Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Primary aldosteronism: molecular medicine meets public health

Abstract

Primary aldosteronism is the most common single cause of hypertension and is potentially curable when only one adrenal gland is the culprit. The importance of primary aldosteronism to public health derives from its high prevalence but huge under-diagnosis (estimated to be <1% of all affected individuals), despite the consequences of poor blood pressure control by conventional therapy and enhanced cardiovascular risk. This state of affairs is attributable to the fact that the tools used for diagnosis or treatment are still those that originated in the 1970–1990s. Conversely, molecular discoveries have transformed our understanding of adrenal physiology and pathology. Many molecules and processes associated with constant adrenocortical renewal and interzonal metamorphosis also feature in aldosterone-producing adenomas and aldosterone-producing micronodules. The adrenal gland has one of the most significant rates of non-silent somatic mutations, with frequent selection of those driving autonomous aldosterone production, and distinct clinical presentations and outcomes for most genotypes. The disappearance of aldosterone synthesis and cells from most of the adult human zona glomerulosa is the likely driver of the mutational success that causes aldosterone-producing adenomas, but insights into the pathways that lead to constitutive aldosterone production and cell survival may open up opportunities for novel therapies.

Key points

  • Primary aldosteronism (PA) is a common cause of hypertension; it is potentially curable when caused by a unilateral aldosterone-producing adenoma (APA), but it can lead to resistant hypertension and a high cardiovascular risk in cases in which PA is undiagnosed.

  • Current clinical guidelines and practice centres on risky tests and procedures, such as saline suppression, adrenal sampling and surgery, and poorly tolerated drugs such as spironolactone; these practices have remained largely unchanged over the past 30 years.

  • By contrast, the discovery of somatic mutations over the past decade has identified these as the cause of autonomous aldosterone production in most patients with PA, including 80–90% of APAs; the identified mutations most commonly affect the ion-channel genes KCNJ5 and CACNA1D.

  • Several distinct genotype–phenotype patterns and emerging clinical surrogates for genotype suggest the potential for molecular discovery to predict individual patient outcomes, permitting rational stratification of interventions.

  • In vivo molecular ligands for aldosterone synthase have been validated for non-invasive PET CT detection of APAs; on the left side, ultrasound-guided endoscopic radiofrequency ablation of PET-imaged APAs seems to be a safe alternative to surgery.

  • Genetic deletion models suggest curative potential for the suppression, rather than blockade, of aldosterone synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The cause, impact, and reversal with treatment, of sporadic primary aldosteronism.
Fig. 2: Timeline of clinical and molecular advances in primary aldosteronism.
Fig. 3: The contribution of KCNJ5 mutations to the pathogenesis of primary aldosteronism.
Fig. 4: Germline and somatic mutations associated with primary aldosteronism.
Fig. 5: The plethora of CACNA1D mutations associated with aldosterone-producing adenomas and aldosterone-producing micronodules.
Fig. 6: A proposal for the evolutionary selection of aldosterone-producing adenomas and aldosterone-producing micronodules.

Similar content being viewed by others

References

  1. Simpson, S. A. et al. [Isolation from the adrenals of a new crystalline hormone with especially high effectiveness on mineral metabolism]. Experientia 9, 333–335 (1953).

    Article  CAS  PubMed  Google Scholar 

  2. Conn, J. W. & Louis, L. H. Primary aldosteronism, a new clinical entity. Ann. Intern. Med. 44, 1–15 (1956).

    Article  CAS  PubMed  Google Scholar 

  3. Andersen, G. S., Toftdahl, D. B., Lund, J. O., Strandgaard, S. & Nielsen, P. E. The incidence rate of phaeochromocytoma and Conn’s syndrome in Denmark, 1977–1981. J. Hum. Hypertens. 2, 187–189 (1988).

    CAS  PubMed  Google Scholar 

  4. Grell, G. A., Hanchard, B., Fletcher, P. R., Clarke, W. F. & Williams, W. Conn’s syndrome. Case report and a review of the syndrome of primary aldosteronism (SOPA). West Indian Med. J. 33, 48–54 (1984).

    CAS  PubMed  Google Scholar 

  5. Simpson, F. & Barnett, A. Primary aldosteronism (Conn’s syndrome): report of a case, and an analysis of published cases. Med. J. Aust. 1, 729–735 (1961).

    Article  Google Scholar 

  6. Merrell, R. C. Aldosterone-producing tumors (Conn’s syndrome). Semin. Surg. Oncol. 6, 66–70 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Kaplan, N. M. Hypokalemia in the hypertensive patient, with observations on the incidence of primary aldosteronism. Ann. Intern. Med. 66, 1079–1090 (1967).

    Article  CAS  PubMed  Google Scholar 

  8. Conn, J. W., Rovner, D. R., Cohen, E. L. & Nesbit, R. M. Normokalemic primary aldosteronism: its masquerade as essential hypertension. JAMA 195, 21–26 (1966).

    Article  Google Scholar 

  9. Rossi, G. P. et al. A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. J. Am. Coll. Cardiol. 48, 2293–2300 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Monticone, S. et al. Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J. Am. Coll. Cardiol. 69, 1811–1820 (2017).

    Article  PubMed  Google Scholar 

  11. Hundemer, G. L., Curhan, G. C., Yozamp, N., Wang, M. & Vaidya, A. Cardiometabolic outcomes and mortality in medically treated primary aldosteronism: a retrospective cohort study. Lancet Diabetes Endocrinol. 6, 51–59 (2018).

    Article  PubMed  Google Scholar 

  12. Monticone, S. et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 6, 41–50 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Williams, B. & Brown, M. J. Investigation of primary aldosteronism in patients with resistant hypertension — Authors’ reply. Lancet Diabetes Endocrinol. 6, 600–601 (2018).

    Article  PubMed  Google Scholar 

  14. Mulatero, P. et al. Guidelines for primary aldosteronism: uptake by primary care physicians in Europe. J. Hypertens. 34, 2253–2257 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Fernandes-Rosa, F. L., Boulkroun, S. & Zennaro, M. C. Somatic and inherited mutations in primary aldosteronism. J. Mol. Endocrinol. 59, R47–R63 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Nanba, K. et al. Targeted molecular characterization of aldosterone-producing adenomas in white Americans. J. Clin. Endocrinol. Metab. 103, 3869–3876 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. De Sousa, K. et al. Genetic, cellular, and molecular heterogeneity in adrenals with aldosterone-producing adenoma. Hypertension 75, 1034–1044 (2020).

    Article  PubMed  Google Scholar 

  18. Choi, M. et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 331, 768–772 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gomez-Sanchez, C. E. et al. Development of monoclonal antibodies against human CYP11B1 and CYP11B2. Mol. Cell Endocrinol. 383, 111–117 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, T. et al. Gene expression profiles in aldosterone-producing adenomas and adjacent adrenal glands. Eur. J. Endocrinol. 164, 613–619 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Azizan, E. A. et al. Microarray, qPCR, and KCNJ5 sequencing of aldosterone-producing adenomas reveal differences in genotype and phenotype between zona glomerulosa- and zona fasciculata-like tumors. J. Clin. Endocrinol. Metab. 97, E819–E829 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Azizan, E. A. et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat. Genet. 45, 1055–1060 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Kobuke, K. et al. Calneuron 1 Increased Ca2+ in the endoplasmic reticulum and aldosterone production in aldosterone-producing adenoma. Hypertension 71, 125–133 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Monticone, S. et al. Immunohistochemical, genetic and clinical characterization of sporadic aldosterone-producing adenomas. Mol. Cell Endocrinol. 411, 146–154 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Åkerström, T. et al. Novel somatic mutations and distinct molecular signature in aldosterone-producing adenomas. Endocr. Relat. Cancer 22, 735–744 (2015).

    Article  PubMed  Google Scholar 

  26. Takeda, M., Go, H., Imai, T., Nishiyama, T. & Morishita, H. Laparoscopic adrenalectomy for primary aldosteronism: report of initial ten cases. Surgery 115, 621–625 (1994).

    CAS  PubMed  Google Scholar 

  27. Dunnick, N. R. et al. CT in the diagnosis of primary aldosteronism: sensitivity in 29 patients. AJR Am. J. Roentgenol. 160, 321–324 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Young, W. F. et al. Role for adrenal venous sampling in primary aldosteronism. Surgery 136, 1227–1235 (2004).

    Article  PubMed  Google Scholar 

  29. Funder, J. W. et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 101, 1889–1916 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Hiramatsu, K. et al. A screening test to identify aldosterone-producing adenoma by measuring plasma renin activity. Results in hypertensive patients. Arch. Intern. Med. 141, 1589–1593 (1981).

    Article  CAS  PubMed  Google Scholar 

  31. Gros, R., Ding, Q., Liu, B., Chorazyczewski, J. & Feldman, R. D. Aldosterone mediates its rapid effects in vascular endothelial cells through GPER activation. Am. J. Physiol. Cell Physiol. 304, C532–C540 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Funder, J. W. Primary aldosteronism and salt. Pflugers Arch. 467, 587–594 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Funder, J. in Stress: Neuroendocrinology and Neurobiology 221–225 (Academic Press, 2017).

  34. Brown, J. M. et al. The unrecognized prevalence of primary aldosteronism: a cross-sectional study. Ann. Intern. Med. 173, 10–20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Drake, W. M. & Brown, M. J. in Oxford Textbook of Endocrinology and Diabetes 3rd edition (eds Wass, J. A. H. et al.) (Oxford University Press, 2022).

  36. Nishimoto, K. et al. Adrenocortical zonation in humans under normal and pathological conditions. J. Clin. Endocrinol. Metab. 95, 2296–2305 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Gomez-Sanchez, C. E. & Gomez-Sanchez, E. P. Immunohistochemistry of the adrenal in primary aldosteronism. Curr. Opin. Endocrinol. Diabetes Obes. 23, 242–248 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Omata, K. et al. Cellular and genetic causes of idiopathic hyperaldosteronism. Hypertension 72, 874–880 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Yizhak, K. et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science 364, eaaw0726 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lifton, R. P. et al. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 355, 262–265 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Geller, D. S. et al. A novel form of human mendelian hypertension featuring nonglucocorticoid-remediable aldosteronism. J. Clin. Endocrinol. Metab. 93, 3117–3123 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Burton, T. J. et al. Evaluation of the sensitivity and specificity of (11)C-metomidate positron emission tomography (PET)-CT for lateralizing aldosterone secretion by Conn’s adenomas. J. Clin. Endocrinol. Metab. 97, 100–109 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Laycock, K. et al. ‘Pseudo-failure’ of adrenal vein sampling due to cortisol co-secretion by KCNJ5-mutant adenoma, and prediction of complete clinical success by urine hybrid steroid assay. Endocrine Abstracts https://doi.org/10.1530/endoabs.91.OC1 (2023).

  44. Yamada, M. et al. KCNJ5 mutations in aldosterone- and cortisol-co-secreting adrenal adenomas. Endocr. J. 59, 735–741 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Gomez-Sanchez, C. E. & Oki, K. Minireview: potassium channels and aldosterone dysregulation: is primary aldosteronism a potassium channelopathy? Endocrinology 155, 47–55 (2014).

    Article  PubMed  Google Scholar 

  46. Chen, A. X., Nishimoto, K., Nanba, K. & Rainey, W. E. Potassium channels related to primary aldosteronism: expression similarities and differences between human and rat adrenals. Mol. Cell Endocrinol. 417, 141–148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maria, A. G. et al. Mosaicism for KCNJ5 causing early-onset primary aldosteronism due to bilateral adrenocortical hyperplasia. Am. J. Hypertens. 33, 124–130 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Cheng, C. J. et al. Novel KCNJ5 mutations in sporadic aldosterone-producing adenoma reduce Kir3.4 membrane abundance. J. Clin. Endocrinol. Metab. 100, E155–E163 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Murthy, M., Azizan, E. A., Brown, M. J. & O’Shaughnessy, K. M. Characterization of a novel somatic KCNJ5 mutation delI157 in an aldosterone-producing adenoma. J. Hypertens. 30, 1827–1833 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Charmandari, E. et al. A novel point mutation in the KCNJ5 gene causing primary hyperaldosteronism and early-onset autosomal dominant hypertension. J. Clin. Endocrinol. Metab. 97, E1532–E1539 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zheng, F. F. et al. A novel somatic mutation 145-147delETEinsK in KCNJ5 increases aldosterone production. J. Hum. Hypertens. 31, 756–759 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Kuppusamy, M. et al. A novel KCNJ5-insT149 somatic mutation close to, but outside, the selectivity filter causes resistant hypertension by loss of selectivity for potassium. J. Clin. Endocrinol. Metab. 99, E1765–E1773 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rege, J., Turcu, A. F. & Rainey, W. E. Primary aldosteronism diagnostics: KCNJ5 mutations and hybrid steroid synthesis in aldosterone-producing adenomas. Gland. Surg. 9, 3–13 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Scholl, U. I. et al. Hypertension with or without adrenal hyperplasia due to different inherited mutations in the potassium channel KCNJ5. Proc. Natl Acad. Sci. USA 109, 2533–2538 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Monticone, S. et al. A case of severe hyperaldosteronism caused by a de novo mutation affecting a critical salt bridge Kir3.4 residue. J. Clin. Endocrinol. Metab. 100, E114–E118 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Mulatero, P. et al. KCNJ5 mutations in European families with nonglucocorticoid remediable familial hyperaldosteronism. Hypertension 59, 235–240 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Monticone, S. et al. A novel Y152C KCNJ5 mutation responsible for familial hyperaldosteronism type III. J. Clin. Endocrinol. Metab. 98, E1861–E1865 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lenzini, L. et al. A meta-analysis of somatic KCNJ5 K+ channel mutations in 1636 patients with an aldosterone-producing adenoma. J. Clin. Endocrinol. Metab. 100, E1089–E1095 (2015).

    Article  PubMed  Google Scholar 

  59. Wang, B. et al. Prevalence and characterization of somatic mutations in Chinese aldosterone-producing adenoma patients. Medicine 94, e708 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nanba, K. et al. Genetic characteristics of aldosterone-producing adenomas in Blacks. Hypertension 73, 885–892 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Azizan, E. et al. Half of an unselected series of aldosterone-producing adenomas have somatic mutation of the KCNJ5 channel and a zona fasciculata profile. J. Hum. Hypertens. 25, 627 (2011).

  62. Okamura, T. et al. Characteristics of Japanese aldosterone-producing adenomas with KCNJ5 mutations. Endocr. J. 64, 39–47 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Wu, X. et al. [(11)C]metomidate PET-CT versus adrenal vein sampling for diagnosing surgically curable primary aldosteronism: a prospective, within-patient trial. Nat. Med. 29, 190–202 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhou, J. et al. Transcriptome pathway analysis of pathological and physiological aldosterone-producing human tissues. Hypertension 68, 1424–1431 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Maniero, C. et al. NEFM (Neurofilament Medium) Polypeptide, a marker for zona glomerulosa cells in human adrenal, inhibits D1R (Dopamine D1 Receptor)-mediated secretion of aldosterone. Hypertension 70, 357–364 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Maniero, C. A functional study on novel genes involved in regulating aldosterone secretion in normal human zona glomerulosa and in aldosterone-producing adenomas. Doctoral dissertation, University of Cambridge (2017).

  67. Beuschlein, F. et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat. Genet. 45, 440–444 (2013). 444e1–2.

    Article  CAS  PubMed  Google Scholar 

  68. Stindl, J. et al. Pathogenesis of adrenal aldosterone-producing adenomas carrying mutations of the Na+/K+-ATPase. Endocrinology 156, 4582–4591 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Meyer, D. J., Gatto, C. & Artigas, P. On the effect of hyperaldosteronism-inducing mutations in Na/K pumps. J. Gen. Physiol. 149, 1009–1028 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schlingmann, K. P. et al. Germline de novo mutations in ATP1A1 cause renal hypomagnesemia, refractory seizures, and intellectual disability. Am. J. Hum. Genet. 103, 808–816 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stregapede, F. et al. Hereditary spastic paraplegia is a novel phenotype for germline de novo ATP1A1 mutation. Clin. Genet. 97, 521–526 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Williams, T. A. et al. Somatic ATP1A1, ATP2B3, and KCNJ5 mutations in aldosterone-producing adenomas. Hypertension 63, 188–195 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Tauber, P. et al. Cellular pathophysiology of an adrenal adenoma-associated mutant of the plasma membrane Ca2+-ATPase ATP2B3. Endocrinology 157, 2489–2499 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Zanni, G. et al. Mutation of plasma membrane Ca2+ ATPase isoform 3 in a family with X-linked congenital cerebellar ataxia impairs Ca2+ homeostasis. Proc. Natl Acad. Sci. USA 109, 14514–14519 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Scholl, U. I. et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat. Genet. 45, 1050–1054 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Catterall, W. A. Signaling complexes of voltage-gated sodium and calcium channels. Neurosci. Lett. 486, 107–116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dutta, R. K., Söderkvist, P. & Gimm, O. Genetics of primary hyperaldosteronism. Endocr. Relat. Cancer 23, R437–R454 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Azizan, E. A. & Brown, M. J. Novel genetic determinants of adrenal aldosterone regulation. Curr. Opin. Endocrinol. Diabetes Obes. 23, 209–217 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Korah, H. E. & Scholl, U. I. an update on familial hyperaldosteronism. Horm. Metab. Res. 47, 941–946 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Tseng, C. S. et al. A novel somatic mutation of CACNA1H p.V1937M in unilateral primary hyperaldosteronism. Front. Endocrinol. 13, 816476 (2022).

    Article  Google Scholar 

  81. Nanba, K. et al. Somatic CACNA1H mutation as a cause of aldosterone-producing adenoma. Hypertension 75, 645–649 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Scholl, U. I. et al. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. Elife 4, e06315 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Scholl, U. I. et al. CLCN2 chloride channel mutations in familial hyperaldosteronism type II. Nat. Genet. 50, 349–354 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rege, J. et al. Identification of somatic mutations in CLCN2 in aldosterone-producing adenomas. J. Endocr. Soc. 4, bvaa123 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fernandes-Rosa, F. L. et al. A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism. Nat. Genet. 50, 355–361 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Dutta, R. K. et al. A somatic mutation in CLCN2 identified in a sporadic aldosterone-producing adenoma. Eur. J. Endocrinol. 181, K37–K41 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Teo, A. E. et al. Pregnancy, primary aldosteronism, and adrenal CTNNB1 mutations. N. Engl. J. Med. 373, 1429–1436 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Backman, S. et al. RNA sequencing provides novel insights into the transcriptome of aldosterone producing adenomas. Sci. Rep. 9, 6269 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Zhou, J. et al. Somatic mutations of GNA11 and GNAQ in CTNNB1-mutant aldosterone-producing adenomas presenting in puberty, pregnancy or menopause. Nat. Genet. 53, 1360–1372 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ayturk, U. M. et al. Somatic activating mutations in GNAQ and GNA11 are associated with congenital hemangioma. Am. J. Hum. Genet. 98, 1271 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Van Raamsdonk, C. D. et al. Mutations in GNA11 in uveal melanoma. N. Engl. J. Med. 363, 2191–2199 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Shirley, M. D. et al. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N. Engl. J. Med. 368, 1971–1979 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Saner-Amigh, K. et al. Elevated expression of luteinizing hormone receptor in aldosterone-producing adenomas. J. Clin. Endocrinol. Metab. 91, 1136–1142 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Rey, R. A. et al. Unexpected mosaicism of R201H-GNAS1 mutant-bearing cells in the testes underlie macro-orchidism without sexual precocity in McCune-Albright syndrome. Hum. Mol. Genet. 15, 3538–3543 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Wu, X. et al. Somatic intramembranous mutations of CADM1 in aldosterone-producing adenomas, and gap junction-dependent regulation of aldosterone production. Nat. Genet. (2023).

  96. Fujita, E., Urase, K., Soyama, A., Kouroku, Y. & Momoi, T. Distribution of RA175/TSLC1/SynCAM, a member of the immunoglobulin superfamily, in the developing nervous system. Brain Res. Dev. Brain Res. 154, 199–209 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Crumbley, C., Wang, Y., Kojetin, D. J. & Burris, T. P. Characterization of the core mammalian clock component, NPAS2, as a REV-ERBα/RORα target gene. J. Biol. Chem. 285, 35386–35392 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Laposky, A. & Turek, F. in Encyclopedia of Neuroscience 909–914 (Elsevier, 2009).

  99. Upton, T. J. U-RHYTHM microdialysis: towards ambulatory metabolodynamics. Doctoral dissertation, University of Otago (2021).

  100. Rege, J. et al. Zinc transporter somatic gene mutations cause primary aldosteronism. Preprint at bioRxiv https://doi.org/10.1101/2022.07.25.501443 (2022).

  101. Williams, T. A. et al. Visinin-like 1 is upregulated in aldosterone-producing adenomas with KCNJ5 mutations and protects from calcium-induced apoptosis. Hypertension 59, 833–839 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Felizola, S. J. et al. PCP4: a regulator of aldosterone synthesis in human adrenocortical tissues. J. Mol. Endocrinol. 52, 159–167 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Trejter, M. et al. Visinin-like peptide 1 in adrenal gland of the rat. Gene expression and its hormonal control. Peptides 63, 22–29 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Zhou, J. et al. DACH1, a zona glomerulosa selective gene in the human adrenal, activates transforming growth factor-β signaling and suppresses aldosterone secretion. Hypertension 65, 1103–1110 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Shaikh, L. H. et al. LGR5 activates noncanonical wnt signaling and inhibits aldosterone production in the human adrenal. J. Clin. Endocrinol. Metab. 100, E836–E844 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Teo, A. E. et al. Physiological and pathological roles in human adrenal of the glomeruli-defining matrix protein NPNT (Nephronectin). Hypertension 69, 1207–1216 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Nishimoto, K. et al. Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands. Proc. Natl Acad. Sci. USA 112, E4591–E4599 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Maniero, C. et al. ANO4 (Anoctamin 4) is a novel marker of zona glomerulosa that regulates stimulated aldosterone secretion. Hypertension 74, 1152–1159 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Vidal, V. et al. The adrenal capsule is a signaling center controlling cell renewal and zonation through Rspo3. Genes. Dev. 30, 1389–1394 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nanba, K. et al. Age-related autonomous aldosteronism. Circulation 136, 347–355 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. van de Wiel, E. et al. Changes of the CYP11B2 expressing zona glomerulosa in human adrenals from birth to 40 years of age. Hypertension 79, 2565–2572 (2022).

    Article  PubMed  Google Scholar 

  113. Lucas, C. et al. Loss of LGR4/GPR48 causes severe neonatal salt wasting due to disrupted WNT signaling altering adrenal zonation. J. Clin. Invest. 133, e164915 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hayashi, T. et al. Expression of aldosterone synthase CYP11B2 was inversely correlated with longevity. J. Steroid Biochem. Mol. Biol. 191, 105361 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Boulkroun, S. et al. Adrenal cortex remodeling and functional zona glomerulosa hyperplasia in primary aldosteronism. Hypertension 56, 885–892 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Williams, T. A. et al. International histopathology consensus for unilateral primary aldosteronism. J. Clin. Endocrinol. Metab. 106, 42–54 (2021).

    Article  PubMed  Google Scholar 

  117. Sun, N. et al. Mass spectrometry imaging establishes 2 distinct metabolic phenotypes of aldosterone-producing cell clusters in primary aldosteronism. Hypertension 75, 634–644 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Goodchild, E., Stoetaert, J., Drake, W., Linton, K. & Brown, M. J. OR09-05 expression of SLC35F1 in the plasma membrane of cells of aldosterone producing cell clusters (APCCs) and its possible role in aldosterone synthesis. J. Endocr. Soc. 4, OR09–05 (2020).

    Article  PubMed Central  Google Scholar 

  119. Markou, A. et al. Stress-induced aldosterone hyper-secretion in a substantial subset of patients with essential hypertension. J. Clin. Endocrinol. Metab. 100, 2857–2864 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Bogman, K. et al. Preclinical and early clinical profile of a highly selective and potent oral inhibitor of aldosterone synthase (CYP11B2). Hypertension 69, 189–196 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Nishimoto, K. et al. Case report: nodule development from subcapsular aldosterone-producing cell clusters causes hyperaldosteronism. J. Clin. Endocrinol. Metab. 101, 6–9 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Nishimoto, K. et al. Human adrenocortical remodeling leading to aldosterone-producing cell cluster generation. Int. J. Endocrinol. 2016, 7834356 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Baker, J. E. et al. Targeted RNA sequencing of adrenal zones using immunohistochemistry-guided capture of formalin-fixed paraffin-embedded tissue. Mol. Cell Endocrinol. 530, 111296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gene Expression Omnibus. Series GSE68889. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE68889 (2023).

  125. Ebermann, I. et al. Two truncating USH3A mutations, including one novel, in a German family with Usher syndrome. Mol. Vis. 13, 1539–1547 (2007).

    CAS  PubMed  Google Scholar 

  126. Khan, M. I. et al. CLRN1 mutations cause nonsyndromic retinitis pigmentosa. Ophthalmology 118, 1444–1448 (2011).

    Article  PubMed  Google Scholar 

  127. Audo, I. et al. A novel DFNB31 mutation associated with Usher type 2 syndrome showing variable degrees of auditory loss in a consanguineous Portuguese family. Mol. Vis. 17, 1598–1606 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Kersten, F. F. et al. Association of whirlin with Cav1.3 (α1D) channels in photoreceptors, defining a novel member of the usher protein network. Invest. Ophthalmol. Vis. Sci. 51, 2338–2346 (2010).

    Article  PubMed  Google Scholar 

  129. Platzer, J. et al. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102, 89–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Bai, Y. et al. Primary cilium in kidney development, function and disease. Front. Endocrinol. 13, 952055 (2022).

    Article  Google Scholar 

  131. Mackenzie, I. S. & Brown, M. J. Molecular and clinical investigations in patients with low-renin hypertension. Clin. Exp. Nephrol. 13, 1–8 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Arnaldi, G. et al. ACTH receptor mRNA in human adrenocortical tumors: overexpression in aldosteronomas. Endocr. Res. 24, 845–849 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. Assié, G. et al. Steroidogenesis in aldosterone-producing adenoma revisited by transcriptome analysis. J. Clin. Endocrinol. Metab. 90, 6638–6649 (2005).

    Article  PubMed  Google Scholar 

  134. Bassett, M. H. et al. Expression profiles for steroidogenic enzymes in adrenocortical disease. J. Clin. Endocrinol. Metab. 90, 5446–5455 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Fallo, F. et al. Quantitative assessment of CYP11B1 and CYP11B2 expression in aldosterone-producing adenomas. Eur. J. Endocrinol. 147, 795–802 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Schubert, B. et al. Angiotensin II type 1 receptor and ACTH receptor expression in human adrenocortical neoplasms. Clin. Endocrinol. 54, 627–632 (2001).

    Article  CAS  Google Scholar 

  137. Williams, T. A. et al. Teratocarcinoma-derived growth factor-1 is upregulated in aldosterone-producing adenomas and increases aldosterone secretion and inhibits apoptosis in vitro. Hypertension 55, 1468–1475 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Ye, P., Mariniello, B., Mantero, F., Shibata, H. & Rainey, W. E. G-protein-coupled receptors in aldosterone-producing adenomas: a potential cause of hyperaldosteronism. J. Endocrinol. 195, 39–48 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Yang, Y. et al. BEX1 is differentially expressed in aldosterone-producing adenomas and protects human adrenocortical cells from ferroptosis. Hypertension 77, 1647–1658 (2021).

    Article  CAS  PubMed  Google Scholar 

  140. GTEx Portal. GTEx Analysis Release V8 (dbGaP Accession phs000424.v8.p2. https://gtexportal.org/home/gene/KCNJ5 (2023).

  141. Papp, F. et al. TMEM266 is a functional voltage sensor regulated by extracellular Zn(2). Elife 8 https://doi.org/10.7554/elife.42372 (2019).

  142. Kawai, T. et al. Insight into the function of a unique voltage-sensor protein (TMEM266) and its short form in mouse cerebellum. Biochem. J. 479, 1127–1145 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Guagliardo, N. A. et al. TASK-3 channel deletion in mice recapitulates low-renin essential hypertension. Hypertension 59, 999–1005 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Barrett, P. Q. et al. Role of voltage-gated calcium channels in the regulation of aldosterone production from zona glomerulosa cells of the adrenal cortex. J. Physiol. 594, 5851–5860 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Le Floch, E. et al. Identification of risk loci for primary aldosteronism in genome-wide association studies. Nat. Commun. 13, 5198 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Spät, A., Rohács, T., Horváth, A., Szabadkai, G. & Enyedi, P. The role of voltage-dependent calcium channels in angiotensin-stimulated glomerulosa cells. Endocr. Res. 22, 569–576 (1996).

    Article  PubMed  Google Scholar 

  147. Davies, L. A. et al. TASK channel deletion in mice causes primary hyperaldosteronism. Proc. Natl Acad. Sci. USA 105, 2203–2208 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wannachalee, T., Lieberman, L. & Turcu, A. F. High prevalence of autonomous aldosterone production in hypertension: how to identify and treat it. Curr. Hypertens. Rep. 24, 123–132 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Silins, I. et al. First-in-human evaluation of [18F]CETO: a novel tracer for adrenocortical tumours. Eur. J. Nucl. Med Mol. Imaging 50, 398–409 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Goodchild, E. et al. in Endocrine Abstracts Vol. 86 (Bioscientifica, 2022).

  151. Sander, K. et al. Development of [18F]aldoview as the first highly selective aldosterone synthase pet tracer for imaging of primary hyperaldosteronism. J. Med. Chem. 64, 9321–9329 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hu, J. et al. Accuracy of gallium-68 pentixafor positron emission tomography-computed tomography for subtyping diagnosis of primary aldosteronism. JAMA Netw. Open. 6, e2255609 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Martín-de-Saavedra, M. D., Santos, M. D. & Penzes, P. Intercellular signaling by ectodomain shedding at the synapse. Trends Neurosci. 45, 483–498 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Guo, R. Q., Li, Y. M. & Li, X. G. Comparison of the radiofrequency ablation versus laparoscopic adrenalectomy for aldosterone-producing adenoma: a meta-analysis of perioperative outcomes and safety. Updates Surg. 73, 1477–1485 (2021).

    Article  PubMed  Google Scholar 

  155. Fintelmann, F. J. et al. Catecholamine surge during image-guided ablation of adrenal gland metastases: predictors, consequences, and recommendations for management. J. Vasc. Interv. Radiol. 27, 395–402 (2016).

    Article  PubMed  Google Scholar 

  156. Oguro, S. et al. Safety and feasibility of radiofrequency ablation using bipolar electrodes for aldosterone-producing adenoma: a multicentric prospective clinical study. Sci. Rep. 12, 14090 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhao, Z. et al. Catheter-based adrenal ablation remits primary aldosteronism: a randomized medication-controlled trial. Circulation 144, 580–582 (2021).

    Article  PubMed  Google Scholar 

  158. Argentesi, G. et al. in Endocrine Abstracts Vol. 86 (Bioscientifica, 2022).

  159. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT05405101 (2023).

  160. Brown, M. J. & Hopper, R. V. Calcium-channel blockade can mask the diagnosis of Conn’s syndrome. Postgrad. Med. J. 75, 235–236 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lee, G. et al. Homeostatic responses in the adrenal cortex to the absence of aldosterone in mice. Endocrinology 146, 2650–2656 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Kang, S. et al. CaV1.3-selective L-type calcium channel antagonists as potential new therapeutics for Parkinson’s disease. Nat. Commun. 3, 1146 (2012).

    Article  PubMed  Google Scholar 

  163. Xie, C. B. et al. Regulation of aldosterone secretion by Cav1.3. Sci. Rep. 6, 24697 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Scholl, U. I. et al. Macrolides selectively inhibit mutant KCNJ5 potassium channels that cause aldosterone-producing adenoma. J. Clin. Invest. 127, 2739–2750 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Cheng, K. et al. The developmental origin and the specification of the adrenal cortex in humans and cynomolgus monkeys. Sci. Adv. 8, eabn8485 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Freedman, B. D. et al. Adrenocortical zonation results from lineage conversion of differentiated zona glomerulosa cells. Dev. Cell 26, 666–673 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ludwig, L. S. et al. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell 176, 1325–1339.e22 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. N, M. P. et al. Improved SNV discovery in barcode-stratified scRNA-seq alignments. Genes 12, 1558 (2021).

    Article  Google Scholar 

  169. Bechmann, N., Berger, I., Bornstein, S. R. & Steenblock, C. Adrenal medulla development and medullary-cortical interactions. Mol. Cell Endocrinol. 528, 111258 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. Bornstein, S. R., Ehrhart-Bornstein, M. & Scherbaum, W. A. Morphological and functional studies of the paracrine interaction between cortex and medulla in the adrenal gland. Microsc. Res. Tech. 36, 520–533 (1997).

    Article  CAS  PubMed  Google Scholar 

  171. Brittain, J. M. et al. An atypical role for collapsin response mediator protein 2 (CRMP-2) in neurotransmitter release via interaction with presynaptic voltage-gated calcium channels. J. Biol. Chem. 284, 31375–31390 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Simms, B. A. & Zamponi, G. W. Trafficking and stability of voltage-gated calcium channels. Cell Mol. Life Sci. 69, 843–856 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Di Mattia, T. et al. FFAT motif phosphorylation controls formation and lipid transfer function of inter-organelle contacts. EMBO J. 39, e104369 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Gu, S. et al. Hair cell α9α10 nicotinic acetylcholine receptor functional expression regulated by ligand binding and deafness gene products. Proc. Natl Acad. Sci. USA 117, 24534–24544 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Freeman, M. W. et al. Phase 2 trial of baxdrostat for treatment-resistant hypertension. N. Engl. J. Med 388, 395–405 (2022).

    Article  PubMed  Google Scholar 

  176. Yao, X., Gao, S. & Yan, N. Structural basis for pore blockade of human voltage-gated calcium channel Ca(v)1.3 by motion sickness drug cinnarizine. Cell Res. 32, 946–948 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Felizola, S. J. et al. Pre-B lymphocyte protein 3 (VPREB3) expression in the adrenal cortex: precedent for non-immunological roles in normal and neoplastic human tissues. Endocr. Pathol. 26, 119–128 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Guiraldelli, M. F. et al. SHOC1 is a ERCC4-(HhH)2-like protein, integral to the formation of crossover recombination intermediates during mammalian meiosis. PLoS Genet. 14, e1007381 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Iwamori, T., Iwamori, N., Matsumoto, M., Ono, E. & Matzuk, M. M. Identification of KIAA1210 as a novel X-chromosome-linked protein that localizes to the acrosome and associates with the ectoplasmic specialization in testes. Biol. Reprod. 96, 469–477 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Iwamori, T., Iwamori, N., Matsumoto, M., Imai, H. & Ono, E. Novel localizations and interactions of intercellular bridge proteins revealed by proteomic profiling†. Biol. Reprod. 102, 1134–1144 (2020).

    Article  PubMed  Google Scholar 

  181. Ogle, B. M., Cascalho, M. & Platt, J. L. Biological implications of cell fusion. Nat. Rev. Mol. Cell Biol. 6, 567–575 (2005).

    Article  CAS  PubMed  Google Scholar 

  182. Sottile, F., Aulicino, F., Theka, I. & Cosma, M. P. Mesenchymal stem cells generate distinct functional hybrids in vitro via cell fusion or entosis. Sci. Rep. 6, 36863 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Jacobsen, B. M. et al. Spontaneous fusion with, and transformation of mouse stroma by, malignant human breast cancer epithelium. Cancer Res. 66, 8274–8279 (2006).

    Article  CAS  PubMed  Google Scholar 

  184. Mortensen, K., Lichtenberg, J., Thomsen, P. D. & Larsson, L. I. Spontaneous fusion between cancer cells and endothelial cells. Cell Mol. Life Sci. 61, 2125–2131 (2004).

    Article  CAS  PubMed  Google Scholar 

  185. Pfannkuche, K. Preface. in Cell Fusion: Overviews and Methods https://doi.org/10.1007/978-1-4939-2703-6 (Humana, 2015).

  186. Dörnen, J., Sieler, M., Weiler, J., Keil, S. & Dittmar, T. Cell fusion-mediated tissue regeneration as an inducer of polyploidy and aneuploidy. Int. J. Mol. Sci. 21, 1811 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Bornstein, S. R., Ehrhart-Bornstein, M. & Scherbaum, W. A. Ultrastructural evidence for cortico-chromaffin hybrid cells in rat adrenals? Endocrinology 129, 1113–1115 (1991).

    Article  CAS  PubMed  Google Scholar 

  188. Hanukoglu, I. Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells. Drug. Metab. Rev. 38, 171–196 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Ziegler, G. A., Vonrhein, C., Hanukoglu, I. & Schulz, G. E. The structure of adrenodoxin reductase of mitochondrial P450 systems: electron transfer for steroid biosynthesis. J. Mol. Biol. 289, 981–990 (1999).

    Article  CAS  PubMed  Google Scholar 

  190. Tadjine, M., Lampron, A., Ouadi, L. & Bourdeau, I. Frequent mutations of beta-catenin gene in sporadic secreting adrenocortical adenomas. Clin. Endocrinol. 68, 264–270 (2008).

    Article  CAS  Google Scholar 

  191. Hundemer, G. L., Curhan, G. C., Yozamp, N., Wang, M. & Vaidya, A. Incidence of atrial fibrillation and mineralocorticoid receptor activity in patients with medically and surgically treated primary aldosteronism. JAMA Cardiol. 3, 768–774 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  192. GTEx Portal. GTEx analysis release V8 (dbGaP accession phs000424.v8.p2). https://gtexportal.org/home/gene/KCNJ5 (accessed 10 April 2023).

  193. RCSB Protein Data Bank. Crystal structure of the G protein-gated inward rectifier K+ channel GIRK2 (Kir3.2) in complex with sodium and PIP2. https://www.rcsb.org/structure/3SYA (2023).

  194. Ortner, N. J. et al. De novo CACAN1D Ca2+ channelopathies: clinical phenotypes and molecular mechanism. Pflugers Arch. 472, 755–773 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. The Human Protein Atlas. SLC35F1. https://www.proteinatlas.org/ENSG00000196376-SLC35F1/tissue/adrenal+gland#img (2023).

  196. Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  197. Williams, T. A. et al. Genotype-specific steroid profiles associated with aldosterone-producing adenomas. Hypertension 67, 139–145 (2016).

    Article  CAS  PubMed  Google Scholar 

  198. Seccia, T. M., Caroccia, B., Gomez-Sanchez, E. P., Gomez-Sanchez, C. E. & Rossi, G. P. The biology of normal zona glomerulosa and aldosterone-producing adenoma: pathological implications. Endocr. Rev. 39, 1029–1056 (2018).

    PubMed  PubMed Central  Google Scholar 

  199. Lenders, J. W. M., Eisenhofer, G. & Reincke, M. Subtyping of patients with primary aldosteronism: an update. Horm. Metab. Res. 49, 922–928 (2017).

    Article  CAS  PubMed  Google Scholar 

  200. Eisenhofer, G. et al. Mass spectrometry-based adrenal and peripheral venous steroid profiling for subtyping primary aldosteronism. Clin. Chem. 62, 514–524 (2016).

    Article  PubMed  Google Scholar 

  201. Satoh, F. et al. Measurement of peripheral plasma 18-oxocortisol can discriminate unilateral adenoma from bilateral diseases in patients with primary aldosteronism. Hypertension 65, 1096–1102 (2015).

    Article  CAS  PubMed  Google Scholar 

  202. Vilela, L. A. P. et al. KCNJ5 somatic mutation is a predictor of hypertension remission after adrenalectomy for unilateral primary aldosteronism. J. Clin. Endocrinol. Metab. 104, 4695–4702 (2019).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

E.A.B.A.’s work is supported by the Ministry of Higher Education (MOHE) Malaysia, a Long-term Research Grant Scheme-Jejak Sarjana Ulung (LRGS-JSU), LRGS/1/2021/SKK15/UKM/02/2 (mentored by M.J.B); the Royal Society-Newton Advanced Fellowship, NA170257/FF-2018–033 (co-applicant with M.J.B.); and the UK-MY Joint Partnership on Noncommunicable Diseases 2019 program, NEWTON-MRC/2020/002 (co-applicant with M.J.B.). W.M.D.’s and M.J.B.’s work is supported by the National Institute for Health Research (NIHR, Efficacy and Mechanisms Evaluation project 14/145/09), Barts Charity (Project MGU0360), NIHR Integrated Academic Training Clinical Lectureship, the Medical Research Council (MR/S006869/1) and the British Heart Foundation (PG/16/40/32137). M.J.B. is also supported by the British Heart Foundation (Project MCPG1P3R and PhD studentship FS/14/75/31134) and NIHR Barts Biomedical Research Centre (BRC-1215–20022).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Morris J. Brown.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Celso Gomez-Sanchez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

GTEx portal: https://gtexportal.org/home/

RCSB Protein Data Bank: https://www.rcsb.org/

The Human Protein Atlas: www.proteinatlas.org

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizan, E.A.B., Drake, W.M. & Brown, M.J. Primary aldosteronism: molecular medicine meets public health. Nat Rev Nephrol 19, 788–806 (2023). https://doi.org/10.1038/s41581-023-00753-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00753-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing