Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inflammation in multiple sclerosis: consequences for remyelination and disease progression

Abstract

Despite the large number of immunomodulatory or immunosuppressive treatments available to treat relapsing–remitting multiple sclerosis (MS), treatment of the progressive phase of the disease has not yet been achieved. This lack of successful treatment approaches is caused by our poor understanding of the mechanisms driving disease progression. Emerging concepts suggest that a combination of persisting focal and diffuse inflammation within the CNS and a gradual failure of compensatory mechanisms, including remyelination, result in disease progression. Therefore, promotion of remyelination presents a promising intervention approach. However, despite our increasing knowledge regarding the cellular and molecular mechanisms regulating remyelination in animal models, therapeutic increases in remyelination remain an unmet need in MS, which suggests that mechanisms of remyelination and remyelination failure differ fundamentally between humans and demyelinating animal models. New and emerging technologies now allow us to investigate the cellular and molecular mechanisms underlying remyelination failure in human tissue samples in an unprecedented way. The aim of this Review is to summarize our current knowledge regarding mechanisms of remyelination and remyelination failure in MS and in animal models of the disease, identify open questions, challenge existing concepts, and discuss strategies to overcome the translational roadblock in the field of remyelination-promoting therapies.

Key points

  • Promotion of remyelination is an unmet therapeutic need in multiple sclerosis.

  • Animal models only partially reflect the human pathology of multiple sclerosis.

  • The relationship between inflammation and remyelination is still unsolved.

  • New models are needed to more precisely mimic remyelination in multiple sclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Differences between MS and its animal models.
Fig. 2: Strategies to overcome the translational roadblock.

Similar content being viewed by others

References

  1. Stampanoni Bassi, M., Iezzi, E. & Centonze, D. Multiple sclerosis: inflammation, autoimmunity and plasticity. Handb. Clin. Neurol. 184, 457–470 (2022).

    Article  PubMed  Google Scholar 

  2. Dobson, R. & Giovannoni, G. Multiple sclerosis — a review. Eur. J. Neurol. 26, 27–40 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Ontaneda, D., Tallantyre, E., Kalincik, T., Planchon, S. M. & Evangelou, N. Early highly effective versus escalation treatment approaches in relapsing multiple sclerosis. Lancet Neurol. 18, 973–980 (2019).

    Article  PubMed  Google Scholar 

  4. He, A. et al. Timing of high-efficacy therapy for multiple sclerosis: a retrospective observational cohort study. Lancet Neurol. 19, 307–316 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Huntemann, N. et al. Failed, interrupted, or inconclusive trials on neuroprotective and neuroregenerative treatment strategies in multiple sclerosis: update 2015–2020. Drugs 81, 1031–1063 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Klistorner, A. & Barnett, M. Remyelination trials: are we expecting the unexpected? Neurol. Neuroimmunol. Neuroinflamm. 8, e1066 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kramer, J. & Wiendl, H. What have failed, interrupted, and withdrawn antibody therapies in multiple sclerosis taught us? Neurotherapeutics 19, 785–807 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ploughman, M., Yong, V. W., Spermon, B., Goelz, S. & Giovannoni, G. Remyelination trial failures: repercussions of ignoring neurorehabilitation and exercise in repair. Mult. Scler. Relat. Disord. 58, 103539 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Perier, O. & Gregoire, A. Electron microscopic features of multiple sclerosis lesions. Brain 88, 937–952 (1965).

    Article  CAS  PubMed  Google Scholar 

  10. Prineas, J. W. & Connell, F. Remyelination in multiple sclerosis. Ann. Neurol. 5, 22–31 (1979).

    Article  CAS  PubMed  Google Scholar 

  11. Patani, R., Balaratnam, M., Vora, A. & Reynolds, R. Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol. Appl. Neurobiol. 33, 277–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Patrikios, P. et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129, 3165–3172 (2006).

    Article  PubMed  Google Scholar 

  13. Goldschmidt, T., Antel, J., Konig, F. B., Brück, W. & Kuhlmann, T. Remyelination capacity of the MS brain decreases with disease chronicity. Neurology 72, 1914–1921 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Hess, K. et al. Lesion stage-dependent causes for impaired remyelination in MS. Acta Neuropathol. 140, 359–375 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bramow, S. et al. Demyelination versus remyelination in progressive multiple sclerosis. Brain 133, 2983–2998 (2010).

    Article  PubMed  Google Scholar 

  16. Frischer, J. M. et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann. Neurol. 78, 710–721 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kuhlmann, T. et al. Gender differences in the histopathology of MS? J. Neurol. Sci. 286, 86–91 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Albert, M., Antel, J., Bruck, W. & Stadelmann, C. Extensive cortical remyelination in patients with chronic multiple sclerosis. Brain Pathol. 17, 129–138 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chang, A. et al. Cortical remyelination: a new target for repair therapies in multiple sclerosis. Ann. Neurol. 72, 918–926 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tonietto, M. et al. Periventricular remyelination failure in multiple sclerosis: a substrate for neurodegeneration. Brain 146, 182–194 (2023).

    Article  PubMed  Google Scholar 

  21. Lazzarotto, A. et al. Clinically relevant profiles of myelin content changes in patients with multiple sclerosis: a multimodal and multicompartment imaging study. Mult. Scler. 28, 1881–1890 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Trobisch, T. et al. Cross-regional homeostatic and reactive glial signatures in multiple sclerosis. Acta Neuropathol. 144, 987–1003 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yaqubi, M. et al. Regional and age-related diversity of human mature oligodendrocytes. Glia 70, 1938–1949 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, J. T., Collins, D. L., Atkins, H. L., Freedman, M. S. & Arnold, D. L. Magnetization transfer ratio evolution with demyelination and remyelination in multiple sclerosis lesions. Ann. Neurol. 63, 254–262 (2008).

    Article  PubMed  Google Scholar 

  25. Brown, R. A., Narayanan, S. & Arnold, D. L. Imaging of repeated episodes of demyelination and remyelination in multiple sclerosis. Neuroimage Clin. 6, 20–25 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bodini, B. et al. Dynamic imaging of individual remyelination profiles in multiple sclerosis. Ann. Neurol. 79, 726–738 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuhlmann, T. et al. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131, 1749–1758 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Boyd, A., Zhang, H. & Williams, A. Insufficient OPC migration into demyelinated lesions is a cause of poor remyelination in MS and mouse models. Acta Neuropathol. 125, 841–859 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jakel, S. et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543–547 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Macnair, W. et al. Single nuclei RNAseq stratifies multiple sclerosis patients into three distinct white matter glia responses. Preprint at bioRxiv https://doi.org/10.1101/2022.04.06.487263 (2022).

    Article  Google Scholar 

  31. Schirmer, L. et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573, 75–82 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jurewicz, A., Biddison, W. E. & Antel, J. P. MHC-Class I-restricted lysis of human oligodendrocytes by myelin basic protein peptide-specific CD8 T lymphocytes. J. Immunol. 160, 3056–3059 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Petrova, N., Carassiti, D., Altmann, D. R., Baker, D. & Schmierer, K. Axonal loss in the multiple sclerosis spinal cord revisited. Brain Pathol. 28, 334–348 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Bechler, M. E., Byrne, L. & Ffrench-Constant, C. CNS myelin sheath lengths are an intrinsic property of oligodendrocytes. Curr. Biol. 25, 2411–2416 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Demerens, C. et al. Induction of myelination in the central nervous system by electrical activity. Proc. Natl Acad. Sci. USA 93, 9887–9892 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wake, H. et al. Nonsynaptic junctions on myelinating glia promote preferential myelination of electrically active axons. Nat. Commun. 6, 7844 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Coman, I., Barbin, G., Charles, P., Zalc, B. & Lubetzki, C. Axonal signals in central nervous system myelination, demyelination and remyelination. J. Neurol. Sci. 233, 67–71 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Duncan, G. J., Simkins, T. J. & Emery, B. Neuron-oligodendrocyte interactions in the structure and integrity of axons. Front. Cell Dev. Biol. 9, 653101 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Coman, I. et al. Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis. Brain 129, 3186–3195 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Charles, P. et al. Re-expression of PSA-NCAM by demyelinated axons: an inhibitor of remyelination in multiple sclerosis? Brain 125, 1972–1979 (2002).

    Article  PubMed  Google Scholar 

  41. Kornek, B. et al. Multiple sclerosis and chronic autoimmune encephalomyelitis. A comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am. J. Pathol. 157, 267–276 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kuhlmann, T., Lingfeld, G., Bitsch, A., Schuchardt, J. & Brück, W. Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125, 2202–2212 (2002).

    Article  PubMed  Google Scholar 

  43. Manrique-Hoyos, N. et al. Late motor decline after accomplished remyelination: impact for progressive multiple sclerosis. Ann. Neurol. 71, 227–244 (2012).

    Article  PubMed  Google Scholar 

  44. Mews, I., Bergmann, M., Bunkowski, S., Gullotta, F. & Brück, W. Oligodendrocyte and axon pathology in clinically silent multiple sclerosis lesions. Mult. Scler. 4, 55–62 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Brück, W. et al. Monocyte/macrophage differentiation in early multiple sclerosis lesions. Ann. Neurol. 38, 788–796 (1995).

    Article  PubMed  Google Scholar 

  46. Boven, L. A. et al. Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain 129, 517–526 (2006).

    Article  PubMed  Google Scholar 

  47. Healy, L. M. et al. MerTK is a functional regulator of myelin phagocytosis by human myeloid cells. J. Immunol. 196, 3375–3384 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Bottcher, C. et al. Single-cell mass cytometry reveals complex myeloid cell composition in active lesions of progressive multiple sclerosis. Acta Neuropathol. Commun. 8, 136 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zrzavy, T. et al. Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain 140, 1900–1913 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Masuda, T. et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566, 388–392 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Miedema, A. et al. Brain macrophages acquire distinct transcriptomes in multiple sclerosis lesions and normal appearing white matter. Acta Neuropathol. Commun. 10, 8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Frischer, J. M. et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132, 1175–1189 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fransen, N. L. et al. Tissue-resident memory T cells invade the brain parenchyma in multiple sclerosis white matter lesions. Brain 143, 1714–1730 (2020).

    Article  PubMed  Google Scholar 

  54. Bitsch, A., Schuchardt, J., Bunkowski, S., Kuhlmann, T. & Brück, W. Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 123, 1174–1183 (2000).

    Article  PubMed  Google Scholar 

  55. van Nierop, G. P. et al. Phenotypic and functional characterization of T cells in white matter lesions of multiple sclerosis patients. Acta Neuropathol. 134, 383–401 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Barnett, M. H. & Prineas, J. W. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann. Neurol. 55, 458–468 (2004).

    Article  PubMed  Google Scholar 

  57. Wheeler, M. A. et al. MAFG-driven astrocytes promote CNS inflammation. Nature 578, 593–599 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Absinta, M. et al. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature 597, 709–714 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brosnan, C. F. & Raine, C. S. The astrocyte in multiple sclerosis revisited. Glia 61, 453–465 (2013).

    Article  PubMed  Google Scholar 

  60. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. El Behi, M. et al. Adaptive human immunity drives remyelination in a mouse model of demyelination. Brain 140, 967–980 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Moore, C. S. et al. Direct and indirect effects of immune and central nervous system-resident cells on human oligodendrocyte progenitor cell differentiation. J. Immunol. 194, 761–772 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Starost, L. et al. Extrinsic immune cell-derived, but not intrinsic oligodendroglial factors contribute to oligodendroglial differentiation block in multiple sclerosis. Acta Neuropathol. 140, 715–736 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Larochelle, C. et al. Pro-inflammatory T helper 17 directly harms oligodendrocytes in neuroinflammation. Proc. Natl Acad. Sci. USA 118, e2025813118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pernin, F. et al. Diverse injury responses of human oligodendrocyte to mediators implicated in multiple sclerosis. Brain 145, 4320–4333 (2022).

    Article  PubMed  Google Scholar 

  66. Crawford, A. H. et al. Pre-existing mature oligodendrocytes do not contribute to remyelination following toxin-induced spinal cord demyelination. Am. J. Pathol. 186, 511–516 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Franklin, R. J. M., Frisen, J. & Lyons, D. A. Revisiting remyelination: towards a consensus on the regeneration of CNS myelin. Semin. Cell Dev. Biol. 116, 3–9 (2021).

    Article  PubMed  Google Scholar 

  68. Keirstead, H. S. & Blakemore, W. F. Identification of post-mitotic oligodendrocytes incapable of remyelination within the demyelinated adult spinal cord. J. Neuropathol. Exp. Neurol. 56, 1191–1201 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Duncan, I. D. et al. The adult oligodendrocyte can participate in remyelination. Proc. Natl Acad. Sci. USA 115, E11807–E11816 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bacmeister, C. M. et al. Motor learning promotes remyelination via new and surviving oligodendrocytes. Nat. Neurosci. 23, 819–831 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Neely, S. A. et al. New oligodendrocytes exhibit more abundant and accurate myelin regeneration than those that survive demyelination. Nat. Neurosci. 25, 415–420 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Duncan, I. D., Brower, A., Kondo, Y., Curlee, J. F. Jr & Schultz, R. D. Extensive remyelination of the CNS leads to functional recovery. Proc. Natl Acad. Sci. USA 106, 6832–6836 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gilson, J. & Blakemore, W. F. Failure of remyelination in areas of demyelination produced in the spinal cord of old rats. Neuropathol. Appl. Neurobiol. 19, 173–181 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Pfeifenbring, S. et al. Extensive acute axonal damage in pediatric multiple sclerosis lesions. Ann. Neurol. 77, 655–667 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ruckh, J. M. et al. Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 10, 96–103 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Neumann, B. et al. Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell Stem Cell 25, 473–485 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gingele, S. et al. Delayed demyelination and impaired remyelination in aged mice in the cuprizone model. Cells 9, 945 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gibson, E. M. et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344, 1252304 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Irvine, K. A. & Blakemore, W. F. Remyelination protects axons from demyelination-associated axon degeneration. Brain 131, 1464–1477 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Back, S. A. et al. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat. Med. 11, 966–972 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Pendleton, J. C. et al. Chondroitin sulfate proteoglycans inhibit oligodendrocyte myelination through PTPsigma. Exp. Neurol. 247, 113–121 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Harlow, D. E. & Macklin, W. B. Inhibitors of myelination: ECM changes, CSPGs and PTPs. Exp. Neurol. 251, 39–46 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Segel, M. et al. Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature 573, 130–134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dendrou, C. A. & Fugger, L. Immunomodulation in multiple sclerosis: promises and pitfalls. Curr. Opin. Immunol. 49, 37–43 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Bieber, A. J., Kerr, S. & Rodriguez, M. Efficient central nervous system remyelination requires T cells. Ann. Neurol. 53, 680–684 (2003).

    Article  PubMed  Google Scholar 

  86. Kirby, L. et al. Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nat. Commun. 10, 3887 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Liu, H. et al. IL-17 inhibits oligodendrocyte progenitor cell proliferation and differentiation by increasing K+ channel Kv1.3. Front. Cell Neurosci. 15, 679413 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang, C. et al. IL-17 induced NOTCH1 activation in oligodendrocyte progenitor cells enhances proliferation and inflammatory gene expression. Nat. Commun. 8, 15508 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Baxi, E. G. et al. Transfer of myelin-reactive th17 cells impairs endogenous remyelination in the central nervous system of cuprizone-fed mice. J. Neurosci. 35, 8626–8639 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dombrowski, Y. et al. Regulatory T cells promote myelin regneration in the central nervous system. Nat. Neurosci. 20, 674–680 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dombrowski, Y. et al. Regulatory T cells promote myelin regeneration in the central nervous system. Nat. Neurosci. 20, 674–680 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. McIntyre, L. L. et al. Regulatory T cells promote remyelination in the murine experimental autoimmune encephalomyelitis model of multiple sclerosis following human neural stem cell transplant. Neurobiol. Dis. 140, 104868 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dittmer, M. et al. Characterization of a murine mixed neuron-glia model and cellular responses to regulatory T cell-derived factors. Mol. Brain 11, 25 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Creswell, R. & Dombrowski, Y. Innate and adaptive immune mechanisms regulating central nervous system remyelination. Curr. Opin. Pharmacol. 63, 102175 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Chou, W. C. et al. AIM2 in regulatory T cells restrains autoimmune diseases. Nature 591, 300–305 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Skihar, V. et al. Promoting oligodendrogenesis and myelin repair using the multiple sclerosis medication glatiramer acetate. Proc. Natl Acad. Sci. USA 106, 17992–17997 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Harrington, E. P., Bergles, D. E. & Calabresi, P. A. Immune cell modulation of oligodendrocyte lineage cells. Neurosci. Lett. 715, 134601 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Falcao, A. M. et al. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat. Med. 24, 1837–1844 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Melzer, N. et al. Excitotoxic neuronal cell death during an oligodendrocyte-directed CD8+ T cell attack in the CNS gray matter. J. Neuroinflamm. 10, 121 (2013).

    Article  Google Scholar 

  100. Lisak, R. P. et al. B cells from patients with multiple sclerosis induce cell death via apoptosis in neurons in vitro. J. Neuroimmunol. 309, 88–99 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Benjamins, J. A. Direct effects of secretory products of immune cells on neurons and glia. J. Neurol. Sci. 333, 30–36 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Benjamins, J. A. et al. Exosome-enriched fractions from MS B cells induce oligodendrocyte death. Neurol. Neuroimmunol. Neuroinflamm. 6, e550 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Calahorra, L., Camacho-Toledano, C., Serrano-Regal, M. P., Ortega, M. C. & Clemente, D. Regulatory cells in multiple sclerosis: from blood to brain. Biomedicines 10, 335 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pennati, A., Nylen, E. A., Duncan, I. D. & Galipeau, J. Regulatory B cells normalize CNS myeloid cell content in a mouse model of multiple sclerosis and promote oligodendrogenesis and remyelination. J. Neurosci. 40, 5105–5115 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Haindl, M. T. et al. Anti-CD20 treatment effectively attenuates cortical pathology in a rat model of widespread cortical demyelination. J. Neuroinflamm. 18, 138 (2021).

    Article  CAS  Google Scholar 

  106. Heß, K. et al. Lesion stage-dependent causes for impaired remyelination in MS. Acta Neuropathol. 140, 359–375 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Miron, V. E. & Franklin, R. J. M. Macrophages and CNS remyelination. J. Neurochem. 130, 165–171 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Locatelli, G. et al. Mononuclear phagocytes locally specify and adapt their phenotype in a multiple sclerosis model. Nat. Neurosci. 21, 1196–1208 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Jordao, M. J. C. et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363, eaat7554 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Kotter, M. R., Li, W. W., Zhao, C. & Franklin, R. J. Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J. Neurosci. 26, 328–332 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cantuti-Castelvetri, L. et al. Defective cholesterol clearance limits remyelination in the aged central nervous system. Science 359, 684–688 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Gouna, G. et al. TREM2-dependent lipid droplet biogenesis in phagocytes is required for remyelination. J. Exp. Med. 218, e20210227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lloyd, A. F. & Miron, V. E. The pro-remyelination properties of microglia in the central nervous system. Nat. Rev. Neurol. 15, 447–458 (2019).

    Article  PubMed  Google Scholar 

  114. Plemel, J. R., Manesh, S. B., Sparling, J. S. & Tetzlaff, W. Myelin inhibits oligodendroglial maturation and regulates oligodendrocytic transcription factor expression. Glia 61, 1471–1487 (2013).

    Article  PubMed  Google Scholar 

  115. Berghoff, S. A. et al. Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis. Nat. Neurosci. 24, 47–60 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Bogie, J. F. J. et al. Stearoyl-CoA desaturase-1 impairs the reparative properties of macrophages and microglia in the brain. J. Exp. Med. 217, e20191660 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Standiford, M. M., Grund, E. M. & Howe, C. L. Citrullinated myelin induces microglial TNFα and inhibits endogenous repair in the cuprizone model of demyelination. J. Neuroinflamm. 18, 305 (2021).

    Article  CAS  Google Scholar 

  118. Prineas, J. W. & Parratt, J. D. E. Multiple sclerosis: microglia, monocytes, and macrophage-mediated demyelination. J. Neuropathol. Exp. Neurol. 80, 975–996 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Larsen, P. H., Wells, J. E., Stallcup, W. B., Opdenakker, G. & Yong, V. W. Matrix metalloproteinase-9 facilitates remyelination in part by processing the inhibitory NG2 proteoglycan. J. Neurosci. 23, 11127–11135 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Stoffels, J. M. et al. Fibronectin aggregation in multiple sclerosis lesions impairs remyelination. Brain 136, 116–131 (2013).

    Article  PubMed  Google Scholar 

  121. Miron, V. E. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16, 1211–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Miron, V. E. & Franklin, R. J. Macrophages and CNS remyelination. J. Neurochem. 130, 165–171 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Mason, J. L., Langaman, C., Morell, P., Suzuki, K. & Matsushima, G. K. Episodic demyelination and subsequent remyelination within the murine central nervous system: changes in axon calibre. Neuropathol. Appl. Neurobiol. 27, 50–58 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Laflamme, N. et al. mCSF-induced microglial activation prevents myelin loss and promotes its repair in a mouse model of multiple sclerosis. Front. Cell Neurosci. 12, 178 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Pang, Y. et al. Lipopolysaccharide-activated microglia induce death of oligodendrocyte progenitor cells and impede their development. Neuroscience 166, 464–475 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Pasquini, L. A. et al. Galectin-3 drives oligodendrocyte differentiation to control myelin integrity and function. Cell Death Differ. 18, 1746–1756 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Selvaraju, R. et al. Osteopontin is upregulated during in vivo demyelination and remyelination and enhances myelin formation in vitro. Mol. Cell Neurosci. 25, 707–721 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Zabala, A. et al. P2X4 receptor controls microglia activation and favors remyelination in autoimmune encephalitis. EMBO Mol. Med. 10, e8743 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Cunha, M. I. et al. Pro-inflammatory activation following demyelination is required for myelin clearance and oligodendrogenesis. J. Exp. Med. 217, e20191390 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Strachan-Whaley, M., Rivest, S. & Yong, V. W. Interactions between microglia and T cells in multiple sclerosis pathobiology. J. Interferon Cytokine Res. 34, 615–622 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Cheli, V. T., Correale, J., Paez, P. M. & Pasquini, J. M. Iron metabolism in oligodendrocytes and astrocytes, implications for myelination and remyelination. ASN Neuro 12, 1759091420962681 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Almolda, B., Gonzalez, B. & Castellano, B. Activated microglial cells acquire an immature dendritic cell phenotype and may terminate the immune response in an acute model of EAE. J. Neuroimmunol. 223, 39–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Brambilla, R. The contribution of astrocytes to the neuroinflammatory response in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol. 137, 757–783 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Magliozzi, R. et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical patholgoy. Brain 130, 1089–1104 (2007).

    Article  PubMed  Google Scholar 

  135. Gorter, R. P. & Baron, W. Recent insights into astrocytes as therapeutic targets for demyelinating diseases. Curr. Opin. Pharmacol. 65, 102261 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Tognatta, R. et al. Astrocytes are required for oligodendrocyte survival and maintenance of myelin compaction and integrity. Front. Cell Neurosci. 14, 74 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Madadi, S. et al. Astrocyte ablation induced by La-aminoadipate (L-AAA) potentiates remyelination in a cuprizone demyelinating mouse model. Metab. Brain Dis. 34, 593–603 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Mayo, L. et al. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat. Med. 20, 1147–1156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Horng, S. et al. Astrocytic tight junctions control inflammatory CNS lesion pathogenesis. J. Clin. Invest. 127, 3136–3151 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Nicaise, A. M., Johnson, K. M., Willis, C. M., Guzzo, R. M. & Crocker, S. J. TIMP-1 promotes oligodendrocyte differentiation through receptor-mediated signaling. Mol. Neurobiol. 56, 3380–3392 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Saitta, K. S. et al. CHPG enhances BDNF and myelination in cuprizone-treated mice through astrocytic metabotropic glutamate receptor 5. Glia 69, 1950–1965 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Liddelow, S. A. & Barres, B. A. Reactive astrocytes: production, function, and therapeutic potential. Immunity 46, 957–967 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Ghorbani, S. et al. Versican promotes T helper 17 cytotoxic inflammation and impedes oligodendrocyte precursor cell remyelination. Nat. Commun. 13, 2445 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Domingues, H. S., Portugal, C. C., Socodato, R. & Relvas, J. B. Oligodendrocyte, astrocyte, and microglia crosstalk in myelin development, damage, and repair. Front. Cell Dev. Biol. 4, 71 (2016).

    PubMed  PubMed Central  Google Scholar 

  145. Clark, I. C. et al. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 372, 6540 (2021).

    Article  Google Scholar 

  146. Lombardi, M. et al. Detrimental and protective action of microglial extracellular vesicles on myelin lesions: astrocyte involvement in remyelination failure. Acta Neuropathol. 138, 987–1012 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hofman, M. A. Evolution of the human brain: when bigger is better. Front. Neuroanat. 8, 15 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Roth, G. & Dicke, U. Evolution of the brain and intelligence. Trends Cogn. Sci. 9, 250–257 (2005).

    Article  PubMed  Google Scholar 

  149. Craig, A. et al. Quantitative analysis of perinatal rodent oligodendrocyte lineage progression and its correlation with human. Exp. Neurol. 181, 231–240 (2003).

    Article  PubMed  Google Scholar 

  150. Yeung, M. S. et al. Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 159, 766–774 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Giedd, J. N. et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci. 2, 861–863 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Douvaras, P. et al. Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Rep. 3, 250–259 (2014).

    Article  CAS  Google Scholar 

  153. Wang, S. et al. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell 12, 252–264 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Windrem, M. S. et al. Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell 2, 553–565 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Windrem, M. S. et al. A competitive advantage by neonatally engrafted human glial progenitors yields mice whose brains are chimeric for human glia. J. Neurosci. 34, 16153–16161 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Buchet, D., Garcia, C., Deboux, C., Nait-Oumesmar, B. & Baron-Van, E. A. Human neural progenitors from different foetal forebrain regions remyelinate the adult mouse spinal cord. Brain 134, 1168–1183 (2011).

    Article  PubMed  Google Scholar 

  157. Chanoumidou, K., Mozafari, S., Baron-Van Evercooren, A. & Kuhlmann, T. Stem cell derived oligodendrocytes to study myelin diseases. Glia 68, 705–720 (2020).

    Article  PubMed  Google Scholar 

  158. Sim, F. J., Windrem, M. S. & Goldman, S. A. Fate determination of adult human glial progenitor cells. Neuron Glia Biol. 5, 45–55 (2009).

    Article  PubMed  Google Scholar 

  159. Marques, S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352, 1326–1329 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wolswijk, G. Oligodendrocyte precursor cells in the demyelinated spinal cord. Brain 125, 338–349 (2002).

    Article  PubMed  Google Scholar 

  161. Chang, A., Nishiyama, A., Peterson, J., Prineas, J. & Trapp, B. D. NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J. Neurosci. 20, 6404–6412 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kuhlmann, T., Remington, L., Maruschak, B., Owens, T. & Bruck, W. Nogo-A is a reliable oligodendroglial marker in adult human and mouse CNS and in demyelinated lesions. J. Neuropathol. Exp. Neurol. 66, 238–246 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Lurbke, A. et al. Limited TCF7L2 expression in MS lesions. PLoS One 8, e72822 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Fard, M. K. et al. BCAS1 expression defines a population of early myelinating oligodendrocytes in multiple sclerosis lesions. Sci. Transl. Med. 9, eaam7816 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Staugaitis, S. M. & Trapp, B. D. NG2-positive glia in the human central nervous system. Neuron Glia Biol. 5, 35–44 (2009).

    Article  PubMed  Google Scholar 

  166. Yeung, M. et al. Dynamics of oligodendrocyte generation in multiple sclerosis. Nature 566, 538–542 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Xing, Y. L. et al. Adult neural precursor cells from the subventricular zone contribute significantly to oligodendrocyte regeneration and remyelination. J. Neurosci. 34, 14128–14146 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Nait-Oumesmar, B. et al. Activation of the subventricular zone in multiple sclerosis: evidence for early glial progenitors. Proc. Natl Acad. Sci. USA 104, 4694–4699 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Tonietto, M. et al. Periventricular remyelination failure in multiple sclerosis: a substrate for neurodegeneration. Brain 146, 182–194 (2022).

    Article  Google Scholar 

  170. Bogie, J. F., Stinissen, P. & Hendriks, J. J. Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol. 128, 191–213 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Wolswijk, G. Oligodendrocyte survival, loss and birth in lesions of chronic-stage multiple sclerosis. Brain 123, 105–115 (2000).

    Article  PubMed  Google Scholar 

  172. Lloyd, A. F., Davies, C. L. & Miron, V. E. Microglia: origins, homeostasis, and roles in myelin repair. Curr. Opin. Neurobiol. 47, 113–120 (2017).

    Article  CAS  PubMed  Google Scholar 

  173. Hauser, S. L. et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 376, 221–234 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Montalban, X. et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N. Engl. J. Med. 376, 209–220 (2017).

    Article  CAS  PubMed  Google Scholar 

  175. Bhargava, P., Hartung, H. P. & Calabresi, P. A. Contribution of B cells to cortical damage in multiple sclerosis. Brain 145, 3363–3373 (2022).

    Article  PubMed  Google Scholar 

  176. Riedhammer, C. & Weissert, R. Antigen presentation, autoantigens, and immune regulation in multiple sclerosis and other autoimmune diseases. Front. Immunol. 6, 322 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Goebels, N. et al. Repertoire dynamics of autoreactive T cells in multiple sclerosis patients and healthy subjects: epitope spreading versus clonal persistence. Brain 123, 508–518 (2000).

    Article  PubMed  Google Scholar 

  178. Mentis, A. A., Dardiotis, E., Grigoriadis, N., Petinaki, E. & Hadjigeorgiou, G. M. Viruses and multiple sclerosis: from mechanisms and pathways to translational research opportunities. Mol. Neurobiol. 54, 3911–3923 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. Covre, L. P., De Maeyer, R. P. H., Gomes, D. C. O. & Akbar, A. N. The role of senescent T cells in immunopathology. Aging Cell 19, e13272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Mogilenko, D. A., Shchukina, I. & Artyomov, M. N. Immune ageing at single-cell resolution. Nat. Rev. Immunol. 22, 484–498 (2022).

    Article  CAS  PubMed  Google Scholar 

  181. Dutta, S. & Sengupta, P. Men and mice: relating their ages. Life Sci. 152, 244–248 (2016).

    Article  CAS  PubMed  Google Scholar 

  182. Pfeifenbring, S., Nessler, S., Wegner, C., Stadelmann, C. & Bruck, W. Remyelination after cuprizone-induced demyelination is accelerated in Juvenile Mice. J. Neuropathol. Exp. Neurol. 74, 756–766 (2015).

    Article  CAS  PubMed  Google Scholar 

  183. Brown, R. A., Narayanan, S., Banwell, B. & Arnold, D. L., Canadian Pediatric Demyelinating Disease Network. Magnetization transfer ratio recovery in new lesions decreases during adolescence in pediatric-onset multiple sclerosis patients. Neuroimage Clin. 6, 237–242 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Luo, J. X. X. et al. Human oligodendrocyte myelination potential; relation to age and differentiation. Ann. Neurol. 91, 178–191 (2022).

    Article  CAS  PubMed  Google Scholar 

  185. Dubois-Dalcq, M. et al. From fish to man: understanding endogenous remyelination in central nervous system demyelinating diseases. Brain 131, 1686–1700 (2008).

    Article  PubMed  Google Scholar 

  186. Flurkey, K., Currer, J.M. & Harrison, D.E. In The Mouse in Biomedical Research 2nd edn Vol. 3 Ch. 20 (eds Fox, J. G. et al.) 637–672 (Academic Press, 2007).

  187. Zhange, Y. et al. Inhibition of LINGO-1 promotes functional recovery after experimental spinal cord demyelination. Exp. Neurol. 266, 68–73 (2015).

    Article  Google Scholar 

  188. Yamazaki, R. et al. Pharmacological treatment promoting remyelination enhances motor function after internal capsule demyelination in mice. Neurochem. Int. 164, 105505 (2023).

    Article  CAS  PubMed  Google Scholar 

  189. Liu, L. et al. Ginsendoside Rg1 promotes remyelination and functional recovery in demyelinating disease by enhancing oligodendrocyte precursor cells-mediated myelin repair. Phytomedicine 106, 154309 (2022).

    Article  CAS  PubMed  Google Scholar 

  190. Lubetzki, C., Zalc, B., Williams, A., Stadelmann, C. & Stankoff, B. Remyelination in multiple sclerosis: from basic science to clinical translation. Lancet Neurol. 19, 678–688 (2020).

    Article  PubMed  Google Scholar 

  191. Stangel, M., Kuhlmann, T., Matthews, P. M. & Kilpatrick, T. J. Achievements and obstacles of remyelinating therapies in multiple sclerosis. Nat. Rev. Neurol. 13, 742–754 (2017).

    Article  PubMed  Google Scholar 

  192. Cree, B. A. C., Hartung, H. P. & Barnett, M. New drugs for multiple sclerosis: new treatment algorithms. Curr. Opin. Neurol. 35, 262–270 (2022).

    Article  PubMed  Google Scholar 

  193. Oh, J. & Bar-Or, A. Emerging therapies to target CNS pathophysiology in multiple sclerosis. Nat. Rev. Neurol. 18, 466–475 (2022).

    Article  PubMed  Google Scholar 

  194. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04002934 (2022).

  195. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03536559 (2022).

  196. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05122559 (2022).

  197. Kaufmann, M. et al. Identification of early neurodegenerative pathways in progressive multiple sclerosis. Nat. Neurosci. 25, 944–955 (2022).

    Article  CAS  PubMed  Google Scholar 

  198. Walker, J. M. et al. Differential protein expression in the hippocampi of resilient individuals identified by digital spatial profiling. Acta Neuropathol. Commun. 10, 23 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Kennedy-Darling, J. et al. Highly multiplexed tissue imaging using repeated oligonucleotide exchange reaction. Eur. J. Immunol. 51, 1262–1277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Kinkhabwala, A. et al. MACSima imaging cyclic staining (MICS) technology reveals combinatorial target pairs for CAR T cell treatment of solid tumors. Sci. Rep. 12, 1911 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Mei, F. et al. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat. Med. 20, 954–960 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Najm, F. J. et al. Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature 522, 216–220 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Deshmukh, V. A. et al. A regenerative approach to the treatment of multiple sclerosis. Nature 502, 327–332 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Himmelstein, D. S. et al. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. eLlife 6, e26726 (2017).

    Article  Google Scholar 

  205. Baranzini, S. E. et al. A biomedical open knowledge network harnesses the power of AI to understand deep human biology. AI Mag. 43, 46–58 (2022).

    PubMed  PubMed Central  Google Scholar 

  206. Mozafari, S. et al. Multiple sclerosis iPS-derived oligodendroglia conserve their properties to functionally interact with axons and glia in vivo. Sci. Adv. 6, eabc6983 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Osipovitch, M. et al. Human ESC-derived chimeric mouse models of Huntington’s disease reveal cell-intrinsic defects in glial progenitor cell differentiation. Cell Stem Cell 24, 107–122 (2019).

    Article  CAS  PubMed  Google Scholar 

  208. Wang, C. T., Barnett, M. & Barnett, Y. Imaging the multiple sclerosis lesion: insights into pathogenesis, progression and repair. Curr. Opin. Neurol. 32, 338–345 (2019).

    Article  PubMed  Google Scholar 

  209. Heidari, M. et al. Evoked potentials as a biomarker of remyelination. Proc. Natl Acad. Sci. USA 116, 27074–27083 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Green, A. J. et al. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet 390, 2481–2489 (2017).

    Article  CAS  PubMed  Google Scholar 

  211. Huang, J. K. et al. Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat. Neurosci. 14, 45–53 (2011).

    Article  CAS  PubMed  Google Scholar 

  212. Brown, J. W. L. et al. Safety and efficacy of bexarotene in patients with relapsing-remitting multiple sclerosis (CCMR One): a randomised, double-blind, placebo-controlled, parallel-group, phase 2a study. Lancet Neurol. 20, 709–720 (2021).

    Article  CAS  PubMed  Google Scholar 

  213. McMurran, C. E. et al. Remyelination in humans due to a retinoid-X receptor agonist is age-dependent. Ann. Clin. Transl. Neurol. 9, 1090–1094 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Demicheva, E. et al. Targeting repulsive guidance molecule A to promote regeneration and neuroprotection in multiple sclerosis. Cell Rep. 10, 1887–1898 (2015).

    Article  CAS  PubMed  Google Scholar 

  215. Tanabe, S., Fujita, Y., Ikuma, K. & Yamashita, T. Inhibiting repulsive guidance molecule-a suppresses secondary progression in mouse models of multiple sclerosis. Cell Death Dis. 9, 1061 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Kalluri, H. V. et al. Phase 1 evaluation of elezanumab (anti-RGMa mAb) in healthy and MS participants. Ann. Neurol. 93, 285–296 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Cho, Y. K. et al. Erythropoietin promotes oligodendrogenesis and myelin repair following lysolecithin-induced injury in spinal cord slice culture. Biochem. Biophys. Res. Commun. 417, 753–759 (2012).

    Article  CAS  PubMed  Google Scholar 

  218. Mirzaie, J., Raoofi, A., Jamalpoor, Z., Nezhadi, A. & Golmohammadi, R. Protective impacts of erythropoietin on myelinization of oligodendrocytes and Schwann cells in CNS and PNS following cuprizone-induced multiple sclerosis- histology, molecular, and functional studies. J. Chem. Neuroanat. 104, 101750 (2020).

    Article  CAS  PubMed  Google Scholar 

  219. Schreiber, K. et al. High-dose erythropoietin in patients with progressive multiple sclerosis: A randomized, placebo-controlled, phase 2 trial. Mult. Scler. 23, 675–685 (2017).

    Article  CAS  PubMed  Google Scholar 

  220. Lagrèze, W. A. et al. Safety and efficacy of erythropoietin for the treatment of patients with optic neuritis (TONE): a randomized, double-blind, multicentre, placebo-controlled study. Lancet Neurol. 20, 991–1000 (2021).

    Article  PubMed  Google Scholar 

  221. Filipi, M. & Jack, S. Interferons in the treatment of multiple sclerosis: a clinical efficacy, safety and tolerability update. Int. J. MS Care 22, 165–172 (2020).

    Article  PubMed  Google Scholar 

  222. Chen, Y. et al. Histamine receptor 3 negatively regulates oligodendrocyte differentiation and remyelination. PLoS One 12, e0189380 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Schwartzbach, C. J. et al. Lesion remyelinating activity of GSK239512 versus placebo in patients with relapsing-remitting multiple sclerosis: a randomised, single-blind, phase II study. J. Neurol. 264, 304–315 (2017).

    Article  CAS  PubMed  Google Scholar 

  224. Knott, E. P., Assi, M., Rao, S. N., Ghosh, M. & Pearse, D. D. Phosphodiesterase inhibitors as a therapeutic approach to neuroprotection and repair. Int. J. Mol. Sci. 18, 696 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Fox, R. J. et al. Phase 2 trial of ibudilast in progressive multiple sclerosis. N. Engl. J. Med. 379, 846–855 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Naismith, R. T. et al. Effects of Ibudilast on MRI measures in the phase 2 SPRINT-MS study. Neurology 96, e491–e500 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Cunniffe, N. et al. Systematic approach to selecting licensed drugs for repurposing in the treatment of progressive multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 92, 295–302 (2021).

    Article  PubMed  Google Scholar 

  228. Negrotto, L., Farez, M. F. & Correale, J. Immunologic effects of metformin and pioglitazone treatment on metabolic syndrome and multiple sclerosis. JAMA Neurol. 73, 520–528 (2016).

    Article  PubMed  Google Scholar 

  229. Mi, S. et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat. Neurosci. 8, 745–751 (2005).

    Article  CAS  PubMed  Google Scholar 

  230. Mi, S. et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat. Med. 13, 1228–1233 (2007).

    Article  CAS  PubMed  Google Scholar 

  231. Cadavid, D. et al. Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 16, 189–199 (2017).

    Article  CAS  PubMed  Google Scholar 

  232. Cadavid, D. et al. Safety and efficacy of opicinumab in patients with relapsing multiple sclerosis (SYNERGY): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 18, 845–856 (2019).

    Article  CAS  PubMed  Google Scholar 

  233. Mannioui, A. et al. The Xenopus tadpole: an in vivo model to screen drugs favoring remyelination. Mult. Scler. 24, 1421–1432 (2017).

    Article  PubMed  Google Scholar 

  234. Dietrich, M. et al. Increased remyelination and proregenerative microglia under siponimod therapy in mechanistic models. Neurol. Neuroimmunol. Neuroinflamm. 9, e1161 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Kappos, L. et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet 391, 1263–1273 (2018).

    Article  CAS  PubMed  Google Scholar 

  236. Arnold, D. L. et al. Effect of siponimod on magnetic resonance imaging measures of neurodegeneration and myelination in secondary progressive multiple sclerosis: Gray matter atrophy and magnetization transfer ratio analyses from the EXPAND phase 3 trial. Mult. Scler. 28, 1526–1540 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Lublin, F. et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet 387, 1075–1084 (2016).

    Article  CAS  PubMed  Google Scholar 

  238. Rolland, A. et al. The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses. J. Immunol. 176, 7636–7644 (2006).

    Article  CAS  PubMed  Google Scholar 

  239. Hartung, H. P. et al. Efficacy and safety of temelimab in multiple sclerosis: Results of a randomized phase 2b and extension study. Mult. Scler. 28, 429–440 (2022).

    Article  CAS  PubMed  Google Scholar 

  240. Kuhlmann, T. et al. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 133, 13–24 (2017).

    Article  CAS  PubMed  Google Scholar 

  241. Vallejo, A. et al. snPATHO-seq: unlocking the FFPE archives for single nucleus RNA profiling. Preprint at bioRxiv https://doi.org/10.1101/2022.08.23.505054 (2022).

    Article  Google Scholar 

  242. Chung, H. et al. SnFFPE-Seq: towards scalable single nucleus RNA-Seq of formalin-fixed paraffin-embedded (FFPE) tissue. Preprint at bioRxiv https://doi.org/10.1101/2022.08.25.505257 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Roberts, K. A. et al. Transcriptome-wide spatial RNA profiling maps the cellular architecture of the developing human neocortex. Preprint at bioRxiv https://doi.org/10.1101/2021.03.20.436265 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Kular, L. et al. DNA methylation changes in glial cells of the normal-appearing white matter in multiple sclerosis patients. Epigenetics 17, 1311–1330 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Fernandes, S. J. et al. Deep characterization of paired chromatin and transcriptomes in four immune cell types from multiple sclerosis patients. Epigenomics 13, 1607–1618 (2021).

    Article  CAS  PubMed  Google Scholar 

  246. Mecha, M., Carrillo-Salinas, F. J., Mestre, L., Feliu, A. & Guaza, C. Viral models of multiple sclerosis: neurodegeneration and demyelination in mice infected with Theiler’s virus. Prog. Neurobiol. 101-102, 46–64 (2013).

    Article  PubMed  Google Scholar 

  247. Psenicka, M. W., Smith, B. C., Tinkey, R. A. & Williams, J. L. Connecting neuroinflammation and neurodegeneration in multiple sclerosis: are oligodendrocyte precursor cells a nexus of disease? Front. Cell Neurosci. 15, 654284 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Karttunen, M. J. & Lyons, D. A. A drug-inducible transgenic zebrafish model for myelinating glial cell ablation. Methods Mol. Biol. 1936, 227–238 (2019).

    Article  CAS  PubMed  Google Scholar 

  249. Kim, S. et al. Promotion of remyelination by sulfasalazine in a transgenic zebrafish model of demyelination. Mol. Cell 38, 1013–1021 (2015).

    Article  CAS  Google Scholar 

  250. Radcliff, A. B., Heidari, M., Field, A. S. & Duncan, I. D. Feline irradiated diet-induced demyelination; a model of the neuropathology of sub-acute combined degeneration? PLoS One 15, e0228109 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Cassidy, J. P. et al. Leukoencephalomyelopathy in specific pathogen-free cats. Vet. Pathol. 44, 912–916 (2007).

    Article  CAS  PubMed  Google Scholar 

  252. Lee, N. J. et al. Potential role of iron in repair of inflammatory demyelinating lesions. J. Clin. Invest. 129, 4365–4376 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study was supported by the German Research Foundation (SFB128-B07 and KU1477/11-1 to T.K.; SFB128-A08 and SFB1009 A03 to L.K.) and the Interdisciplinary Center for Clinical Research Münster (KuT3/007/20 to T.K.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Tanja Kuhlmann.

Ethics declarations

Competing interests

L.K. received compensation for serving on Scientific Advisory Boards for Alexion, Biogen, Bristol-Myers Squibb, Genzyme, Horizon, Janssen, Merck Serono, Novartis, Roche and Viatris. She received speaker honoraria and travel support from Bayer, Biogen, Bristol-Myers Squibb, Genzyme, Grifols, Merck Serono, Novartis, Roche, Santhera and Teva. She receives research support from the German Research Foundation, the Interdisciplinary Center for Clinical Research (IZKF) Münster, IMF Münster, Biogen, Immunic AG, Novartis and Merck Serono. J.A. has no competing interests. T.K. received research funding from the German Research Foundation, IZKF Münster, National MS Society, Progressive MS Alliance, European Commission (H2020-MSCA-ITN-2018) and Novartis. She received compensation for serving on scientific advisory boards (Novartis) and speaker honoraria from Biogen, Novartis and Roche.

Peer review

Peer review information

Nature Reviews Neurology thanks Catherine Lubetzki, Richard Reynolds and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Inflammaging

Chronic, sterile, low-grade inflammation involving the innate immune system, which accelerates the physiological ageing process.

M1-polarized myeloid cells

Macrophages and microglial cells activated by LPS and cytokines such as IFNγ that contribute to inflammation, host defence and tumour cell elimination.

M2-polarized myeloid cells

Macrophages and microglial cells activated by cytokines, such as IL-4 and IL-13, that contribute to tissue repair, angiogenesis and immune modulation.

Magnetization transfer ratio

Magnetic imaging technique used for the evaluation of myelin content in the CNS.

Major histocompatibility complex (MHC) class I molecules

Molecules expressed on all nucleated cells that present peptides derived from cytosolic proteins to elicit an immune response via cytotoxic CD8+ T cells.

MHC class II molecules

Molecules expressed on professional antigen-presenting cells that present extracellular peptides to elicit an immune response via activation of CD4+ T helper cells.

Micropillar array

High-throughput screening platform where small, standardized pillars serve as ‘axon-like’ structures to enable concentric wrapping by myelin sheaths.

Normal-appearing white matter

Brain areas without focal demyelination.

Shadow plaques

Completely remyelinated multiple sclerosis lesions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klotz, L., Antel, J. & Kuhlmann, T. Inflammation in multiple sclerosis: consequences for remyelination and disease progression. Nat Rev Neurol 19, 305–320 (2023). https://doi.org/10.1038/s41582-023-00801-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-023-00801-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing