Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sources, resolution and physiological relevance of R-loops and RNA–DNA hybrids

An Author Correction to this article was published on 05 May 2022

This article has been updated

Abstract

RNA–DNA hybrids are generated during transcription, DNA replication and DNA repair and are crucial intermediates in these processes. When RNA–DNA hybrids are stably formed in double-stranded DNA, they displace one of the DNA strands and give rise to a three-stranded structure called an R-loop. R-loops are widespread in the genome and are enriched at active genes. R-loops have important roles in regulating gene expression and chromatin structure, but they also pose a threat to genomic stability, especially during DNA replication. To keep the genome stable, cells have evolved a slew of mechanisms to prevent aberrant R-loop accumulation. Although R-loops can cause DNA damage, they are also induced by DNA damage and act as key intermediates in DNA repair such as in transcription-coupled repair and RNA-templated DNA break repair. When the regulation of R-loops goes awry, pathological R-loops accumulate, which contributes to diseases such as neurodegeneration and cancer. In this Review, we discuss the current understanding of the sources of R-loops and RNA–DNA hybrids, mechanisms that suppress and resolve these structures, the impact of these structures on DNA repair and genome stability, and opportunities to therapeutically target pathological R-loops.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sources of R-loops and other RNA–DNA hybrids (part I).
Fig. 2: Sources of R-loops and other RNA–DNA hybrids (part II).
Fig. 3: Effects of R-loops and RNA–DNA hybrids on genome stability.
Fig. 4: Mechanisms of R-loop suppression and resolution.
Fig. 5: Roles of R-loops and RNA–DNA hybrids in DNA repair.
Fig. 6: R-loops in pathology.
Fig. 7: Targeting R-loop-associated vulnerabilities in cancer therapy.

Similar content being viewed by others

Change history

References

  1. Crossley, M. P., Bocek, M. & Cimprich, K. A. R-loops as cellular regulators and genomic threats. Mol. Cell 73, 398–411 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Garcia-Muse, T. & Aguilera, A. R loops: from physiological to pathological roles. Cell 179, 604–618 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Niehrs, C. & Luke, B. Regulatory R-loops as facilitators of gene expression and genome stability. Nat. Rev. Mol. Cell Biol. 21, 167–178 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marnef, A. & Legube, G. R-loops as Janus-faced modulators of DNA repair. Nat. Cell Biol. 23, 305–313 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Stodola, J. L. & Burgers, P. M. Mechanism of lagging-strand DNA replication in eukaryotes. Adv. Exp. Med. Biol. 1042, 117–133 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Sanz, L. A. et al. Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals. Mol. Cell 63, 167–178 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, J. Y., Zhang, X., Fu, X. D. & Chen, L. R-ChIP for genome-wide mapping of R-loops by using catalytically inactive RNASEH1. Nat. Protoc. 14, 1661–1685 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chiang, H. C. et al. BRCA1-associated R-loop affects transcription and differentiation in breast luminal epithelial cells. Nucleic Acids Res. 47, 5086–5099 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gorthi, A. et al. EWS-FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma. Nature 555, 387–391 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Patel, P. S. et al. RNF168 regulates R-loop resolution and genomic stability in BRCA1/2-deficient tumors. J. Clin. Invest. https://doi.org/10.1172/JCI140105 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jones, S. E. et al. ATR is a therapeutic target in synovial sarcoma. Cancer Res. 77, 7014–7026 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ujvari, A. & Luse, D. S. RNA emerging from the active site of RNA polymerase II interacts with the Rpb7 subunit. Nat. Struct. Mol. Biol. 13, 49–54 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Ginno, P. A., Lott, P. L., Christensen, H. C., Korf, I. & Chedin, F. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol. Cell 45, 814–825 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Skourti-Stathaki, K., Proudfoot, N. J. & Gromak, N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol. Cell 42, 794–805 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Skourti-Stathaki, K., Kamieniarz-Gdula, K. & Proudfoot, N. J. R-loops induce repressive chromatin marks over mammalian gene terminators. Nature 516, 436–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boque-Sastre, R. et al. Head-to-head antisense transcription and R-loop formation promotes transcriptional activation. Proc. Natl Acad. Sci. USA 112, 5785–5790 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu, K., Chedin, F., Hsieh, C. L., Wilson, T. E. & Lieber, M. R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat. Immunol. 4, 442–451 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Stork, C. T. et al. Co-transcriptional R-loops are the main cause of estrogen-induced DNA damage. eLife 5, e17548 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kotsantis, P. et al. Increased global transcription activity as a mechanism of replication stress in cancer. Nat. Commun. 7, 13087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, L. et al. The Augmented R-loop is a unifying mechanism for myelodysplastic syndromes induced by high-risk splicing factor mutations. Mol. Cell 69, 412–425.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. El Hage, A., French, S. L., Beyer, A. L. & Tollervey, D. Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev. 24, 1546–1558 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Abraham, K. J. et al. Nucleolar RNA polymerase II drives ribosome biogenesis. Nature 585, 298–302 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. El Hage, A., Webb, S., Kerr, A. & Tollervey, D. Genome-wide distribution of RNA-DNA hybrids identifies RNase H targets in tRNA genes, retrotransposons and mitochondria. PLoS Genet. 10, e1004716 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E. & Lingner, J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318, 798–801 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Schoeftner, S. & Blasco, M. A. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat. Cell Biol. 10, 228–236 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Luke, B. & Lingner, J. TERRA: telomeric repeat-containing RNA. EMBO J. 28, 2503–2510 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arora, R. et al. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat. Commun. 5, 5220 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Feretzaki, M. et al. RAD51-dependent recruitment of TERRA lncRNA to telomeres through R-loops. Nature 587, 303–308 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Talbert, P. B. & Henikoff, S. Transcribing centromeres: noncoding RNAs and kinetochore assembly. Trends Genet. 34, 587–599 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Bobkov, G. O. M., Gilbert, N. & Heun, P. Centromere transcription allows CENP-A to transit from chromatin association to stable incorporation. J. Cell Biol. 217, 1957–1972 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McNulty, S. M., Sullivan, L. L. & Sullivan, B. A. Human centromeres produce chromosome-specific and array-specific alpha satellite transcripts that are complexed with CENP-A and CENP-C. Dev. Cell 42, 226–240.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kabeche, L., Nguyen, H. D., Buisson, R. & Zou, L. A mitosis-specific and R loop-driven ATR pathway promotes faithful chromosome segregation. Science 359, 108–114 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Giunta, S. et al. CENP-A chromatin prevents replication stress at centromeres to avoid structural aneuploidy. Proc. Natl Acad. Sci. USA 118, e2015634118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Smith, D. J. & Whitehouse, I. Intrinsic coupling of lagging-strand synthesis to chromatin assembly. Nature 483, 434–438 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gloor, J. W., Balakrishnan, L., Campbell, J. L. & Bambara, R. A. Biochemical analyses indicate that binding and cleavage specificities define the ordered processing of human Okazaki fragments by Dna2 and FEN1. Nucleic Acids Res. 40, 6774–6786 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bianchi, J. et al. PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication. Mol. Cell 52, 566–573 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garcia-Gomez, S. et al. PrimPol, an archaic primase/polymerase operating in human cells. Mol. Cell 52, 541–553 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reijns, M. A. et al. Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell 149, 1008–1022 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sparks, J. L. et al. RNase H2-initiated ribonucleotide excision repair. Mol. Cell 47, 980–986 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wei, W. et al. A role for small RNAs in DNA double-strand break repair. Cell 149, 101–112 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Francia, S. et al. Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature 488, 231–235 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pessina, F. et al. Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nat. Cell Biol. 21, 1286–1299 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sharma, S. et al. MRE11-RAD50-NBS1 complex is sufficient to promote transcription by RNA polymerase II at double-strand breaks by melting DNA ends. Cell Rep. 34, 108565 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, S. et al. RNA polymerase III is required for the repair of DNA double-strand breaks by homologous recombination. Cell 184, 1314–1329.e10 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Cohen, S. et al. Senataxin resolves RNA:DNA hybrids forming at DNA double-strand breaks to prevent translocations. Nat. Commun. 9, 533 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Teng, Y. et al. ROS-induced R loops trigger a transcription-coupled but BRCA1/2-independent homologous recombination pathway through CSB. Nat. Commun. 9, 4115 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Holt, I. J. The mitochondrial R-loop. Nucleic Acids Res. 47, 5480–5489 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Falkenberg, M. Mitochondrial DNA replication in mammalian cells: overview of the pathway. Essays Biochem. 62, 287–296 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lima, W. F. et al. Viable RNaseH1 knockout mice show RNaseH1 is essential for R loop processing, mitochondrial and liver function. Nucleic Acids Res. 44, 5299–5312 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Silva, S., Camino, L. P. & Aguilera, A. Human mitochondrial degradosome prevents harmful mitochondrial R loops and mitochondrial genome instability. Proc. Natl Acad. Sci. USA 115, 11024–11029 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

    Article  PubMed  CAS  Google Scholar 

  53. Jiang, F. et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351, 867–871 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gaudelli, N. M. et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xiao, Y. et al. Structure basis for directional r-loop formation and substrate handover mechanisms in type I CRISPR-Cas System. Cell 170, e11 (2017).

    Article  CAS  Google Scholar 

  57. Zhang, B. et al. Mechanistic insights into the R-loop formation and cleavage in CRISPR-Cas12i1. Nat. Commun. 12, 3476 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Gan, W. et al. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev. 25, 2041–2056 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hamperl, S., Bocek, M. J., Saldivar, J. C., Swigut, T. & Cimprich, K. A. Transcription-replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses. Cell 170, 774–786.e19 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lang, K. S. et al. Replication-transcription conflicts generate R-loops that orchestrate bacterial stress survival and pathogenesis. Cell 170, 787–799.e18 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Matos, D. A. et al. ATR protects the genome against R Loops through a MUS81-triggered feedback loop. Mol. Cell 77, 514–527.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Promonet, A. et al. Topoisomerase 1 prevents replication stress at R-loop-enriched transcription termination sites. Nat. Commun. 11, 3940 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee, W. T. C. et al. Single-molecule imaging reveals replication fork coupled formation of G-quadruplex structures hinders local replication stress signaling. Nat. Commun. 12, 2525 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kotsantis, P. et al. RTEL1 Regulates G4/R-loops to avert replication-transcription collisions. Cell Rep. 33, 108546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Drosopoulos, W. C., Kosiyatrakul, S. T. & Schildkraut, C. L. BLM helicase facilitates telomere replication during leading strand synthesis of telomeres. J. Cell Biol. 210, 191–208 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sarkies, P. et al. FANCJ coordinates two pathways that maintain epigenetic stability at G-quadruplex DNA. Nucleic Acids Res. 40, 1485–1498 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Neil, A. J., Liang, M. U., Khristich, A. N., Shah, K. A. & Mirkin, S. M. RNA-DNA hybrids promote the expansion of Friedreich’s ataxia (GAA)n repeats via break-induced replication. Nucleic Acids Res. 46, 3487–3497 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Loomis, E. W., Sanz, L. A., Chedin, F. & Hagerman, P. J. Transcription-associated R-loop formation across the human FMR1 CGG-repeat region. PLoS Genet. 10, e1004294 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Castellano-Pozo, M. et al. R loops are linked to histone H3 S10 phosphorylation and chromatin condensation. Mol. Cell 52, 583–590 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Bayona-Feliu, A., Casas-Lamesa, A., Reina, O., Bernues, J. & Azorin, F. Linker histone H1 prevents R-loop accumulation and genome instability in heterochromatin. Nat. Commun. 8, 283 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Sollier, J. et al. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol. Cell 56, 777–785 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cristini, A. et al. Dual processing of R-loops and topoisomerase I induces transcription-dependent DNA double-strand breaks. Cell Rep. 28, e3166 (2019).

    Article  CAS  Google Scholar 

  73. Buisson, R., Lawrence, M. S., Benes, C. H. & Zou, L. APOBEC3A and APOBEC3B activities render cancer cells susceptible to ATR inhibition. Cancer Res. 77, 4567–4578 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cerritelli, S. M. et al. Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice. Mol. Cell 11, 807–815 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Bubeck, D. et al. PCNA directs type 2 RNase H activity on DNA replication and repair substrates. Nucleic Acids Res. 39, 3652–3666 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kind, B. et al. Altered spatio-temporal dynamics of RNase H2 complex assembly at replication and repair sites in Aicardi-Goutieres syndrome. Hum. Mol. Genet. 23, 5950–5960 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Lockhart, A. et al. RNase H1 and H2 are differentially regulated to process RNA-DNA hybrids. Cell Rep. 29, 2890–2900.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Zatreanu, D. et al. Elongation factor TFIIS prevents transcription stress and R-loop accumulation to maintain genome stability. Mol. Cell 76, 57–69.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, X. & Manley, J. L. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122, 365–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Chakraborty, P., Huang, J. T. J. & Hiom, K. DHX9 helicase promotes R-loop formation in cells with impaired RNA splicing. Nat. Commun. 9, 4346 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Sorrells, S. et al. Spliceosomal components protect embryonic neurons from R-loop-mediated DNA damage and apoptosis. Dis. Model. Mech. 11, dmm031583 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Puhringer, T. et al. Structure of the human core transcription-export complex reveals a hub for multivalent interactions. eLife 9, e61503 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Salas-Armenteros, I. et al. Human THO-Sin3A interaction reveals new mechanisms to prevent R-loops that cause genome instability. EMBO J. 36, 3532–3547 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bhatia, V. et al. BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature 511, 362–365 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Nojima, T. et al. Deregulated expression of mammalian lncRNA through Loss of SPT6 Induces R-loop formation, replication stress, and cellular senescence. Mol. Cell 72, 970–984.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pefanis, E. et al. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell 161, 774–789 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Manzo, S. G. et al. DNA Topoisomerase I differentially modulates R-loops across the human genome. Genome Biol. 19, 100 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Hatchi, E. et al. BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol. Cell 57, 636–647 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jurga, M., Abugable, A. A., Goldman, A. S. H. & El-Khamisy, S. F. USP11 controls R-loops by regulating senataxin proteostasis. Nat. Commun. 12, 5156 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Perez-Calero, C. et al. UAP56/DDX39B is a major cotranscriptional RNA-DNA helicase that unwinds harmful R loops genome-wide. Genes Dev. 34, 898–912 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Song, C., Hotz-Wagenblatt, A., Voit, R. & Grummt, I. SIRT7 and the DEAD-box helicase DDX21 cooperate to resolve genomic R loops and safeguard genome stability. Genes Dev. 31, 1370–1381 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cristini, A., Groh, M., Kristiansen, M. S. & Gromak, N. RNA/DNA hybrid interactome identifies DXH9 as a molecular player in transcriptional termination and R-loop-associated DNA damage. Cell Rep. 23, 1891–1905 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chakraborty, P. & Grosse, F. Human DHX9 helicase preferentially unwinds RNA-containing displacement loops (R-loops) and G-quadruplexes. DNA Repair 10, 654–665 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Rivosecchi, J. et al. Senataxin homologue Sen1 is required for efficient termination of RNA polymerase III transcription. EMBO J. 38, e101955 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Osmundson, J. S., Kumar, J., Yeung, R. & Smith, D. J. Pif1-family helicases cooperatively suppress widespread replication-fork arrest at tRNA genes. Nat. Struct. Mol. Biol. 24, 162–170 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Tran, P. L. T. et al. PIF1 family DNA helicases suppress R-loop mediated genome instability at tRNA genes. Nat. Commun. 8, 15025 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zhang, X. et al. Attenuation of RNA polymerase II pausing mitigates BRCA1-associated R-loop accumulation and tumorigenesis. Nat. Commun. 8, 15908 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Shivji, M. K. K., Renaudin, X., Williams, C. H. & Venkitaraman, A. R. BRCA2 regulates transcription elongation by RNA polymerase II to prevent R-loop accumulation. Cell Rep. 22, 1031–1039 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gomez-Gonzalez, B., Sessa, G., Carreira, A. & Aguilera, A. A new interaction between BRCA2 and DDX5 promotes the repair of DNA breaks at transcribed chromatin. Mol. Cell Oncol. 8, 1910474 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Bayona-Feliu, A., Barroso, S., Munoz, S. & Aguilera, A. The SWI/SNF chromatin remodeling complex helps resolve R-loop-mediated transcription-replication conflicts. Nat. Genet. 53, 1050–1063 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Madireddy, A. et al. FANCD2 facilitates replication through common fragile sites. Mol. Cell 64, 388–404 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Okamoto, Y. et al. SLFN11 promotes stalled fork degradation that underlies the phenotype in Fanconi anemia cells. Blood 137, 336–348 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liang, Z. et al. Binding of FANCI-FANCD2 complex to RNA and R-loops stimulates robust FANCD2 monoubiquitination. Cell Rep. 26, 564–572.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nguyen, H. D. et al. Functions of replication protein A as a sensor of R loops and a regulator of RNaseH1. Mol. Cell 65, 832–847.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Makharashvili, N. et al. Sae2/CtIP prevents R-loop accumulation in eukaryotic cells. eLife 7, e42733 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Pan, X. et al. FANCM suppresses DNA replication stress at ALT telomeres by disrupting TERRA R-loops. Sci. Rep. 9, 19110 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Silva, B. et al. FANCM limits ALT activity by restricting telomeric replication stress induced by deregulated BLM and R-loops. Nat. Commun. 10, 2253 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Tan, J., Wang, X., Phoon, L., Yang, H. & Lan, L. Resolution of ROS-induced G-quadruplexes and R-loops at transcriptionally active sites is dependent on BLM helicase. FEBS Lett. 594, 1359–1367 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Pan, X., Ahmed, N., Kong, J. & Zhang, D. Breaking the end: target the replication stress response at the ALT telomeres for cancer therapy. Mol. Cell Oncol. 4, e1360978 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Alzu, A. et al. Senataxin associates with replication forks to protect fork integrity across RNA-polymerase-II-transcribed genes. Cell 151, 835–846 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kim, S. et al. ATAD5 restricts R-loop formation through PCNA unloading and RNA helicase maintenance at the replication fork. Nucleic Acids Res. 48, 7218–7238 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Hodroj, D. et al. An ATR-dependent function for the Ddx19 RNA helicase in nuclear R-loop metabolism. EMBO J. 36, 1182–1198 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chang, E. Y. et al. MRE11-RAD50-NBS1 promotes Fanconi anemia R-loop suppression at transcription-replication conflicts. Nat. Commun. 10, 4265 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Barroso, S. et al. The DNA damage response acts as a safeguard against harmful DNA-RNA hybrids of different origins. EMBO Rep. 20, e47250 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Chappidi, N. et al. Fork cleavage-religation cycle and active transcription mediate replication restart after fork stalling at co-transcriptional R-loops. Mol. Cell 77, 528–541.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Svikovic, S. et al. R-loop formation during S phase is restricted by PrimPol-mediated repriming. EMBO J. 38, e99793 (2019).

    Article  PubMed  CAS  Google Scholar 

  117. Tsai, S. et al. ARID1A regulates R-loop associated DNA replication stress. PLoS Genet. 17, e1009238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Prendergast, L. et al. Resolution of R-loops by INO80 promotes DNA replication and maintains cancer cell proliferation and viability. Nat. Commun. 11, 4534 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Herrera-Moyano, E., Mergui, X., Garcia-Rubio, M. L., Barroso, S. & Aguilera, A. The yeast and human FACT chromatin-reorganizing complexes solve R-loop-mediated transcription-replication conflicts. Genes Dev. 28, 735–748 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sanchez, A. et al. Transcription-replication conflicts as a source of common fragile site instability caused by BMI1-RNF2 deficiency. PLoS Genet. 16, e1008524 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Klusmann, I. et al. Chromatin modifiers Mdm2 and RNF2 prevent RNA:DNA hybrids that impair DNA replication. Proc. Natl Acad. Sci. USA 115, E11311 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Singh, D. K. et al. MOF suppresses replication stress and contributes to resolution of stalled replication forks. Mol. Cell. Biol. 38, e00484-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kim, J. J. et al. Systematic bromodomain protein screens identify homologous recombination and R-loop suppression pathways involved in genome integrity. Genes Dev. 33, 1751–1774 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lam, F. C. et al. BRD4 prevents the accumulation of R-loops and protects against transcription–replication collision events and DNA damage. Nat. Commun. 11, 4083 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Edwards, D. S. et al. BRD4 prevents R-loop formation and transcription-replication conflicts by ensuring efficient transcription elongation. Cell Rep. 32, 108166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mognato, M., Burdak-Rothkamm, S. & Rothkamm, K. Interplay between DNA replication stress, chromatin dynamics and DNA-damage response for the maintenance of genome stability. Mutat. Res. 787, 108346 (2021).

    Article  CAS  Google Scholar 

  127. Gao, M. et al. Ago2 facilitates Rad51 recruitment and DNA double-strand break repair by homologous recombination. Cell Res. 24, 532–541 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Michelini, F. et al. Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat. Cell Biol. 19, 1400–1411 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. D’Alessandro, G. et al. BRCA2 controls DNA:RNA hybrid level at DSBs by mediating RNase H2 recruitment. Nat. Commun. 9, 5376 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Keskin, H. et al. Transcript-RNA-templated DNA recombination and repair. Nature 515, 436–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yasuhara, T. et al. Human Rad52 promotes XPG-mediated R-loop processing to initiate transcription-associated homologous recombination repair. Cell 175, 558–570.e11 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Ohle, C. et al. Transient RNA-DNA hybrids are required for efficient double-strand break repair. Cell 167, 1001–1013.e7 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Chakraborty, P. & Hiom, K. DHX9-dependent recruitment of BRCA1 to RNA promotes DNA end resection in homologous recombination. Nat. Commun. 12, 4126 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mazina, O. M., Keskin, H., Hanamshet, K., Storici, F. & Mazin, A. V. Rad52 Inverse strand exchange drives RNA-templated DNA double-strand break repair. Mol. Cell 67, 19–29.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wei, L. et al. DNA damage during the G0/G1 phase triggers RNA-templated, Cockayne syndrome B-dependent homologous recombination. Proc. Natl Acad. Sci. USA 112, E3495–E3504 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. McDevitt, S., Rusanov, T., Kent, T., Chandramouly, G. & Pomerantz, R. T. How RNA transcripts coordinate DNA recombination and repair. Nat. Commun. 9, 1091 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Chandramouly, G. et al. Poltheta reverse transcribes RNA and promotes RNA-templated DNA repair. Sci. Adv. 7, eabf1771 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ouyang, J. et al. RNA transcripts stimulate homologous recombination by forming DR-loops. Nature 594, 283–288 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Liang, F. et al. Promotion of RAD51-mediated homologous DNA pairing by the RAD51AP1-UAF1 complex. Cell Rep. 15, 2118–2126 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kang, H. J. et al. TonEBP recognizes R-loops and initiates m6A RNA methylation for R-loop resolution. Nucleic Acids Res. 49, 269–284 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Abakir, A. et al. N(6)-methyladenosine regulates the stability of RNA:DNA hybrids in human cells. Nat. Genet. 52, 48–55 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Yang, X. et al. m(6)A promotes R-loop formation to facilitate transcription termination. Cell Res. 29, 1035–1038 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Xiang, Y. et al. RNA m(6)A methylation regulates the ultraviolet-induced DNA damage response. Nature 543, 573–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhang, C. et al. METTL3 and N6-methyladenosine promote homologous recombination-mediated repair of DSBs by modulating DNA-RNA hybrid accumulation. Mol. Cell 79, 425–442.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  145. Chen, H. et al. m(5)C modification of mRNA serves a DNA damage code to promote homologous recombination. Nat. Commun. 11, 2834 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Jimeno, S. et al. ADAR-mediated RNA editing of DNA:RNA hybrids is required for DNA double strand break repair. Nat. Commun. 12, 5512 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Graf, M. et al. Telomere length determines TERRA and R-loop regulation through the cell cycle. Cell 170, 72–85.e14 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Silva, B., Arora, R., Bione, S. & Azzalin, C. M. TERRA transcription destabilizes telomere integrity to initiate break-induced replication in human ALT cells. Nat. Commun. 12, 3760 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhang, J. M., Yadav, T., Ouyang, J., Lan, L. & Zou, L. Alternative lengthening of telomeres through two distinct break-induced replication pathways. Cell Rep. 26, 955–968.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Tan, J. et al. An R-loop-initiated CSB-RAD52-POLD3 pathway suppresses ROS-induced telomeric DNA breaks. Nucleic Acids Res. 48, 1285–1300 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Hatchi, E. et al. BRCA1 and RNAi factors promote repair mediated by small RNAs and PALB2-RAD52. Nature 591, 665–670 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ortega, P., Merida-Cerro, J. A., Rondon, A. G., Gomez-Gonzalez, B. & Aguilera, A. DNA-RNA hybrids at DSBs interfere with repair by homologous recombination. eLife 10, e69881 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhao, H., Zhu, M., Limbo, O. & Russell, P. RNase H eliminates R-loops that disrupt DNA replication but is nonessential for efficient DSB repair. EMBO Rep. 19, e45335 (2018).

    PubMed  PubMed Central  Google Scholar 

  154. Sessa, G. et al. BRCA2 promotes DNA-RNA hybrid resolution by DDX5 helicase at DNA breaks to facilitate their repair. EMBO J. 40, e106018 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. McBride, M. J. et al. The SS18-SSX fusion oncoprotein hijacks BAF complex targeting and function to drive synovial sarcoma. Cancer Cell 33, 1128–1141.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bauer, M. et al. The ALPK1/TIFA/NF-kappaB axis links a bacterial carcinogen to R-loop-induced replication stress. Nat. Commun. 11, 5117 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Nguyen, H. D. et al. Spliceosome mutations induce R loop-associated sensitivity to ATR inhibition in myelodysplastic syndromes. Cancer Res. 78, 5363–5374 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Herold, S. et al. Recruitment of BRCA1 limits MYCN-driven accumulation of stalled RNA polymerase. Nature 567, 545–549 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Schwab, R. A. et al. The Fanconi anemia pathway maintains genome stability by coordinating replication and transcription. Mol. Cell 60, 351–361 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yeo, A. J. et al. R-loops in proliferating cells but not in the brain: implications for AOA2 and other autosomal recessive ataxias. PLoS One 9, e90219 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Lovejoy, C. A. et al. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet. 8, e1002772 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Goldberg, A. D. et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140, 678–691 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Clynes, D. et al. Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX. Nat. Commun. 6, 7538 (2015).

    Article  PubMed  Google Scholar 

  164. Wang, Y. et al. G-quadruplex DNA drives genomic instability and represents a targetable molecular abnormality in ATRX-deficient malignant glioma. Nat. Commun. 10, 943 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Zhang, J. M. & Zou, L. Alternative lengthening of telomeres: from molecular mechanisms to therapeutic outlooks. Cell Biosci. 10, 30 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Zhang, J. M., Genois, M. M., Ouyang, J., Lan, L. & Zou, L. Alternative lengthening of telomeres is a self-perpetuating process in ALT-associated PML bodies. Mol. Cell 81, 1027–1042.e4 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Vohhodina, J. et al. BRCA1 binds TERRA RNA and suppresses R-Loop-based telomeric DNA damage. Nat. Commun. 12, 3542 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Shiromoto, Y., Sakurai, M., Minakuchi, M., Ariyoshi, K. & Nishikura, K. ADAR1 RNA editing enzyme regulates R-loop formation and genome stability at telomeres in cancer cells. Nat. Commun. 12, 1654 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ghisays, F. et al. RTEL1 influences the abundance and localization of TERRA RNA. Nat. Commun. 12, 3016 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Becherel, O. J. et al. A new model to study neurodegeneration in ataxia oculomotor apraxia type 2. Hum. Mol. Genet. 24, 5759–5774 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Katyal, S. et al. Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes. Nat. Neurosci. 17, 813–821 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Grunseich, C. et al. Senataxin mutation reveals how R-loops promote transcription by Blocking DNA methylation at gene promoters. Mol. Cell 69, 426–437.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Groh, M., Lufino, M. M., Wade-Martins, R. & Gromak, N. R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLoS Genet. 10, e1004318 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Haeusler, A. R. et al. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507, 195–200 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wood, M. et al. TDP-43 dysfunction results in R-loop accumulation and DNA replication defects. J. Cell Sci. 133, jcs244129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Walker, C. et al. C9orf72 expansion disrupts ATM-mediated chromosomal break repair. Nat. Neurosci. 20, 1225–1235 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Park, K. et al. Aicardi-Goutieres syndrome-associated gene SAMHD1 preserves genome integrity by preventing R-loop formation at transcription-replication conflict regions. PLoS Genet. 17, e1009523 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Mackenzie, K. J. et al. Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response. EMBO J. 35, 831–844 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Coquel, F. et al. SAMHD1 acts at stalled replication forks to prevent interferon induction. Nature 557, 57–61 (2018).

    Article  CAS  PubMed  Google Scholar 

  180. Lee, S. C. et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat. Med. 22, 672–678 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Cheruiyot, A. et al. Nonsense-mediated RNA decay is a unique vulnerability of cancer cells harboring SF3B1 or U2AF1 mutations. Cancer Res. 81, 4499–4513 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. De Magis, A. et al. DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proc. Natl Acad. Sci. USA 116, 816–825 (2019).

    Article  PubMed  CAS  Google Scholar 

  183. Amato, R. et al. G-quadruplex stabilization fuels the ALT pathway in ALT-positive osteosarcoma cells. Genes 11, 304 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  184. Safari, M. et al. R-loop-mediated ssDNA breaks accumulate following short-term exposure to the HDAC inhibitor romidepsin. Mol. Cancer Res. 19, 1361–1374 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Karanam, N. K., Ding, L., Aroumougame, A. & Story, M. D. Tumor treating fields cause replication stress and interfere with DNA replication fork maintenance: implications for cancer therapy. Transl. Res. 217, 33–46 (2020).

    Article  CAS  PubMed  Google Scholar 

  186. Tumini, E. et al. The antitumor drugs trabectedin and lurbinectedin induce transcription-dependent replication stress and genome instability. Mol. Cancer Res. 17, 773–782 (2019).

    Article  CAS  PubMed  Google Scholar 

  187. Petti, E. et al. SFPQ and NONO suppress RNA:DNA-hybrid-related telomere instability. Nat. Commun. 10, 1001 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Gomez-Gonzalez, B., Felipe-Abrio, I. & Aguilera, A. The S-phase checkpoint is required to respond to R-loops accumulated in THO mutants. Mol. Cell. Biol. 29, 5203–5213 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Gomez-Gonzalez, B. et al. Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles. EMBO J. 30, 3106–3119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Nowotny, M. et al. Structure of human RNase H1 complexed with an RNA/DNA hybrid: insight into HIV reverse transcription. Mol. Cell 28, 264–276 (2007).

    Article  CAS  PubMed  Google Scholar 

  191. Rychlik, M. P. et al. Crystal structures of RNase H2 in complex with nucleic acid reveal the mechanism of RNA-DNA junction recognition and cleavage. Mol. Cell 40, 658–670 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Chang, E. Y. et al. RECQ-like helicases Sgs1 and BLM regulate R-loop-associated genome instability. J. Cell Biol. 216, 3991–4005 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Domingues-Silva, B., Silva, B. & Azzalin, C. M. Alternative functions for human FANCM at telomeres. Front. Mol. Biosci. 6, 84 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Mersaoui, S. Y. et al. Arginine methylation of the DDX5 helicase RGG/RG motif by PRMT5 regulates resolution of RNA:DNA hybrids. EMBO J. 38, e100986 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Garcia-Rubio, M. L. et al. The fanconi anemia pathway protects genome integrity from R-loops. PLoS Genet. 11, e1005674 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Lam, F. C. et al. BRD4 prevents the accumulation of R-loops and protects against transcription-replication collision events and DNA damage. Nat. Commun. 11, 4083 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to those authors whose work could not be cited due to space constrains. E.P. is supported by Cancer Research UK (C25526/A28275) and Medical Research Council (MR/S021310/1). L.L. is supported by the NIH (GM118833). L.Z. is the James & Patricia Poitras Endow Chair for Cancer Research and support by the NIH (CA263934).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Lee Zou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Transcription–replication conflicts

Refers to collisions between transcription and DNA replication complexes and their consequences in both transcription and DNA replication.

Class switch recombination

The process of switching the antibody type produced by mature B cells, during which the immunoglobulin gene is subject to transcription-dependent DNA damage followed by repair-mediated rearrangements.

C-rich strand of telomere DNA

Telomere DNA consists of TTAGGG repeats on the G-rich strand and CCCTAA repeats on the C-rich strand.

Replication stress

A plethora of DNA replication impediments that compromise the efficiency or fidelity of DNA synthesis and increase genomic instability.

Control region of mtDNA

A non-coding region of the mitochondrial genome that controls RNA and DNA synthesis.

Replication fork reversal

Backward movement of the replication fork during which the nascent newly synthesized strands dissociate from the template strands and anneal together to form a four-way junction.

G-quadruplexes

(G4s). DNA secondary structures formed by guanine (G)-rich sequences through G–G base pairing.

Backtracking

Backward movement of transcribing RNA polymerase, which enables proofreading and regulation of transcript elongation.

Integrator complex

A multisubunit protein complex with RNA endonuclease activity that controls the expression and processing of RNA polymerase II (Pol II) transcripts.

RNA exosome

A multisubunit protein complex with 3′-5′exoribonuclease activity that degrades non-coding Pol II transcripts.

Break-induced replication

(BIR). A process in which one-ended DNA breaks generated at replication forks are extended using homologous DNA as template.

DNA end resection

A process in which exonucleases cleave one of the DNA strands at DNA double-stranded breaks to generate overhangs.

Donor DNA

The DNA sequence used as template for DNA repair during homologous recombination.

Translesion synthesis

A process in which a group of specialized DNA polymerases at or behind replication forks bypass DNA lesions to ensue replication.

RNA editing

Post-transcriptional enzymatic process that changes RNA nucleotides, for example, by deaminating adenosine to inosine.

Cerebellar ataxias

Progressive neurological disorders caused by damage to the cerebellum, characterized by inability to control balance, gait and muscle coordination.

cGAS–STING pathway

Cellular signalling pathway that senses DNA in the cytoplasm as a sign of viral or bacterial infection and activates innate immunity responses.

Nonsense-mediated mRNA decay

(NMD). A cellular surveillance mechanism that detects and degrades mRNAs harbouring premature termination codons.

Tumour-treating electric fields

A non-invasive treatment, in which alternating electric fields are applied to tumour sites to inhibit cancer cell proliferation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petermann, E., Lan, L. & Zou, L. Sources, resolution and physiological relevance of R-loops and RNA–DNA hybrids. Nat Rev Mol Cell Biol 23, 521–540 (2022). https://doi.org/10.1038/s41580-022-00474-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-022-00474-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing