Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Acute kidney injury in patients with burns

Abstract

Burn injury is associated with a high risk of acute kidney injury (AKI) with a prevalence of AKI among patients with burns of 9–50%. Despite an improvement in burn injury survival in the past decade, AKI in patients with burns is associated with an extremely poor short-term and long-term prognosis, with a mortality of >80% among those with severe AKI. Factors that contribute to the development of AKI in patients with burns include haemodynamic alterations, burn-induced systemic inflammation and apoptosis, haemolysis, rhabdomyolysis, smoke inhalation injury, drug nephrotoxicity and sepsis. Early and late AKI after burn injury differ in their aetiologies and outcomes. Sepsis is the main driver of late AKI in patients with burns and late AKI has been associated with higher mortality than early AKI. Prevention of early AKI involves correction of hypovolaemia and avoidance of nephrotoxic drugs (for example, hydroxocobalamin), whereas prevention of late AKI involves prevention and early recognition of sepsis as well as avoidance of nephrotoxins. Treatment of AKI in patients with burns remains supportive, including prevention of fluid overload, treatment of electrolyte disturbance and use of kidney replacement therapy when indicated.

Key points

  • In patients with burns, acute kidney injury (AKI) is associated with an extremely poor short-term and long-term prognosis.

  • Alternative biomarkers of AKI such as cystatin C, proenkephalin and neutrophil gelatinase-associated lipocalin are associated with major adverse kidney events and improve the prediction of AKI.

  • Haemodynamic alterations, burn-induced systemic inflammation and apoptosis, haemolysis, rhabdomyolysis, smoke inhalation injury and drug nephrotoxicity are key factors that contribute to AKI in patients with burns.

  • Prevention of early AKI mostly involves the correction of hypovolaemia and the avoidance of nephrotoxins such as hydroxocobalamin.

  • Sepsis is the main driver of late AKI in patients with burns and early recognition and prevention of sepsis is central to improving outcomes.

  • As no specific treatment for burn-induced AKI exists, current treatment remains supportive, including prevention of fluid overload, treatment of electrolytes disturbance and use of kidney replacement therapy when indicated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathophysiology of AKI in patients with burns.
Fig. 2: Kidney insults and burden on renal reserve after burn injury.
Fig. 3: Haemodynamic profile and evolution after burn injury.
Fig. 4: Histological findings of oxalate nephropathy in a patient who received hydroxocobalamin after smoke inhalation injury.
Fig. 5: Role of biomarkers and artificial intelligence to guide the fluid resuscitation of severely ill patients with burns.

Similar content being viewed by others

References

  1. Yakupu, A. et al. The epidemiological characteristic and trends of burns globally. BMC Public. Health 22, 1596 (2022).

    PubMed  PubMed Central  Google Scholar 

  2. Peck, M., Molnar, J. & Swart, D. A global plan for burn prevention and care. Bull. World Health Organ. 87, 802–803 (2009).

    PubMed  PubMed Central  Google Scholar 

  3. Lionelli, G. T., Pickus, E. J., Beckum, O. K., Decoursey, R. L., & Korentager, R. A. A three decade analysis of factors affecting burn mortality in the elderly. Burns 31, 958–963 (2005).

    CAS  PubMed  Google Scholar 

  4. Stokes, M. A. R. & Johnson, W. D. Burns in the Third World: an unmet need. Ann. Burn. Fire Disasters 30, 243–246 (2017).

    CAS  Google Scholar 

  5. Folkestad, T. et al. Acute kidney injury in burn patients admitted to the intensive care unit: a systematic review and meta-analysis. Crit. Care 24, 2 (2020).

    PubMed  PubMed Central  Google Scholar 

  6. Kidney Disease: Improving Global Outcome (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2, 1–138 (2012).

    Google Scholar 

  7. Ostermann, M. et al. Recommendations on acute kidney injury biomarkers from the acute disease quality initiative consensus conference: a consensus statement. JAMA Netw. Open. 3, e2019209 (2020).

    PubMed  Google Scholar 

  8. Brusselaers, N. et al. Outcome of acute kidney injury in severe burns: a systematic review and meta-analysis. Intensive Care Med. 36, 915–925 (2010).

    PubMed  Google Scholar 

  9. Clark, A. et al. Acute kidney injury after burn. Burns 43, 898–908 (2017).

    PubMed  Google Scholar 

  10. Legrand, M. & Kellum, J. A. Serum creatinine in the critically ill patient with sepsis. JAMA 320, 2369–2370 (2018).

    PubMed  Google Scholar 

  11. Doi, K. et al. Reduced production of creatinine limits its use as marker of kidney injury in sepsis. J. Am. Soc. Nephrol. 20, 1217–1221 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Legrand, M. & Payen, D. Understanding urine output in critically ill patients. Ann. Intensive Care 1, 13 (2011).

    PubMed  PubMed Central  Google Scholar 

  13. Soussi, S. & Legrand, M. Hemodynamic coherence in patients with burns. Best. Pract. Res. Clin. Anaesthesiol. 30, 437–443 (2016).

    PubMed  Google Scholar 

  14. Legrand, M. et al. Management of severe thermal burns in the acute phase in adults and children. Anaesth. Crit. Care Pain. Med. 39, 253–267 (2020).

    PubMed  Google Scholar 

  15. Soussi, S., Dépret, F., Benyamina, M. & Legrand, M. Early hemodynamic management of critically ill burn patients. Anesthesiology 129, 583–589 (2018).

    PubMed  Google Scholar 

  16. Legrand, M. et al. Optimizing the design and analysis of future AKI trials. J. Am. Soc. Nephrol. 33, 1459–1470 (2022).

    PubMed  PubMed Central  Google Scholar 

  17. Dépret, F. et al. Prediction of major adverse kidney events in critically ill burn patients. Burns 44, 1887–1894 (2018).

    PubMed  Google Scholar 

  18. Yang, H. T. et al. Assessment of biochemical markers in the early post-burn period for predicting acute kidney injury and mortality in patients with major burn injury: comparison of serum creatinine, serum cystatin-C, plasma and urine neutrophil gelatinase-associated lipocalin. Crit. Care 18, R151 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. Ronco, C. et al. Neutrophil gelatinase-associated lipocalin: ready for routine clinical use? An international perspective. Blood Purif. 37, 271–285 (2014).

    CAS  PubMed  Google Scholar 

  20. Rakkolainen, I. & Vuola, J. Plasma NGAL predicts early acute kidney injury no earlier than s-creatinine or cystatin C in severely burned patients. Burns 42, 322–328 (2016).

    PubMed  Google Scholar 

  21. Chun, W. et al. Assessment of plasma neutrophil gelatinase-associated lipocalin for early detection of acute kidney injury and prediction of mortality in severely burned patients. J. Burn. Care Res. 39, 387–393 (2018).

    PubMed  Google Scholar 

  22. Tran, N. K. et al. Artificial intelligence and machine learning for predicting acute kidney injury in severely burned patients: a proof of concept. Burns 45, 1350–1358 (2019).

    PubMed  Google Scholar 

  23. Rashidi, H. H. et al. Early recognition of burn- and trauma-related acute kidney injury: a pilot comparison of machine learning techniques. Sci. Rep. 10, 205 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Ren, H. et al. Assessment of urinary kidney injury molecule-1 and interleukin-18 in the early post-burn period to predict acute kidney injury for various degrees of burn injury. BMC Nephrol. 16, 142 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. Khorashadi, M., Beunders, R., Pickkers, P. & Legrand, M. Proenkephalin: a new biomarker for glomerular filtration rate and acute kidney injury. Nephron 144, 655–661 (2020).

    CAS  PubMed  Google Scholar 

  26. Dépret, F. et al. PenKid measurement at admission is associated with outcome in severely ill burn patients. Burns 46, 1302–1309 (2020).

    PubMed  Google Scholar 

  27. Suresh, M. R. et al. Assessing the NephroCheck® test system in predicting the risk of death or dialysis in burn patients. J. Burn. Care Res. 41, 633–639 (2020).

    PubMed  Google Scholar 

  28. Hu, J. Y. et al. Relation between proteinuria and acute kidney injury in patients with severe burns. Crit. Care 16, R172 (2012).

    PubMed  PubMed Central  Google Scholar 

  29. Deen, W. M. What determines glomerular capillary permeability? J. Clin. Invest. 114, 1412–1414 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Deen, W. M., Lazzara, M. J. & Myers, B. D. Structural determinants of glomerular permeability. Am. J. Physiol. Renal Physiol. 281, F579–F596 (2001).

    CAS  PubMed  Google Scholar 

  31. Mariano, F. et al. Circulating plasma factors induce tubular and glomerular alterations in septic burns patients. Crit. Care 12, R42 (2008).

    PubMed  PubMed Central  Google Scholar 

  32. Inoue, Y. et al. Kidney and liver injuries after major burns in rats are prevented by resolvin D2. Crit. Care Med. 44, e241–e252 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Holm, C., Hörbrand, F., von Donnersmarck, G. H. & Mühlbauer, W. Acute renal failure in severely burned patients. Burns 25, 171–178 (1999).

    CAS  PubMed  Google Scholar 

  34. Thalji, S. Z., Kothari, A. N., Kuo, P. C. & Mosier, M. J. Acute kidney injury in burn patients: clinically significant over the initial hospitalization and 1 year after injury: an original retrospective cohort study. Ann. Surg. 266, 376–382 (2017).

    PubMed  Google Scholar 

  35. Zarbock, A. et al. Sepsis-associated acute kidney injury: consensus report of the 28th Acute Disease Quality Initiative workgroup. Nat. Rev. Nephrol. 19, 401–417 (2023).

    PubMed  Google Scholar 

  36. Chawla, L. S. et al. Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat. Rev. Nephrol. 13, 241–257 (2017).

    PubMed  Google Scholar 

  37. You, B. et al. Late-onset acute kidney injury is a poor prognostic sign for severe burn patients. Front. Surg. 9, 842999 (2022).

    PubMed  PubMed Central  Google Scholar 

  38. Chung, K. K. et al. Renal replacement therapy in severe burns: a multicenter observational study. J. Burn. Care Res. 39, 1017–1021 (2018).

    PubMed  PubMed Central  Google Scholar 

  39. Rakkolainen, I., Mustonen, K.-M. & Vuola, J. Long-term outcome after renal replacement therapy in severe burns. J. Burn. Care Res. 41, 866–870 (2020).

    PubMed  Google Scholar 

  40. Chi, Y., Liu, X. & Chai, J. A narrative review of changes in microvascular permeability after burn. Ann. Transl. Med. 9, 719 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lu, W., Chen, Y., Xia, Z. & Fang, Z. Modified Evans blue fluorimetry for determination of pulmonary vascular permeability in rats sustaining burns, and delayed fluid resuscitation of burn shock. Burns 23, 490–492 (1997).

    CAS  PubMed  Google Scholar 

  42. Soejima, K. et al. Role of nitric oxide in vascular permeability after combined burns and smoke inhalation injury. Am. J. Respir. Crit. Care Med. 163, 745–752 (2001).

    CAS  PubMed  Google Scholar 

  43. Barrow, R. E., Jeschke, M. G. & Herndon, D. N. Early fluid resuscitation improves outcomes in severely burned children. Resuscitation 45, 91–96 (2000).

    CAS  PubMed  Google Scholar 

  44. Guilabert, P. et al. Fluid resuscitation management in patients with burns: update. Br. J. Anaesth. 117, 284–296 (2016).

    CAS  PubMed  Google Scholar 

  45. Huang, Y., Zheng, J., Fan, P. & Zhang, X. Transfection of antisense p38α gene ameliorates myocardial cell injury mediated by hypoxia and burn serum. Burns 33, 599–605 (2007).

    PubMed  Google Scholar 

  46. Carlson, D. L., Maass, D. L., White, J., Sikes, P. & Horton, J. W. Caspase inhibition reduces cardiac myocyte dyshomeostasis and improves cardiac contractile function after major burn injury. J. Appl. Physiol. 103, 323–330 (2007).

    CAS  PubMed  Google Scholar 

  47. Horton, J. W., Tan, J., White, D. J. & Maass, D. L. Burn injury decreases myocardial Na-K-ATPase activity: role of PKC inhibition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R1684–R1692 (2007).

    CAS  PubMed  Google Scholar 

  48. Legrand, M. et al. Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit. Care 17, R278 (2013).

    PubMed  PubMed Central  Google Scholar 

  49. Li, A. T. et al. Biomarkers for the early diagnosis of sepsis in burns: systematic review and meta-analysis. Ann. Surg. 275, 654–662 (2022).

    PubMed  Google Scholar 

  50. Dudoignon, E., Dépret, F. & Legrand, M. Is the renin-angiotensin-aldosterone system good for the kidney in acute settings? Nephron 143, 179–183 (2019).

    CAS  PubMed  Google Scholar 

  51. Legrand, M. & Bokoch, M. P. The Yin and Yang of the renin-angiotensin-aldosterone system in acute kidney injury. Am. J. Respir. Crit. Care Med. 203, 1053–1055 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Dépret, F. et al. Circulating dipeptidyl peptidase-3 at admission is associated with circulatory failure, acute kidney injury and death in severely ill burn patients. Crit. Care 24, 168 (2020).

    PubMed  PubMed Central  Google Scholar 

  53. Kasaoka, S. et al. Peak value of blood myoglobin predicts acute renal failure induced by rhabdomyolysis. J. Crit. Care 25, 601–604 (2010).

    CAS  PubMed  Google Scholar 

  54. Ko, A. et al. Higher risk of acute kidney injury and death with rhabdomyolysis in severely burned patients. Surgery 171, 1412–1416 (2022).

    PubMed  Google Scholar 

  55. Stollwerck, P. L. et al. Rhabdomyolysis and acute renal failure in severely burned patients. Burns 37, 240–248 (2011).

    PubMed  Google Scholar 

  56. Chen, B. et al. Clinical characteristics and risk factors for severe burns complicated by early acute kidney injury. Burns 46, 1100–1106 (2020).

    PubMed  Google Scholar 

  57. Vermeulen Windsant, I. C. et al. Hemolysis is associated with acute kidney injury during major aortic surgery. Kidney Int. 77, 913–920 (2010).

    PubMed  Google Scholar 

  58. Vermeulen Windsant, I. C. et al. Hemolysis during cardiac surgery is associated with increased intravascular nitric oxide consumption and perioperative kidney and intestinal tissue damage. Front. Physiol. 5, 340 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. Shen, S. C., Ham, T. H. & Fleming, E. M. Studies on the destruction of red blood cells. N. Engl. J. Med. 229, 701–713 (1943).

    Google Scholar 

  60. Khorashadi, M., Bokoch, M. P. & Legrand, M. Is nitric oxide the forgotten nephroprotective treatment during cardiac surgery? Ann. Intensive Care 10, 22 (2020).

    PubMed  PubMed Central  Google Scholar 

  61. Dépret, F. et al. Undetectable haptoglobin is associated with major adverse kidney events in critically ill burn patients. Crit. Care 21, 245 (2017).

    PubMed  PubMed Central  Google Scholar 

  62. Jeschke, M. G. et al. Burn injury. Nat. Rev. Dis. Prim. 6, 1–25 (2020).

    Google Scholar 

  63. Oudemans-van Straaten, H. M. Circulating pro-apoptotic mediators in burn septic acute renal failure. Crit. Care 12, 126 (2008).

    PubMed  PubMed Central  Google Scholar 

  64. Guo, S. et al. Heme oxygenase-1 induction mitigates burn-associated early acute kidney injury via the TLR4 signaling pathway. Burns 48, 156–167 (2022).

    PubMed  Google Scholar 

  65. Guo, S. et al. Astaxanthin protects against early acute kidney injury in severely burned rats by inactivating the TLR4/MyD88/NF-κB axis and upregulating heme oxygenase-1. Sci. Rep. 11, 6679 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  66. Gunst, J. et al. Insufficient autophagy contributes to mitochondrial dysfunction, organ failure, and adverse outcome in an animal model of critical illness. Crit. Care Med. 41, 182–194 (2013).

    PubMed  Google Scholar 

  67. Vanhorebeek, I. et al. Hyperglycemic kidney damage in an animal model of prolonged critical illness. Kidney Int. 76, 512–520 (2009).

    CAS  PubMed  Google Scholar 

  68. Legrand, M., Mik, E. G., Johannes, T., Payen, D. & Ince, C. Renal hypoxia and dysoxia after reperfusion of the ischemic kidney. Mol. Med. 14, 502–516 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Legrand, M. et al. L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats. Am. J. Physiol. Renal Physiol. 296, F1109–F1117 (2009).

    CAS  PubMed  Google Scholar 

  70. Cruces, P. et al. Renal decapsulation prevents intrinsic renal compartment syndrome in ischemia-reperfusion-induced acute kidney injury: a physiologic approach. Crit. Care Med. 46, 216–222 (2018).

    PubMed  Google Scholar 

  71. Herrler, T. et al. The intrinsic renal compartment syndrome: new perspectives in kidney transplantation. Transplantation 89, 40–46 (2010).

    PubMed  Google Scholar 

  72. Calfee, C. S. et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir. Med. 6, 691–698 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Pickkers, P. et al. Acute kidney injury in the critically ill: an updated review on pathophysiology and management. Intensive Care Med. 47, 835–850 (2021).

    PubMed  PubMed Central  Google Scholar 

  74. Dépret, F. et al. Association between hydroxocobalamin administration and acute kidney injury after smoke inhalation: a multicenter retrospective study. Crit. Care 23, 421 (2019).

    PubMed  PubMed Central  Google Scholar 

  75. Legrand, M. et al. Risk of oxalate nephropathy with the use of cyanide antidote hydroxocobalamin in critically ill burn patients. Intensive Care Med. 42, 1080–1081 (2016).

    PubMed  Google Scholar 

  76. Evans, J., Pandya, A., Ding, Y. & Qunibi, W. Y. Hydroxocobalamin-induced oxalate nephropathy in a patient with smoke inhalation. Kidney Int. Rep. 6, 2228–2231 (2021).

    PubMed  PubMed Central  Google Scholar 

  77. Pruskowski, K. A., Britton, G. W. & Cancio, L. C. Outcomes after the administration of hydroxocobalamin. Int. J. Burn. Trauma. 10, 231–236 (2020).

    CAS  Google Scholar 

  78. Hamdini, L. et al. Hydroxocobalamin-induced oxalate nephropathy after smoke inhalation. J. Nephrol. 36, 1443–1445 (2023).

    CAS  PubMed  Google Scholar 

  79. Kıroğlu, O. E. et al. Residual NO modulates contractile responses and membrane potential in isolated rat mesenteric arteries. Nitric Oxide 71, 21–26 (2017).

    PubMed  Google Scholar 

  80. Baud, F. J. et al. Determinants of lactic acidosis in acute cyanide poisonings. Crit. Care Med. 46, e523–e529 (2018).

    CAS  PubMed  Google Scholar 

  81. Yamada, Y. et al. Examination of soluble Fas (sFas) and soluble Fas ligand (sFasL) in patients with burns. Burns 29, 799–802 (2003).

    PubMed  Google Scholar 

  82. Lin, J.-C., Chen, Z.-H., Chen, X.-D. & Wang, S.-B. Circulating sFasL levels predict the severity and outcome of burn injury: a prospective observational study. J. Surg. Res. 265, 1–10 (2021).

    CAS  PubMed  Google Scholar 

  83. Moins-Teisserenc, H. et al. Severe altered immune status after burn injury is associated with bacterial infection and septic shock. Front. Immunol. 12, 586195 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Legrand, M. & Rossignol, P. Cardiovascular consequences of acute kidney injury. N. Engl. J. Med. 382, 2238–2247 (2020).

    CAS  PubMed  Google Scholar 

  85. Faubel, S. & Edelstein, C. L. Mechanisms and mediators of lung injury after acute kidney injury. Nat. Rev. Nephrol. 12, 48–60 (2016).

    CAS  PubMed  Google Scholar 

  86. Lu, R., Kiernan, M. C., Murray, A., Rosner, M. H. & Ronco, C. Kidney-brain crosstalk in the acute and chronic setting. Nat. Rev. Nephrol. 11, 707–719 (2015).

    CAS  PubMed  Google Scholar 

  87. Prud’homme, M. et al. Acute kidney injury induces remote cardiac damage and dysfunction through the galectin-3 pathway. JACC Basic. Transl. Sci. 4, 717–732 (2019).

    PubMed  PubMed Central  Google Scholar 

  88. Dépret, F., Prud’homme, M. & Legrand, M. A role of remote organs effect in acute kidney injury outcome. Nephron 137, 273–276 (2017).

    PubMed  Google Scholar 

  89. Clemens, M. S. et al. Reciprocal risk of acute kidney injury and acute respiratory distress syndrome in critically ill burn patients. Crit. Care Med. 44, e915–e922 (2016).

    PubMed  Google Scholar 

  90. Boutin, L. et al. Elevated plasma galectin-3 is associated with major adverse kidney events and death after ICU admission. Crit. Care 26, 13 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Nagpal, A., Clingenpeel, M.-M., Thakkar, R. K., Fabia, R. & Lutmer, J. Positive cumulative fluid balance at 72h is associated with adverse outcomes following acute pediatric thermal injury. Burns 44, 1308–1316 (2018).

    PubMed  Google Scholar 

  92. Semler, M. W. et al. Balanced crystalloids versus saline in critically ill adults. N. Engl. J. Med. 378, 829–839 (2018).

    PubMed  PubMed Central  Google Scholar 

  93. Toporek, A. H. et al. Balanced crystalloids versus saline in critically ill adults with hyperkalemia or acute kidney injury: secondary analysis of a clinical trial. Am. J. Respir. Crit. Care Med. 203, 1322–1325 (2021).

    PubMed  PubMed Central  Google Scholar 

  94. Hammond, N. E. et al. Balanced crystalloids versus saline in critically ill adults — a systematic review with meta-analysis. NEJM Evid. 1, https://doi.org/10.1056/EVIDoa2100010 (2022).

  95. Chaussard, M. et al. Physiological response to fluid resuscitation with Ringer lactate versus Plasmalyte in critically ill burn patients. J. Appl. Physiol. 128, 709–714 (2020).

    CAS  PubMed  Google Scholar 

  96. Lindsey, L. et al. An adjusted ideal body weight index formula with Fresh Frozen Plasma (FFP) rescue decreases fluid creep during burn resuscitation. Ann. Burn. Fire Disasters 33, 216–223 (2020).

    CAS  Google Scholar 

  97. Liu, K. D. et al. Acute kidney injury in patients with acute lung injury: impact of fluid accumulation on classification of acute kidney injury and associated outcomes. Crit. Care Med. 39, 2665–2671 (2011).

    PubMed  PubMed Central  ADS  Google Scholar 

  98. Vagliano, I. et al. Machine learning models for predicting acute kidney injury: a systematic review and critical appraisal. Clin. Kidney J. 15, 2266–2280 (2022).

    PubMed  PubMed Central  Google Scholar 

  99. Arabidarrehdor, G. et al. Mathematical model of volume kinetics and renal function after burn injury and resuscitation. Burns 47, 371–386 (2021).

    PubMed  Google Scholar 

  100. Rizzo, J. A. et al. Initial results of the American Burn Association observational multicenter evaluation on the effectiveness of the burn navigator. J. Burn. Care Res. 43, 728–734 (2022).

    PubMed  Google Scholar 

  101. Fitzwater, J., Purdue, G. F., Hunt, J. L. & O’Keefe, G. E. The risk factors and time course of sepsis and organ dysfunction after burn trauma. J. Trauma. 54, 959–966 (2003).

    PubMed  Google Scholar 

  102. Zhang, P., Zou, B., Liou, Y.-C. & Huang, C. The pathogenesis and diagnosis of sepsis post burn injury. Burn. Trauma. 9, tkaa047 (2021).

    Google Scholar 

  103. Meza-Escobar, L. E., Rehou, S. & Jeschke, M. G. Sepsis definitions in burns. Surg. Infect. 22, 28–36 (2021).

    Google Scholar 

  104. Kallinen, O., Maisniemi, K., Böhling, T., Tukiainen, E. & Koljonen, V. Multiple organ failure as a cause of death in patients with severe burns. J. Burn. Care Res. 33, 206–211 (2012).

    PubMed  Google Scholar 

  105. Krishnan, P., Frew, Q., Green, A., Martin, R. & Dziewulski, P. Cause of death and correlation with autopsy findings in burns patients. Burns 39, 583–588 (2013).

    CAS  PubMed  Google Scholar 

  106. Burgess, M., Valdera, F., Varon, D., Kankuri, E. & Nuutila, K. The immune and regenerative response to burn injury. Cells 11, 3073 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Mastrogianni, M., Katsoulas, T., Galanis, P., Korompeli, A. & Myrianthefs, P. The impact of care bundles on Ventilator-Associated Pneumonia (VAP) prevention in adult ICUs: a systematic review. Antibiotics 12, 227 (2023).

    PubMed  PubMed Central  Google Scholar 

  108. Ong, Y. S., Samuel, M. & Song, C. Meta-analysis of early excision of burns. Burns 32, 145–150 (2006).

    PubMed  Google Scholar 

  109. Wong, L., Rajandram, R. & Allorto, N. Systematic review of excision and grafting in burns: comparing outcomes of early and late surgery in low and high-income countries. Burns 47, 1705–1713 (2021).

    PubMed  Google Scholar 

  110. Maurel, V. et al. Outcome and characteristics of invasive fungal infections in critically ill burn patients: a multicenter retrospective study. Mycoses 63, 535–542 (2020).

    PubMed  Google Scholar 

  111. Dépret, F. et al. Characteristics and prognosis of Herpesviridae-related pneumonia in critically ill burn patients. Burns 48, 1155–1165 (2022).

    PubMed  Google Scholar 

  112. Legrand, M. et al. Detection of circulating mucorales DNA in critically Ill burn patients: preliminary report of a screening strategy for early diagnosis and treatment. Clin. Infect. Dis. 63, 1312–1317 (2016).

    CAS  PubMed  Google Scholar 

  113. Dépret, F. et al. The A2B trial, antibiotic prophylaxis for excision-graft surgery in burn patients: a multicenter randomized double-blind study. Trials 21, 973 (2020).

    PubMed  PubMed Central  Google Scholar 

  114. Stottlemyer, B. A. et al. Expert consensus on the nephrotoxic potential of 195 medications in the non-intensive care setting: a modified Delphi method. Drug. Saf. 46, 677–687 (2023).

    PubMed  Google Scholar 

  115. Vauchel, T. et al. Impact of an Acinetobacter baumannii outbreak on kidney events in a burn unit: a targeted machine learning analysis. Am. J. Infect. Control. 47, 435–438 (2019).

    PubMed  Google Scholar 

  116. Ostermann, M., Bagshaw, S. M., Lumlertgul, N. & Wald, R. Indications for and timing of initiation of KRT. Clin. J. Am. Soc. Nephrol. 18, 113–120 (2023).

    PubMed  Google Scholar 

  117. Duan, Z., Cai, G., Li, J., Chen, F. & Chen, X. Meta-analysis of renal replacement therapy for burn patients: incidence rate, mortality, and renal outcome. Front. Med. 8, 708533 (2021).

    Google Scholar 

  118. Wald, R. et al. Delivering optimal renal replacement therapy to critically ill patients with acute kidney injury. Intensive Care Med. 48, 1368–1381 (2022).

    PubMed  Google Scholar 

  119. STARRT-AKI Investigators. et al. Timing of initiation of renal-replacement therapy in acute kidney injury. N. Engl. J. Med. 383, 240–251 (2020).

    Google Scholar 

  120. Ostermann, M. et al. Controversies in acute kidney injury: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) conference. Kidney Int. 98, 294–309 (2020).

    PubMed  PubMed Central  Google Scholar 

  121. Harel, Z. et al. Nephrologist follow-up improves all-cause mortality of severe acute kidney injury survivors. Kidney Int. 83, 901–908 (2013).

    PubMed  Google Scholar 

  122. Linden, K. et al. Extracorporeal blood purification in burns: a review. Burns 40, 1071–1078 (2014).

    PubMed  Google Scholar 

  123. Abraham, P., Monard, C., Schneider, A. & Rimmelé, T. Extracorporeal blood purification in burns: for whom, why, and how? Blood Purif. 52, 17–24 (2023).

    PubMed  Google Scholar 

  124. Linden, K. et al. Evaluation of the CytosorbTM hemoadsorptive column in a pig model of severe smoke and burn injury. Shock 44, 487–495 (2015).

    CAS  PubMed  Google Scholar 

  125. Zhang, G. et al. Efficacy and safety of blood purification in the treatment of deep burns: a systematic review and meta-analysis. Medicine 100, e23968 (2021).

    PubMed  PubMed Central  Google Scholar 

  126. Yin, F., Zhang, F., Liu, S. & Ning, B. The therapeutic effect of high-volume hemofiltration on sepsis: a systematic review and meta-analysis. Ann. Transl. Med. 8, 488 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Chung, K. K. et al. High-volume hemofiltration in adult burn patients with septic shock and acute kidney injury: a multicenter randomized controlled trial. Crit. Care 21, 289 (2017).

    PubMed  PubMed Central  Google Scholar 

  128. Gaudry, S. et al. Comparison of two delayed strategies for renal replacement therapy initiation for severe acute kidney injury (AKIKI 2): a multicentre, open-label, randomised, controlled trial. Lancet 397, 1293–1300 (2021).

    CAS  PubMed  Google Scholar 

  129. Assistance Publique — Hôpitaux de Paris. Impact of timing of surgery on outcome of severely ill burn patients. clinicaltrials.gov, https://clinicaltrials.gov/ct2/show/NCT02940171 (2023).

  130. Pickkers, P., Murray, P. T. & Ostermann, M. New drugs for acute kidney injury. Intensive Care Med. 48, 1796–1798 (2022).

    PubMed  PubMed Central  Google Scholar 

  131. Sen, S. et al. Whole blood neutrophil gelatinase-associated lipocalin predicts acute kidney injury in burn patients. J. Surg. Res. 196, 382–387 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Yavuz, S. et al. Neutrophil gelatinase associated lipocalin as an indicator of acute kidney injury and inflammation in burned children. Burns 40, 648–654 (2014).

    PubMed  Google Scholar 

  133. Kim, Y. et al. Diagnostic performance of plasma and urine neutrophil gelatinase-associated lipocalin, cystatin C, and creatinine for acute kidney injury in burn patients: a prospective cohort study. PLoS One 13, e0199600 (2018).

    PubMed  PubMed Central  Google Scholar 

  134. Hong, D. Y., Lee, J. H., Park, S. O., Baek, K. J. & Lee, K. R. Plasma neutrophil gelatinase-associated lipocalin as early biomarker for acute kidney injury in burn patients. J. Burn. Care Res. 34, e326–e332 (2013).

    PubMed  Google Scholar 

  135. Cai, X. et al. Serum cystatin C is an early biomarker for assessment of renal function in burn patients. Clin. Chem. Lab. Med. 50, 667–671 (2012).

    CAS  PubMed  Google Scholar 

  136. Asch, M. J. et al. Systemic and pulmonary hemodynamic changes accompanying thermal injury. Ann. Surg. 178, 218–221 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Matthieu Legrand.

Ethics declarations

Competing interests

M.O. has received Speaker honoraria from Fresenius Medical, Baxter and bioMérieux and research funding from Fresenius Medical, LaJolla Pharma and Baxter; these competing interests are not directly related to the topic of this Review. J.A.N. has received consulting fees from Baxter, Leadiant Biosciences and Outset. M.L. and A.T.C. report no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Kevin Chung, who co-reviewed with Nicholas Niazi, David Greenhalgh and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legrand, M., Clark, A.T., Neyra, J.A. et al. Acute kidney injury in patients with burns. Nat Rev Nephrol 20, 188–200 (2024). https://doi.org/10.1038/s41581-023-00769-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00769-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing