homodimer structure. J. Immunol. 162, 5045–5048 (1999).

    PubMed  CAS  Google Scholar 

  40. DeLay, M. L. et al. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum. 60, 2633–2643 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Colbert, R. A., DeLay, M. L., Klenk, E. I. & Layh-Schmitt, G. From HLA-B27 to spondyloarthritis: a journey through the ER. Immunol. Rev. 233, 181–202 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Bowness, P. et al. Th17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis. J. Immunol. 186, 2672–2680 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Saric, T. et al. An IFN-γ-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat. Immunol. 3, 1169–1176 (2002).

    Article  PubMed  CAS  Google Scholar 

  44. York, I. A. et al. The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8–9 residues. Nat. Immunol. 3, 1177–1184 (2002).

    Article  PubMed  CAS  Google Scholar 

  45. Wellcome Trust Case Control Consortium et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 39, 1329–1337 (2007).

    Article  CAS  Google Scholar 

  46. Woolf, E. et al. Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc. Natl Acad. Sci. USA 100, 7731–7736 (2003).

    Article  PubMed  CAS  Google Scholar 

  47. Cruz-Guilloty, F. et al. Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs. J. Exp. Med. 206, 51–59 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Shan, Q. et al. The transcription factor Runx3 guards cytotoxic CD8+ effector T cells against deviation towards follicular helper T cell lineage. Nat. Immunol. 18, 931 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Evans, D. M. et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet. 43, 761 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Tsoi, L. C. et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat. Genet. 44, 1341–1348 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Apel, M. et al. Variants in RUNX3 contribute to susceptibility to psoriatic arthritis, exhibiting further common ground with ankylosing spondylitis. Arthritis Rheum. 65, 1224–1231 (2013).

    Article  PubMed  CAS  Google Scholar 

  52. Bowes, J. et al. Dense genotyping of immune-related susceptibility loci reveals new insights into the genetics of psoriatic arthritis. Nat. Commun. 6, 6046 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Li, Z. et al. Epigenetic and gene expression analysis of ankylosing spondylitis-associated loci implicate immune cells and the gut in the disease pathogenesis. Genes Immun. 18, 135–143 (2017).

    Article  PubMed  CAS  Google Scholar 

  54. Ferreira, M. A. et al. Quantitative trait loci for CD4:CD8 lymphocyte ratio are associated with risk of type 1 diabetes and HIV-1 immune control. Am. J. Hum. Genet. 86, 88–92 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Vecellio, M. et al. The genetic association of RUNX3 with ankylosing spondylitis can be explained by allele-specific effects on IRF4 recruitment that alter gene expression. Ann. Rheumat. Diseases 75, 1534–1540 (2016).

    Article  CAS  Google Scholar 

  56. International Genetics of Ankylosing Spondylitis Consortium et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat. Genet. 45, 730 (2013).

    Article  CAS  Google Scholar 

  57. Filer, C. et al. Investigation of association of the IL12B and IL23R genes with psoriatic arthritis. Arthritis Rheum. 58, 3705–3709 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bowes, J. et al. Confirmation of TNIP1 and IL23A as susceptibility loci for psoriatic arthritis. Ann. Rheumat. Diseases 70, 1641–1644 (2011).

    Article  Google Scholar 

  59. Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Coffre, M. et al. Combinatorial control of Th17 and Th1 cell functions by genetic variations in genes associated with the interleukin-23 signaling pathway in spondyloarthritis. Arthritis Rheum. 65, 1510–1521 (2013).

    Article  PubMed  CAS  Google Scholar 

  61. McGonagle, D., Aydin, S. Z., Gul, A., Mahr, A. & Direskeneli, H. ‘MHC-I-opathy’-unified concept for spondyloarthritis and Behcet disease. Nat. Rev. Rheumatol 11, 731–740 (2015).

    Article  PubMed  CAS  Google Scholar 

  62. Qian, Y. et al. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat. Immunol. 8, 247–256 (2007).

    Article  PubMed  CAS  Google Scholar 

  63. Danoy, P. et al. Association of variants at 1q32 and STAT3 with ankylosing spondylitis suggests genetic overlap with Crohn’s disease. PLOS Genet. 6, e1001195 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Davidson, S. I. et al. Association of STAT3 and TNFRSF1A with ankylosing spondylitis in Han Chinese. Ann. Rheum. Dis. 70, 289–292 (2011).

    Article  PubMed  CAS  Google Scholar 

  65. Cenit, M. C. et al. Influence of the STAT3 genetic variants in the susceptibility to psoriatic arthritis and Behcet’s disease. Hum. Immunol. 74, 230–233 (2013).

    Article  PubMed  CAS  Google Scholar 

  66. Harris, T. J. et al. Cutting edge: an in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J. Immunol. 179, 4313–4317 (2007).

    Article  PubMed  CAS  Google Scholar 

  67. de Beaucoudrey, L. et al. Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J. Exp. Med. 205, 1543–1550 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Nair, R. P. et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-κB pathways. Nat. Genet. 41, 199–204 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Ellinghaus, D. et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat. Genet. 48, 510–518 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Garg, A. V., Ahmed, M., Vallejo, A. N., Ma, A. & Gaffen, S. L. The deubiquitinase A20 mediates feedback inhibition of interleukin-17 receptor signaling. Sci. Signal. 6, ra44 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Ippagunta, S. K. et al. Keratinocytes contribute intrinsically to psoriasis upon loss of Tnip1 function. Proc. Natl Acad. Sci. USA 113, E6162–E6171 (2016).

    Article  PubMed  CAS  Google Scholar 

  72. Billingham, M. E. J. Models of arthritis and the search for anti-arthritic drugs. Pharmacol. Ther. 21, 389–428 (1983).

    Article  PubMed  CAS  Google Scholar 

  73. Bush, K. A., Farmer, K. M., Walker, J. S. & Kirkham, B. W. Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor IgG1 Fc fusion protein. Arthritis Rheumatol. 46, 802–805 (2002).

    Article  CAS  Google Scholar 

  74. Nakae, S., Nambu, A., Sudo, K. & Iwakura, Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J. Immunol. 171, 6173–6177 (2003).

    Article  PubMed  CAS  Google Scholar 

  75. Corneth, O. B. et al. Absence of interleukin-17 receptor a signaling prevents autoimmune inflammation of the joint and leads to a Th2-like phenotype in collagen-induced arthritis. Arthritis Rheum. 66, 340–349 (2014).

    Article  CAS  Google Scholar 

  76. Lubberts, E., Koenders, M. & van den Berg, W. The role of T cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res. Ther. 7, 29–37 (2005).

    Article  PubMed  CAS  Google Scholar 

  77. Lubberts, E. et al. Overexpression of IL-17 in the knee joint of collagen type II immunized mice promotes collagen arthritis and aggravates joint destruction. Inflamm. Res. 51, 102–104 (2002).

    Article  PubMed  CAS  Google Scholar 

  78. Koenders, M. I. et al. Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1. Am J. Pathol. 167, 141–149 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Vieira-Sousa, E., van Duivenvoorde, L. M., Fonseca, J. E., Lories, R. J. & Baeten, D. L. Review: animal models as a tool to dissect pivotal pathways driving spondyloarthritis. Arthritis Rheumatol. 67, 2813–2827 (2015).

    Article  PubMed  Google Scholar 

  80. Glatigny, S. et al. Proinflammatory Th17 cells are expanded and induced by dendritic cells in spondylarthritis-prone HLA-B27-transgenic rats. Arthritis Rheum. 64, 110–120 (2012).

    Article  PubMed  CAS  Google Scholar 

  81. May, E. et al. CD8 αβ T cells are not essential to the pathogenesis of arthritis or colitis in HLA-B27 transgenic rats. J. Immunol. 170, 1099–1105 (2003).

    Article  PubMed  CAS  Google Scholar 

  82. Taurog, J. D. et al. Spondylarthritis in HLA-B27/human β2-microglobulin-transgenic rats is not prevented by lack of CD8. Arthritis Rheum. 60, 1977–1984 (2009).

    Article  PubMed  CAS  Google Scholar 

  83. Sakaguchi, N. et al. Altered thymic T cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426, 454–460 (2003).

    Article  PubMed  CAS  Google Scholar 

  84. Ruutu, M. et al. β-glucan triggers spondylarthritis and Crohn’s disease-like ileitis in SKG mice. Arthritis Rheum. 64, 2211–2222 (2012).

    Article  PubMed  CAS  Google Scholar 

  85. Benham, H. et al. Interleukin-23 mediates the intestinal response to microbial β-1,3-glucan and the development of spondyloarthritis pathology in SKG mice. Arthritis Rheumatol 66, 1755–1767 (2014).

    Article  PubMed  CAS  Google Scholar 

  86. Gillet, P. et al. Studies on type II collagen induced arthritis in rats: an experimental model of peripheral and axial ossifying enthesopathy. J. Rheumatol 16, 721–728 (1989).

    PubMed  CAS  Google Scholar 

  87. Sherlock, J. P. et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4CD8 entheseal resident T cells. Nat. Med. 18, 1069–1076 (2012).

    Article  PubMed  CAS  Google Scholar 

  88. Abe, Y. et al. Ankylosing enthesitis associated with up-regulated IFN-γ and IL-17 production in (BXSB x NZB) F1 male mice: a new mouse model. Mod. Rheumatol 19, 316–322 (2009).

    Article  PubMed  CAS  Google Scholar 

  89. Ebihara, S., Date, F., Dong, Y. & Ono, M. Interleukin-17 is a critical target for the treatment of ankylosing enthesitis and psoriasis-like dermatitis in mice. Autoimmunity 48, 259–266 (2015).

    Article  PubMed  CAS  Google Scholar 

  90. Chabaud, M. et al. Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum. 42, 963–970 (1999).

    Article  PubMed  CAS  Google Scholar 

  91. Leipe, J. et al. Role of Th17 cells in human autoimmune arthritis. Arthritis Rheum. 62, 2876–2885 (2010).

    Article  PubMed  CAS  Google Scholar 

  92. Chen, D.-Y. et al. Increasing levels of circulating Th17 cells and interleukin-17 in rheumatoid arthritis patients with an inadequate response to anti-TNF-α therapy. Arthritis Res. Ther. 13, R126 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Metawi, S., Abbas, D., Kamal, M. & Ibrahim, M. Serum and synovial fluid levels of interleukin-17 in correlation with disease activity in patients with RA. Clin. Rheumatol. 30, 1201–1207 (2011).

    Article  PubMed  Google Scholar 

  94. Gullick, N. J. et al. Enhanced and persistent levels of IL-17+CD4+ T cells and serum IL-17 in patients with early inflammatory arthritis. Clin. Exp. Immunol. 174, 292–301 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  95. Raza, K. et al. Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin. Arthritis Res. Ther. 7, 784–795 (2005).

    Article  CAS  Google Scholar 

  96. Wendling, D., Cedoz, J.-P., Racadot, E. & Dumoulin, G. Serum IL-17, BMP-7, and bone turnover markers in patients with ankylosing spondylitis. Joint Bone Spine 74, 304–305 (2007).

    Article  PubMed  CAS  Google Scholar 

  97. Romero-Sanchez, C. et al. Association between Th-17 cytokine profile and clinical features in patients with spondyloarthritis. Clin. Exp. Rheumatol. 29, 828–834 (2011).

    PubMed  CAS  Google Scholar 

  98. Chen, W.-S. et al. Association of serum interleukin-17 and interleukin-23 levels with disease activity in Chinese patients with ankylosing spondylitis. J. Chinese Med. Associ. 75, 303–308 (2012).

    Article  CAS  Google Scholar 

  99. Xueyi, L. et al. Levels of circulating Th17 cells and regulatory T cells in ankylosing spondylitis patients with an inadequate response to anti-TNF-α therapy. J. Clin. Immunol. 33, 151–161 (2013).

    Article  PubMed  CAS  Google Scholar 

  100. Singh, R., Aggarwal, A. & Misra, R. Th1/Th17 cytokine profiles in patients with reactive arthritis/undifferentiated spondyloarthropathy. J. Rheumatol 34, 2285–2290 (2007).

    PubMed  CAS  Google Scholar 

  101. Raychaudhuri, S. P., Raychaudhuri, S. K. & Genovese, M. C. IL-17 receptor and its functional significance in psoriatic arthritis. Mol. Cell. Biochem. 359, 419–429 (2012).

    Article  PubMed  CAS  Google Scholar 

  102. Ciccia, F. et al. Overexpression of interleukin-23, but not interleukin-17, as an immunologic signature of subclinical intestinal inflammation in ankylosing spondylitis. Arthritis Rheum. 60, 955–965 (2009).

    Article  PubMed  CAS  Google Scholar 

  103. Zrioual, S. et al. Genome-wide comparison between IL-17A- and IL-17F-induced effects in human rheumatoid arthritis synoviocytes. J. Immunol. 182, 3112–3120 (2009).

    Article  PubMed  CAS  Google Scholar 

  104. Jain, M. et al. Increased plasma IL-17F levels in rheumatoid arthritis patients are responsive to methotrexate, anti-TNF, and T cell costimulatory modulation. Inflammation 38, 180–186 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Sarkar, S. et al. Interleukin (IL)-17A, F and AF in inflammation: a study in collagen-induced arthritis and rheumatoid arthritis. Clin. Exp. Immunol. 177, 652–661 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. van Baarsen, L. et al. Heterogeneous expression pattern of interleukin-17A (IL-17A), IL-17F and their receptors in synovium of rheumatoid arthritis, psoriatic arthritis and osteoarthritis: possible explanation for non-response to anti-IL-17 therapy? Arthritis Res. Ther. 16, 426 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Glatt, S. et al. Dual IL-17A and IL-17F neutralisation by bimekizumab in psoriatic arthritis: evidence from preclinical experiments and a randomised placebo-controlled clinical trial that IL-17F contributes to human chronic tissue inflammation. Ann. Rheum. Dis. 77, 523–532 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Fossiez, F. et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med. 183, 2593–2603 (1996).

    Article  PubMed  CAS  Google Scholar 

  109. Zrioual, S. et al. IL-17RA and IL-17RC receptors are essential for IL-17A-induced ELR+ CXC chemokine expression in synoviocytes and are overexpressed in rheumatoid blood. J. Immunol. 180, 655–663 (2008).

    Article  PubMed  CAS  Google Scholar 

  110. McAllister, F. et al. Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-alpha and granulocyte colony-stimulating factor in bronchial epithelium: implications for airway inflammation in cystic fibrosis. J. Immunol. 175, 404–412 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Iyoda, M. et al. IL-17A and IL-17F stimulate chemokines via MAPK pathways (ERK1/2 and p38 but not JNK) in mouse cultured mesangial cells: synergy with TNF-α and IL-1β. Am. J. Physiol. Renal Physiol. 298, F779–F787 (2010).

    Article  PubMed  CAS  Google Scholar 

  112. Koenders, M. I. et al. TNF / IL-17 interplay induces S100A8, IL-1β, and MMPs, and drives irreversible cartilage destruction in vivo: rationale for combination treatment during arthritis. Arthritis Rheum. 63, 2329–2339 (2011).

    Article  PubMed  CAS  Google Scholar 

  113. van Lent, P. L. et al. Myeloid-related proteins S100A8/S100A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis. Ann. Rheum. Dis. 67, 1750–1758 (2008).

    Article  PubMed  Google Scholar 

  114. Hot, A., Zrioual, S., Lenief, V. & Miossec, P. IL-17 and tumour necrosis factor α combination induces a HIF-1α-dependent invasive phenotype in synoviocytes. Ann. Rheum. Dis. 71, 1393–1401 (2012).

    Article  PubMed  CAS  Google Scholar 

  115. Kirkham, B. W. et al. Synovial membrane cytokine expression is predictive of joint damage progression in rheumatoid arthritis: A two-year prospective study (the DAMAGE study cohort). Arthritis Rheum. 54, 1122–1131 (2006).

    Article  PubMed  CAS  Google Scholar 

  116. Chabaud, M. & Miossec, P. The combination of tumor necrosis factor α blockade with interleukin-1 and interleukin-17 blockade is more effective for controlling synovial inflammation and bone resorption in an ex vivo model. Arthritis Rheum. 44, 1293–1303 (2001).

    Article  PubMed  CAS  Google Scholar 

  117. Fischer, J. A. et al. Combined inhibition of tumor necrosis factor α and interleukin-17 as a therapeutic opportunity in rheumatoid arthritis: development and characterization of a novel bispecific antibody. Arthritis Rheumatol. 67, 51–62 (2015).

    Article  PubMed  CAS  Google Scholar 

  118. Magrey, M. N. & Khan, M. A. The paradox of bone formation and bone loss in ankylosing spondylitis: evolving new concepts of bone formation and future trends in management. Curr. Rheumatol. Rep. 19, 17 (2017).

    Article  PubMed  CAS  Google Scholar 

  119. Osta, B., Lavocat, F., Eljaafari, A. & Miossec, P. Effects of interleukin-17A on osteogenic differentiation of isolated human mesenchymal stem cells. Front. Immunol. 5, 425 (2014).

    PubMed  PubMed Central  Google Scholar 

  120. Chabaud, M., Fossiez, F., Taupin, J.-L. & Miossec, P. Enhancing effect of IL-17 on IL-1-induced IL-6 and leukemia inhibitory factor production by rheumatoid arthritis synoviocytes and its regulation by Th2 cytokines. J. Immunol. 161, 409–414 (1998).

    PubMed  CAS  Google Scholar 

  121. Kawashiri, S. Y. et al. Proinflammatory cytokines synergistically enhance the production of chemokine ligand 20 (CCL20) from rheumatoid fibroblast-like synovial cells in vitro and serum CCL20 is reduced in vivo by biologic disease-modifying antirheumatic drugs. J. Rheumatol 36, 2397–2402 (2009).

    Article  PubMed  CAS  Google Scholar 

  122. Zhang, Y. et al. Synergistic effects of interleukin-1β and interleukin-17A antibodies on collagen-induced arthritis mouse model. Int. Immunopharmacol. 15, 199–205 (2013).

    Article  PubMed  CAS  Google Scholar 

  123. Qi, J. et al. A bispecific antibody against IL-1β and IL-17A is beneficial for experimental rheumatoid arthritis. Int. Immunopharmacol. 14, 770–778 (2012).

    Article  PubMed  CAS  Google Scholar 

  124. Teunissen, M. B. M., Bos, J. D., Koomen, C. W., de Waal Malefyt, R. & Wierenga, E. A. Interleukin-17 and interferon-γ synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J. Invest. Dermatol. 111, 645–649 (1998).

    Article  PubMed  CAS  Google Scholar 

  125. Wedebye Schmidt, E. G. et al. TH17 cell induction and effects of IL-17A and IL-17F blockade in experimental colitis. Inflamm. Bowel Dis. 19, 1567–1576 (2013).

    Article  PubMed  Google Scholar 

  126. Henness, S. et al. IL-17A acts via p38 MAPK to increase stability of TNF-α-induced IL-8 mRNA in human ASM. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L1283–L1290 (2006).

    Article  PubMed  CAS  Google Scholar 

  127. Friday, S. C. & Fox, D. A. Phospholipase D enzymes facilitate IL-17- and TNFα-induced expression of proinflammatory genes in rheumatoid arthritis synovial fibroblasts (RASF). Immunol. Lett. 174, 9–18 (2016).

    Article  PubMed  CAS  Google Scholar 

  128. Srenathan, U., Steel, K. & Taams, L. S. IL-17+ CD8+ T cells: differentiation, phenotype and role in inflammatory disease. Immunol. Lett. 178, 20–26 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Papotto, P. H., Ribot, J. C. & Silva-Santos, B. IL-17+ γδ T cells as kick-starters of inflammation. Nat. Immunol. 18, 604–611 (2017).

    Article  PubMed  CAS  Google Scholar 

  130. Hazenberg, M. D. & Spits, H. Human innate lymphoid cells. Blood 124, 700–709 (2014).

    Article  PubMed  CAS  Google Scholar 

  131. Aarvak, T., Chabaud, M., Miossec, P. & Natvig, J. B. IL-17 is produced by some proinflammatory Th1/Th0 cells but not by Th2 cells. J. Immunol. 162, 1246–1251 (1999).

    PubMed  CAS  Google Scholar 

  132. Nistala, K. et al. Interleukin-17-producing T cells are enriched in the joints of children with arthritis, but have a reciprocal relationship to regulatory T cell numbers. Arthritis Rheum. 58, 875–887 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Cosmi, L. et al. Evidence of the transient nature of the Th17 phenotype of CD4+CD161+ T cells in the synovial fluid of patients with juvenile idiopathic arthritis. Arthritis Rheum. 63, 2504–2515 (2011).

    Article  PubMed  CAS  Google Scholar 

  134. Menon, B. et al. IL-17+CD8+ T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression. Arthritis Rheumatol. 66, 1272–1281 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Jandus, C. et al. Increased numbers of circulating polyfunctional Th17 memory cells in patients with seronegative spondylarthritides. Arthritis Rheum. 58, 2307–2317 (2008).

    Article  PubMed  Google Scholar 

  136. Shen, H., Goodall, J. C. & Gaston, J. S. H. Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum. 60, 1647–1656 (2009).

    Article  PubMed  CAS  Google Scholar 

  137. Shen, H., Goodall, J. C. & Gaston, J. S. Frequency and phenotype of T helper 17 cells in peripheral blood and synovial fluid of patients with reactive arthritis. J. Rheumatol. 37, 2096–2099 (2010).

    Article  PubMed  CAS  Google Scholar 

  138. Al-Mossawi, M. H. et al. Unique transcriptome signatures and GM-CSF expression in lymphocytes from patients with spondyloarthritis. Nat. Commun. 8, 1510 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Benham, H. et al. Th17 and Th22 cells in psoriatic arthritis and psoriasis. Arthritis Res. Ther. 15, R136 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Zizzo, G. et al. Synovial fluid-derived T helper 17 cells correlate with inflammatory activity in arthritis, irrespectively of diagnosis. Clin. Immunol. 138, 107–116 (2011).

    Article  PubMed  CAS  Google Scholar 

  141. Tzartos, J. S. et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am. J. Pathol. 172, 146–155 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Ortega, C. et al. IL-17-producing CD8+ T lymphocytes from psoriasis skin plaques are cytotoxic effector cells that secrete Th17-related cytokines. J. Leukocyte Biol. 86, 435–443 (2009).

    Article  PubMed  CAS  Google Scholar 

  143. Res, P. C. M. et al. Overrepresentation of IL-17A and IL-22 producing CD8 T cells in lesional skin suggests their involvement in the pathogenesis of psoriasis. PLOS One 5, e14108 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Hijnen, D. et al. CD8+ T cells in the lesional skin of atopic dermatitis and psoriasis patients are an important source of IFN-γ, IL-13, IL-17, and IL-22. J. Invest. Dermatol. 133, 973–979 (2013).

    Article  PubMed  CAS  Google Scholar 

  145. Di Meglio, P. et al. Targeting CD8+ T cells prevents psoriasis development. J. Allergy Clin. Immunol. 138, 274–276 (2016).

    Article  PubMed  CAS  Google Scholar 

  146. Wang, C., Liao, Q., Hu, Y. & Zhong, D. T lymphocyte subset imbalances in patients contribute to ankylosing spondylitis. Exp. Ther. Med. 9, 250–256 (2015).

    Article  PubMed  CAS  Google Scholar 

  147. Steel, K. J. et al. Synovial IL-17+CD8+ T cells are a pro-inflammatory tissue resident population enriched in spondyloarthritis [abstract]. Ann. Rheum. Dis. 77 (Suppl. 1), 0016 (2018).

    Google Scholar 

  148. Sathaliyawala, T. et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38, 187–197 (2013).

    Article  PubMed  CAS  Google Scholar 

  149. Iijima, N. & Iwasaki, A. Tissue instruction for migration and retention of TRM cells. Trends Immunol. 36, 556–564 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    Article  PubMed  CAS  Google Scholar 

  151. Watanabe, R. et al. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci. Transl Med. 7, 279ra239 (2015).

    Article  CAS  Google Scholar 

  152. Cheuk, S. et al. CD49a expression defines tissue-resident CD8+ T cells poised for cytotoxic function in human skin. Immunity 46, 287–300 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Kumar, B. V. et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 20, 2921–2934 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Clark, R. A. Resident memory T cells in human health and disease. Sci. Transl Med. 7, 269rv261 (2015).

    Article  CAS  Google Scholar 

  155. Milner, J. J. et al. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. Nature 552, 253 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  156. Cheuk, S. et al. Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis. J. Immunol. 192, 3111–3120 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Clark, R. A. et al. The vast majority of CLA+ T cells are resident in normal skin. J. Immunol. 176, 4431–4439 (2006).

    Article  PubMed  CAS  Google Scholar 

  158. Petrelli, A. & van Wijk, F. CD8+ T cells in human autoimmune arthritis: the unusual suspects. Nat. Rev. Rheumatol 12, 421–428 (2016).

    Article  PubMed  CAS  Google Scholar 

  159. Porcelli, S., Yockey, C. E., Brenner, M. B. & Balk, S. P. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- α/β T cells demonstrates preferential use of several V β genes and an invariant TCR α chain. J. Exp. Med. 178, 1–16 (1993).

    Article  PubMed  CAS  Google Scholar 

  160. Martin, E. et al. Stepwise development of MAIT cells in mouse and human. PLOS Biol. 7, e54 (2009).

    Article  PubMed  CAS  Google Scholar 

  161. Le Bourhis, L. et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol. 11, 701–708 (2010).

    Article  PubMed  CAS  Google Scholar 

  162. Dusseaux, M. et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 117, 1250–1259 (2011).

    Article  PubMed  CAS  Google Scholar 

  163. Teunissen, M. B. M. et al. The IL-17A-producing CD8+ T-cell population in psoriatic lesional skin comprises mucosa-associated invariant T cells and conventional T cells. J. Invest. Dermatol. 134, 2898–2907 (2014).

    Article  PubMed  CAS  Google Scholar 

  164. Hayashi, E. et al. Involvement of mucosal-associated invariant T cells in ankylosing spondylitis. J. Rheumatol. 43, 1695–1703 (2016).

    Article  PubMed  Google Scholar 

  165. Gracey, E. et al. IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis. Ann. Rheum. Dis. 75, 2124–2132 (2016).

    Article  PubMed  CAS  Google Scholar 

  166. Yoshiga, Y. et al. Invariant NKT cells produce IL-17 through IL-23-dependent and -independent pathways with potential modulation of Th17 response in collagen-induced arthritis. Int. J. Mol. Med. 22, 369–374 (2008).

    PubMed  CAS  Google Scholar 

  167. Laggner, U. et al. Identification of a novel proinflammatory human skin-homing Vγ9Vδ2 T cell subset with a potential role in psoriasis. J. Immunol. 187, 2783–2793 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Kenna, T. J. et al. Enrichment of circulating interleukin-17-secreting interleukin-23 receptor-positive γ/δ T cells in patients with active ankylosing spondylitis. Arthritis Rheum. 64, 1420–1429 (2012).

    Article  PubMed  CAS  Google Scholar 

  169. Gaur, P., Misra, R. & Aggarwal, A. Natural killer cell and γδ T cell alterations in enthesitis related arthritis category of juvenile idiopathic arthritis. Clin. Immunol. 161, 163–169 (2015).

    Article  PubMed  CAS  Google Scholar 

  170. Guggino, G. et al. Interleukin (IL)-9/IL-9R axis drives γδ T cells activation in psoriatic arthritis patients. Clin. Exp. Immunol. 186, 277–283 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Chowdhury, A. C., Chaurasia, S., Mishra, S. K., Aggarwal, A. & Misra, R. IL-17 and IFN-γ producing NK and γδ-T cells are preferentially expanded in synovial fluid of patients with reactive arthritis and undifferentiated spondyloarthritis. Clin. Immunol. 183, 207–212 (2017).

    Article  PubMed  CAS  Google Scholar 

  172. Cai, Y. et al. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity 35, 596–610 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Gray, E. E., Suzuki, K. & Cyster, J. G. Cutting edge: identification of a motile IL-17-producing γδ T cell population in the dermis. J. Immunol. 186, 6091–6095 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Campbell, J. J. et al. IL-17-secreting γδ T cells are completely dependent upon CCR6 for homing to inflamed skin. J. Immunol. 199, 3129–3136 (2017).

    Article  PubMed  CAS  Google Scholar 

  175. Reinhardt, A. et al. Interleukin-23-dependent γ/δ T cells produce interleukin-17 and accumulate in the enthesis, aortic valve, and ciliary body in mice. Arthritis Rheumatol. 68, 2476–2486 (2016).

    Article  PubMed  CAS  Google Scholar 

  176. Soare, A. et al. Cutting edge: homeostasis of innate lymphoid cells is imbalanced in psoriatic arthritis. J. Immunol. 200, 1249–1254 (2018).

    Article  PubMed  CAS  Google Scholar 

  177. Leijten, E. F. et al. Brief report: enrichment of activated group 3 innate lymphoid cells in psoriatic arthritis synovial fluid. Arthritis Rheumatol. 67, 2673–2678 (2015).

    Article  PubMed  Google Scholar 

  178. Noordenbos, T. et al. Interleukin-17–positive mast cells contribute to synovial inflammation in spondylarthritis. Arthritis Rheum. 64, 99–109 (2012).

    Article  PubMed  CAS  Google Scholar 

  179. Noordenbos, T. et al. Human mast cells capture, store, and release bioactive, exogenous IL-17A. J. Leukoc. Biol. 100, 453–462 (2016).

    Article  PubMed  CAS  Google Scholar 

  180. Schett, G., Elewaut, D., McInnes, I. B., Dayer, J.-M. & Neurath, M. F. How cytokine networks fuel inflammation: toward a cytokine-based disease taxonomy. Nat. Med. 19, 822–824 (2013).

    Article  PubMed  CAS  Google Scholar 

  181. Frieder, J., Kivelevitch, D., Haugh, I., Watson, I. & Menter, A. Anti-IL-23 and anti-IL-17 Biologic agents for the treatment of immune-mediated inflammatory conditions. Clin. Pharmacol. Ther. 103, 88–101 (2018).

    Article  PubMed  CAS  Google Scholar 

  182. Griffiths, C. E. et al. Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. N. Engl. J. Med. 362, 118–128 (2010).

    Article  PubMed  CAS  Google Scholar 

  183. Leonardi, C. L. et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 371, 1665–1674 (2008).

    Article  PubMed  CAS  Google Scholar 

  184. Papp, K. A. et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 371, 1675–1684 (2008).

    Article  PubMed  CAS  Google Scholar 

  185. Ritchlin, C. et al. Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial. Ann. Rheum. Dis. 73, 990–999 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. McInnes, I. B. et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet 382, 780–789 (2013).

    Article  PubMed  CAS  Google Scholar 

  187. Sandborn, W. J. et al. Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. N. Engl. J. Med. 367, 1519–1528 (2012).

    Article  PubMed  CAS  Google Scholar 

  188. Hueber, W. et al. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci. Transl Med. 2, 52ra72 (2010).

    Article  PubMed  CAS  Google Scholar 

  189. Langley, R. G. et al. Secukinumab in plaque psoriasis—results of two phase 3 trials. N. Engl. J. Med. 371, 326–338 (2014).

    Article  PubMed  CAS  Google Scholar 

  190. Sanford, M. & McKeage, K. Secukinumab: first global approval. Drugs 75, 329–338 (2015).

    Article  PubMed  CAS  Google Scholar 

  191. Griffiths, C. E. M. et al. Comparison of ixekizumab with etanercept or placebo in moderate-to-severe psoriasis (UNCOVER-2 and UNCOVER-3): results from two phase 3 randomised trials. Lancet 386, 541–551 (2015).

    Article  PubMed  CAS  Google Scholar 

  192. Blauvelt, A. et al. Secukinumab is superior to ustekinumab in clearing skin of subjects with moderate-to-severe plaque psoriasis up to 1 year: results from the CLEAR study. J. Am. Acad. Dermatol. 76, 60–69 (2017).

    Article  PubMed  CAS  Google Scholar 

  193. Gordon, K. B. et al. Phase 3 trials of ixekizumab in moderate-to-severe plaque psoriasis. N. Engl. J. Med. 375, 345–356 (2016).

    Article  PubMed  CAS  Google Scholar 

  194. Mease, P. J. et al. Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis. N. Engl. J. Med. 373, 1329–1339 (2015).

    Article  PubMed  CAS  Google Scholar 

  195. McInnes, I. B. et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 386, 1137–1146 (2015).

    Article  PubMed  CAS  Google Scholar 

  196. Baeten, D. et al. Secukinumab, an interleukin-17A inhibitor, in ankylosing spondylitis. N. Engl. J. Med. 373, 2534–2548 (2015).

    Article  PubMed  CAS  Google Scholar 

  197. van de Kerkhof, P. C. M. et al. Secukinumab long-term safety experience: A pooled analysis of 10 phase II and III clinical studies in patients with moderate to severe plaque psoriasis. J. Am. Acad. Dermatol. 75, 83–98 (2016).

    Article  PubMed  CAS  Google Scholar 

  198. Mease, P. J. et al. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann. Rheum. Dis. 76, 79–87 (2017).

    Article  PubMed  CAS  Google Scholar 

  199. Nash, P. et al. Ixekizumab for the treatment of patients with active psoriatic arthritis and an inadequate response to tumour necrosis factor inhibitors: results from the 24-week randomised, double-blind, placebo-controlled period of the SPIRIT-P2 phase 3 trial. Lancet 389, 2317–2327 (2017).

    Article  PubMed  CAS  Google Scholar 

  200. Dick, A. D. et al. Secukinumab in the treatment of noninfectious uveitis: results of three randomized, controlled clinical trials. Ophthalmology 120, 777–787 (2013).

    Article  PubMed  Google Scholar 

  201. Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Mease, P. J. et al. Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis. N. Engl. J. Med. 370, 2295–2306 (2014).

    Article  PubMed  CAS  Google Scholar 

  203. Papp, K. A. et al. A prospective phase III, randomized, double-blind, placebo-controlled study of brodalumab in patients with moderate-to-severe plaque psoriasis. Br. J. Dermatol. 175, 273–286 (2016).

    Article  PubMed  CAS  Google Scholar 

  204. Lebwohl, M. et al. Phase 3 studies comparing brodalumab with ustekinumab in psoriasis. N. Engl. J. Med. 373, 1318–1328 (2015).

    Article  PubMed  Google Scholar 

  205. Targan, S. R. et al. A randomized, double-blind, placebo-controlled phase 2 study of brodalumab in patients with moderate-to-severe Crohn’s disease. Am. J. Gastroenterol. 111, 1599–1607 (2016).

    Article  PubMed  CAS  Google Scholar 

  206. Blauvelt, A. et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the continuous treatment of patients with moderate to severe psoriasis: results from the phase III, double-blinded, placebo- and active comparator-controlled VOYAGE 1 trial. J. Am. Acad. Dermatol. 76, 405–417 (2017).

    Article  PubMed  CAS  Google Scholar 

  207. Reich, K. et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the treatment of patients with moderate to severe psoriasis with randomized withdrawal and retreatment: results from the phase III, double-blind, placebo- and active comparator-controlled VOYAGE 2 trial. J. Am. Acad. Dermatol. 76, 418–431 (2017).

    Article  PubMed  CAS  Google Scholar 

  208. Deodhar, A. et al. OP0218 Efficacy and safety results of guselkumab, an anti-il23 monoclonal antibody, in patients with active psoriatic arthritis over 24 weeks: a phase 2a, randomized, double-blind, placebo-controlled study. Ann. Rheum. Dis. 76, 142–143 (2017).

    Google Scholar 

  209. Smolen, J. S. et al. A randomised phase II study evaluating the efficacy and safety of subcutaneously administered ustekinumab and guselkumab in patients with active rheumatoid arthritis despite treatment with methotrexate. Ann. Rheum. Dis. 76, 831–839 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Feagan, B. G. et al. Induction therapy with the selective interleukin-23 inhibitor risankizumab in patients with moderate-to-severe Crohn’s disease: a randomised, double-blind, placebo-controlled phase 2 study. Lancet 389, 1699–1709 (2017).

    Article  PubMed  CAS  Google Scholar 

  211. Papp, K. A. et al. Risankizumab versus ustekinumab for moderate-to-severe plaque psoriasis. N. Engl. J. Med. 376, 1551–1560 (2017).

    Article  PubMed  CAS  Google Scholar 

  212. Reich, K. et al. Tildrakizumab versus placebo or etanercept for chronic plaque psoriasis (reSURFACE 1 and reSURFACE 2): results from two randomised controlled, phase 3 trials. Lancet 390, 276–288 (2017).

    Article  PubMed  CAS  Google Scholar 

  213. Belasco, J. et al. Comparative genomic profiling of synovium versus skin lesions in psoriatic arthritis. Arthritis Rheumatol. 67, 934–944 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Yao, Z. et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3, 811–821 (1995).

    Article  PubMed  CAS  Google Scholar 

  215. Li, H. et al. Cloning and characterization of IL-17B and IL-17C, two new members of the IL-17 cytokine family. Proc. Natl Acad. Sci. USA 97, 773–778 (2000).

    Article  PubMed  CAS  Google Scholar 

  216. Lee, J. et al. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J. Biol. Chem. 276, 1660–1664 M008289200 (2001).

    Article  PubMed  CAS  Google Scholar 

  217. Starnes, T. et al. Cutting edge: IL-17F, a novel cytokine selectively expressed in activated T cells and monocytes, regulates angiogenesis and endothelial cell cytokine production. J. Immunol. 167, 4137–4140 (2001).

    Article  PubMed  CAS  Google Scholar 

  218. Wright, J. F. et al. The human IL-17F/IL-17A heterodimeric cytokine signals through the IL-17RA/IL-17RC receptor complex. J. Immunol. 181, 2799–2805 (2008).

    Article  PubMed  CAS  Google Scholar 

  219. Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  PubMed  CAS  Google Scholar 

  221. Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  PubMed  CAS  Google Scholar 

  222. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  PubMed  CAS  Google Scholar 

  223. Mangan, P. R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  PubMed  CAS  Google Scholar 

  224. Zhou, L. et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967–974 (2007).

    Article  PubMed  CAS  Google Scholar 

  225. Manel, N., Unutmaz, D. & Littman, D. R. The differentiation of human Th17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nat. Immunol. 9, 641–649 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Acosta-Rodriguez, E. V., Napolitani, G., Lanzavecchia, A. & Sallusto, F. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol. 8, 942–949 (2007).

    Article  PubMed  CAS  Google Scholar 

  227. Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467, 967–971 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  PubMed  CAS  Google Scholar 

  229. Yang, X. O. et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORα and RORγ. Immunity 28, 29–39 (2008).

    Article  PubMed  CAS  Google Scholar 

  230. Wei, L., Laurence, A., Elias, K. M. & O’Shea, J. J. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J. Biol. Chem. 282, 34605–34610 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Brustle, A. et al. The development of inflammatory TH-17 cells requires interferon-regulatory factor 4. Nat. Immunol. 8, 958–966 (2007).

    Article  PubMed  CAS  Google Scholar 

  232. Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature (2008).

  233. Zielinski, C. E. et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature 484, 514–518 (2012).

    Article  PubMed  CAS  Google Scholar 

  234. Annunziato, F., Cosmi, L., Liotta, F., Maggi, E. & Romagnani, S. Defining the human T helper 17 cell phenotype. Trends Immunol. 33, 505–512 (2012).

    Article  PubMed  CAS  Google Scholar 

  235. Sallusto, F., Zielinski, C. E. & Lanzavecchia, A. Human Th17 subsets. Eur. J. Immunol. 42, 2215–2220 (2012).

    Article  PubMed  CAS  Google Scholar 

  236. Evans, H. G. et al. TNF-α blockade induces IL-10 expression in human CD4+ T cells. Nat. Commun. 5, 3199 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Roberts, C. A., Durham, L. E., Fleskens, V., Evans, H. G. & Taams, L. S. TNF blockade maintains an IL-10+ phenotype in human effector CD4+ and CD8+ T cells. Front. Immunol. 8, 157 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Lee, Y. et al. Induction and molecular signature of pathogenic Th17 cells. Nat. Immunol. 13, 991–999 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Toy, D. et al. Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J. Immunol. 177, 36–39 (2006).

    Article  PubMed  CAS  Google Scholar 

  240. Gaffen, S. L. Structure and signalling in the IL-17 receptor family. Nat. Rev. Immunol. 9, 556–567 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Hymowitz, S. G. et al. IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. EMBO J. 20, 5332–5341 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Gaffen, S. L., Jain, R., Garg, A. V. & Cua, D. J. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat. Rev. Immunol. 14, 585–600 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Gu, C., Wu, L. & Li, X. IL-17 family: cytokines, receptors and signaling. Cytokine 64, 477–485 (2013).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the King’s Health Partners Research and Development challenge fund (R140808) (to L.S.T., B.W.K and K.J.A.S), a King’s Health Schools PhD studentship funded by a Medical Research Council doctoral training grant (to L.S.T. and U.S.), a Biotechnology and Biological Sciences Research Council (BBSRC) Collaborative Awards in Science and Engineering (CASE) PhD studentship (BB/M503289/1) (to L.S.T. and L.A.B.) and support from the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London (to L.S.T., B.W.K. and K.J.A.S.). The views expressed are those of the authors and not necessarily those of the National Health Service, the NIHR or the Department of Health.

Reviewer information

Nature Reviews Rheumatology thanks P. Bowness, F. van Wijk and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data, discussion of content, writing, and reviewing and/or editing the manuscript before submission.

Corresponding author

Correspondence to Leonie S. Taams.

Ethics declarations

Competing interests

B.W.K. has received research grants from AbbVie, Eli Lilly & Co, Novartis, Roche and UCB and has been a speaker and adviser for Eli Lilly & Co, Janssen and Novartis. L.S.T. has received research support and speaker fees from GlaxoSmithKline, Novartis, Novo Nordisk A/S and UCB.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taams, L.S., Steel, K.J.A., Srenathan, U. et al. IL-17 in the immunopathogenesis of spondyloarthritis. Nat Rev Rheumatol 14, 453–466 (2018). https://doi.org/10.1038/s41584-018-0044-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-018-0044-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing