Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbiota succession throughout life from the cradle to the grave

Abstract

Associations between age and the human microbiota are robust and reproducible. The microbial composition at several body sites can predict human chronological age relatively accurately. Although it is largely unknown why specific microorganisms are more abundant at certain ages, human microbiota research has elucidated a series of microbial community transformations that occur between birth and death. In this Review, we explore microbial succession in the healthy human microbiota from the cradle to the grave. We discuss the stages from primary succession at birth, to disruptions by disease or antibiotic use, to microbial expansion at death. We address how these successions differ by body site and by domain (bacteria, fungi or viruses). We also review experimental tools that microbiota researchers use to conduct this work. Finally, we discuss future directions for studying the microbiota’s relationship with age, including designing consistent, well-powered, longitudinal studies, performing robust statistical analyses and improving characterization of non-bacterial microorganisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The succession of the human microbiota from conception to death.
Fig. 2: Measurements of bacterial diversity across age.
Fig. 3: Primary succession in utero and during early life.
Fig. 4: Secondary succession in adolescence and adult life.
Fig. 5: Late succession approaching the end of life.
Fig. 6: The microbiota after death.

Similar content being viewed by others

References

  1. Chu, D. M. et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ward, T. L. et al. Development of the human mycobiome over the first month of life and across body sites. mSystems 3, e00140–17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Oh, J. et al. Biogeography and individuality shape function in the human skin metagenome. Nature 514, 59–64 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abeles, S. R. et al. Human oral viruses are personal, persistent and gender-consistent. ISME J. 8, 1753–1767 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Grice, E. A. & Segre, J. A. The human microbiome: our second genome. Annu. Rev. Genomics Hum. Genet. 13, 151–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zengler, K. & Zaramela, L. S. The social network of microorganisms - how auxotrophies shape complex communities. Nat. Rev. Microbiol. 16, 383–390 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357, 802–806 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rasko, D. A. Changes in microbiome during and after travellers’ diarrhea: what we know and what we do not. J. Travel. Med. 24, S52–S56 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zaneveld, J. R., McMinds, R. & Vega Thurber, R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Dini-Andreote, F., Stegen, J. C., van Elsas, J. D. & Salles, J. F. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc. Natl Acad. Sci. USA 112, E1326–E1332 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 8, 343ra81 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bokulich, N. A. et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med. 8, 343ra82 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. David, L. A. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 15, R89 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vangay, P. et al. US immigration westernizes the human gut microbiome. Cell 175, 962–972.e10 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gregory, A. C. et al. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28, 724–740.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Thaiss, C. A. et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167, 1495–1510.e12 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Zaura, E. et al. Same exposure but two radically different responses to antibiotics: resilience of the salivary microbiome versus long-term microbial shifts in feces. mBio 6, e01693–15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4554–4561 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Hsiao, A. et al. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 515, 423–426 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chng, K. R. et al. Metagenome-wide association analysis identifies microbial determinants of post-antibiotic ecological recovery in the gut. Nat. Ecol. Evol. 4, 1256–1267 (2020).

    Article  PubMed  Google Scholar 

  26. Gibbons, S. M. Keystone taxa indispensable for microbiome recovery. Nat. Microbiol. 5, 1067–1068 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Rizzatti, G., Lopetuso, L. R., Gibiino, G., Binda, C. & Gasbarrini, A. Proteobacteria: a common factor in human diseases. Biomed. Res. Int. 2017, 9351507 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Biagi, E. et al. Gut microbiota and extreme longevity. Curr. Biol. 26, 1480–1485 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Lim, A. I. et al. Prenatal maternal infection promotes tissue-specific immunity and inflammation in offspring. Science 373, eabf3002 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Al Nabhani, Z. & Eberl, G. Imprinting of the immune system by the microbiota early in life. Mucosal Immunol. 13, 183–189 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Lynn, M. A. et al. Early-life antibiotic-driven dysbiosis leads to dysregulated vaccine immune responses in mice. Cell Host Microbe 23, 653–660.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Blaser, M. J. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat. Rev. Immunol. 17, 461–463 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Thorburn, A. N. et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6, 7320 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Gomez de Agüero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016).

    Article  PubMed  Google Scholar 

  35. Macpherson, A. J., de Agüero, M. G. & Ganal-Vonarburg, S. C. How nutrition and the maternal microbiota shape the neonatal immune system. Nat. Rev. Immunol. 17, 508–517 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Nakajima, A. et al. Maternal high fiber diet during pregnancy and lactation influences regulatory T cell differentiation in offspring in mice. J. Immunol. 199, 3516–3524 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Jamalkandi, S. A. et al. Oral and nasal probiotic administration for the prevention and alleviation of allergic diseases, asthma and chronic obstructive pulmonary disease. Nutr. Res. Rev. 34, 1–16 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Örtqvist, A. K., Lundholm, C., Halfvarson, J., Ludvigsson, J. F. & Almqvist, C. Fetal and early life antibiotics exposure and very early onset inflammatory bowel disease: a population-based study. Gut 68, 218–225 (2019).

    Article  PubMed  Google Scholar 

  39. Munyaka, P. M., Eissa, N., Bernstein, C. N., Khafipour, E. & Ghia, J.-E. Antepartum antibiotic treatment increases offspring susceptibility to experimental colitis: a role of the gut microbiota. PLoS ONE 10, e0142536 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kiss, E. A. et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334, 1561–1565 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Lee, J. S. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol. 13, 144–151 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36, 92–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Schulfer, A. F. et al. Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice. Nat. Microbiol. 3, 234–242 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Ma, J. et al. High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat. Commun. 5, 3889 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Torres, J. et al. Infants born to mothers with IBD present with altered gut microbiome that transfers abnormalities of the adaptive immune system to germ-free mice. Gut 69, 42–51 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Milliken, S., Allen, R. M. & Lamont, R. F. The role of antimicrobial treatment during pregnancy on the neonatal gut microbiome and the development of atopy, asthma, allergy and obesity in childhood. Expert. Opin. Drug. Saf. 18, 173–185 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Santacruz, A. et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr. 104, 83–92 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Trevisanuto, D. et al. Fetal placental inflammation is associated with poor neonatal growth of preterm infants: a case-control study. J. Matern. Fetal Neonatal Med. 26, 1484–1490 (2013).

    Article  PubMed  Google Scholar 

  49. Song, S. J. et al. Naturalization of the microbiota developmental trajectory of Cesarean-born neonates after vaginal seeding. Med 2, 951–964.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Abu-Raya, B., Michalski, C., Sadarangani, M. & Lavoie, P. M. Maternal immunological adaptation during normal pregnancy. Front. Immunol. 11, 575197 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hanson, L. A. et al. The transfer of immunity from mother to child. Ann. NY. Acad. Sci. 987, 199–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Dominguez-Bello, M. G. et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 22, 250–253 (2016). This study demonstrates that ‘seeding’ infants born by caesarean delivery with the vaginal microbiota of the mother at birth partially naturalizes development of the microbial community.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Helve, O. et al. 2843. Maternal fecal transplantation to infants born by cesarean section: safety and feasibility. Open. Forum Infect. Dis. 6, S68 (2019).

    Article  PubMed Central  Google Scholar 

  55. Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014). This study shows that severe acute malnutrition leads to immature microbial development and introduces a metric for the measure of microbiota maturity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Groer, M. W. et al. Development of the preterm infant gut microbiome: a research priority. Microbiome 2, 38 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Henrick, B. M. et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884–3898.e11 (2021). This report describes the immune development driven by microbial interactions and the negative impact of lack of HMO-utilizing microorganisms on the immune system.

    Article  CAS  PubMed  Google Scholar 

  59. Sela, D. A. & Mills, D. A. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol. 18, 298–307 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Seppo, A. E. et al. Infant gut microbiome is enriched with Bifidobacterium longum ssp. infantis in old order mennonites with traditional farming lifestyle. Allergy 76, 3489–3503 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Triantis, V., Bode, L. & van Neerven, R. J. J. Immunological effects of human milk oligosaccharides. Front. Pediatr. 6, 190 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yu, Z.-T., Chen, C. & Newburg, D. S. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology 23, 1281–1292 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Article  Google Scholar 

  64. McDonald, D. et al. American gut: an open platform for citizen science microbiome research. mSystems 3, e00031–18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Odamaki, T. et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 16, 90 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Schei, K. et al. Early gut mycobiota and mother-offspring transfer. Microbiome 5, 107 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Alonso, R., Pisa, D., Fernández-Fernández, A. M. & Carrasco, L. Infection of fungi and bacteria in brain tissue from elderly persons and patients with Alzheimer’s disease. Front. Aging Neurosci. 10, 159 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Nagpal, R. et al. Gut mycobiome and its interaction with diet, gut bacteria and Alzheimer’s disease markers in subjects with mild cognitive impairment: a pilot study. EBioMedicine 59, 102950 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ahmad, H. F. et al. Gut mycobiome dysbiosis is linked to hypertriglyceridemia among home dwelling elderly Danes. Preprint at bioRxiv https://doi.org/10.1101/2020.04.16.044693 (2020).

    Article  Google Scholar 

  70. Wampach, L. et al. Colonization and succession within the human gut microbiome by archaea, bacteria, and microeukaryotes during the first year of life. Front. Microbiol. 8, 738 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Breitbart, M. et al. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol. 185, 6220–6223 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liang, G. et al. The stepwise assembly of the neonatal virome is modulated by breastfeeding. Nature 581, 470–474 (2020). This study describes the assembly of the human virome during development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lim, E. S. et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21, 1228–1234 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liang, G. et al. Dynamics of the stool virome in very early-onset inflammatory bowel disease. J. Crohns. Colitis 14, 1600–1610 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Koren, O. & Rautava, S. The Human Microbiome in Early Life: Implications to Health and Disease (Academic, 2020).

  76. Reyes, A. et al. Gut DNA viromes of Malawian twins discordant for severe acute malnutrition. Proc. Natl Acad. Sci. USA 112, 11941–11946 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liang, G. & Bushman, F. D. The human virome: assembly, composition and host interactions. Nat. Rev. Microbiol. 19, 514–527 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Oude Munnink, B. B. & van der Hoek, L. Viruses causing gastroenteritis: the known, the new and those beyond. Viruses 8, 42 (2016).

    Article  PubMed Central  Google Scholar 

  79. Woolhouse, M., Scott, F., Hudson, Z., Howey, R. & Chase-Topping, M. Human viruses: discovery and emergence. Phil. Trans. R. Soc. B 367, 2864–2871 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rascovan, N., Duraisamy, R. & Desnues, C. Metagenomics and the human virome in asymptomatic individuals. Annu. Rev. Microbiol. 70, 125–141 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Mason, M. R., Chambers, S., Dabdoub, S. M., Thikkurissy, S. & Kumar, P. S. Characterizing oral microbial communities across dentition states and colonization niches. Microbiome 6, 67 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Dzidic, M. et al. Oral microbiome development during childhood: an ecological succession influenced by postnatal factors and associated with tooth decay. ISME J. 12, 2292–2306 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Merglova, V. & Polenik, P. Early colonization of the oral cavity in 6- and 12-month-old infants by cariogenic and periodontal pathogens: a case-control study. Folia Microbiol. 61, 423–429 (2016).

    Article  CAS  Google Scholar 

  84. Gomez, A. & Nelson, K. E. The oral microbiome of children: development, disease, and implications beyond oral health. Microb. Ecol. 73, 492–503 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Cephas, K. D. et al. Comparative analysis of salivary bacterial microbiome diversity in edentulous infants and their mothers or primary care givers using pyrosequencing. PLoS ONE 6, e23503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Crielaard, W. et al. Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Med. Genomics 4, 22 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Darwazeh, A. M. & al-Bashir, A. Oral candidal flora in healthy infants. J. Oral. Pathol. Med. 24, 361–364 (1995).

    Article  CAS  PubMed  Google Scholar 

  88. Stecksén-Blicks, C., Granström, E., Silfverdal, S. A. & West, C. E. Prevalence of oral Candida in the first year of life. Mycoses 58, 550–556 (2015).

    Article  PubMed  Google Scholar 

  89. Ghannoum, M. A. et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 6, e1000713 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Brusa, T., Conca, R., Ferrara, A., Ferrari, A. & Pecchioni, A. The presence of methanobacteria in human subgingival plaque. J. Clin. Periodontol. 14, 470–471 (1987).

    Article  CAS  PubMed  Google Scholar 

  91. Ferrari, A., Brusa, T., Rutili, A., Canzi, E. & Biavati, B. Isolation and characterization ofMethanobrevibacter oralis sp. nov. Curr. Microbiol. 29, 7–12 (1994).

    Article  CAS  Google Scholar 

  92. Nguyen-Hieu, T., Khelaifia, S., Aboudharam, G. & Drancourt, M. Methanogenic archaea in subgingival sites: a review. APMIS 121, 467–477 (2013).

    Article  PubMed  Google Scholar 

  93. Abeles, S. R., Ly, M., Santiago-Rodriguez, T. M. & Pride, D. T. Effects of long term antibiotic therapy on human oral and fecal viromes. PLoS ONE 10, e0134941 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Pérez-Brocal, V. & Moya, A. The analysis of the oral DNA virome reveals which viruses are widespread and rare among healthy young adults in Valencia (Spain). PLoS ONE 13, e0191867 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Dye, B. A., Li, X. & Thornton-Evans, G. Oral health disparities as determined by selected healthy people 2020 oral health objectives for the United States, 2009–2010. NCHS Data Brief. 104, 1–8 (2012).

    Google Scholar 

  96. Baker, J. L., Bor, B., Agnello, M., Shi, W. & He, X. Ecology of the oral microbiome: beyond bacteria. Trends Microbiol. 25, 362–374 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gaitanis, G. et al. Variation of cultured skin microbiota in mothers and their infants during the first year postpartum. Pediatr. Dermatol. 36, 460–465 (2019).

    PubMed  Google Scholar 

  98. Lee, Y. W., Yim, S. M., Lim, S. H., Choe, Y. B. & Ahn, K. J. Quantitative investigation on the distribution of Malassezia species on healthy human skin in Korea. Mycoses 49, 405–410 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143–155 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Sugita, T. et al. Quantitative analysis of the cutaneous Malassezia microbiota in 770 healthy Japanese by age and gender using a real-time PCR assay. Med. Mycol. 48, 229–233 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Probst, A. J., Auerbach, A. K. & Moissl-Eichinger, C. Archaea on human skin. PLoS ONE 8, e65388 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hulcr, J. et al. A jungle in there: bacteria in belly buttons are highly diverse, but predictable. PLoS ONE 7, e47712 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Moya, A. & Brocal, V. P. The Human Virome: Methods and Protocols (Springer, 2018).

  105. Foulongne, V. et al. Human skin microbiota: high diversity of DNA viruses identified on the human skin by high throughput sequencing. PLoS ONE 7, e38499 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Turnbaugh, P. J. et al. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc. Natl Acad. Sci. USA 107, 7503–7508 (2010). This study shows that cohabitating identical twins result in different microbial communities, highlighting the many unknown processes that lead to the unique human microbiota.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 574, 117–121 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583–588 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ainonen, S. et al. Antibiotics at birth and later antibiotic courses: effects on gut microbiota. Pediatr. Res. 91, 154–162 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Chen, X., Lu, Y., Chen, T. & Li, R. The female vaginal microbiome in health and bacterial vaginosis. Front. Cell. Infect. Microbiol. 11, 631972 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wells, J. S., Chandler, R., Dunn, A. & Brewster, G. The vaginal microbiome in U.S. black women: a systematic review. J. Womens Health 29, 362–375 (2020).

    Article  Google Scholar 

  112. Martino, C. et al. Context-aware dimensionality reduction deconvolutes gut microbial community dynamics. Nat. Biotechnol. 39, 165–168 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Furman, O. et al. Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome assembly dynamics. Nat. Commun. 11, 1904 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Henderickx, J. G. E., Zwittink, R. D., van Lingen, R. A., Knol, J. & Belzer, C. The preterm gut microbiota: an inconspicuous challenge in nutritional neonatal care. Front. Cell. Infect. Microbiol. 9, 85 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Malamitsi-Puchner, A. et al. The influence of the mode of delivery on circulating cytokine concentrations in the perinatal period. Early Hum. Dev. 81, 387–392 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Stokholm, J. et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat. Commun. 9, 141 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Andersen, V., Möller, S., Jensen, P. B., Møller, F. T. & Green, A. Caesarean delivery and risk of chronic inflammatory diseases (inflammatory bowel disease, rheumatoid arthritis, coeliac disease, and diabetes mellitus): a population based registry study of 2,699,479 births in Denmark during 1973–2016. Clin. Epidemiol. 12, 287–293 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Blustein, J. et al. Association of caesarean delivery with child adiposity from age 6 weeks to 15 years. Int. J. Obes. 37, 900–906 (2013).

    Article  CAS  Google Scholar 

  119. Ardic, C., Usta, O., Omar, E., Yıldız, C. & Memis, E. Caesarean delivery increases the risk of overweight or obesity in 2-year-old children. J. Obstet. Gynaecol. 41, 374–379 (2021).

    Article  PubMed  Google Scholar 

  120. Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158, 705–721 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Martinez, K. A. 2nd et al. Increased weight gain by C-section: functional significance of the primordial microbiome. Sci. Adv. 3, eaao1874 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Livanos, A. E. et al. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat. Microbiol. 1, 16140 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Moya-Pérez, A. et al. Intervention strategies for cesarean section–induced alterations in the microbiota-gut-brain axis. Nutr. Rev. 75, 225–240 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Braniste, V. et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 6, 263ra158 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Forbes, J. D. et al. Association of exposure to formula in the hospital and subsequent infant feeding practices with gut microbiota and risk of overweight in the first year of life. JAMA Pediatr. 172, e181161 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Shenhav, L. & Azad, M. B. Using community ecology theory and computational microbiome methods to study human milk as a biological system. mSystems 7, e01132–21 (2022).

    Article  PubMed Central  Google Scholar 

  128. Kaetzel, C. S. Cooperativity among secretory IgA, the polymeric immunoglobulin receptor, and the gut microbiota promotes host-microbial mutualism. Immunol. Lett. 162, 10–21 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Munblit, D., Verhasselt, V. & Warner, J. O. Human Milk Composition and Health Outcomes in Children (Frontiers Media, 2019).

  130. Mastromarino, P. et al. Correlation between lactoferrin and beneficial microbiota in breast milk and infant’s feces. Biometals 27, 1077–1086 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Coats, S. R., Pham, T.-T. T., Bainbridge, B. W., Reife, R. A. & Darveau, R. P. MD-2 mediates the ability of tetra-acylated and penta-acylated lipopolysaccharides to antagonize Escherichia coli lipopolysaccharide at the TLR4 signaling complex. J. Immunol. 175, 4490–4498 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Denou, E. et al. Defective NOD 2 peptidoglycan sensing promotes diet‐induced inflammation, dysbiosis, and insulin resistance. EMBO Mol. Med. 7, 259–274 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rooks, M. G. & Garrett, W. S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16, 341–352 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 1551 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    Article  CAS  PubMed  Google Scholar 

  138. Xiao, J., Fiscella, K. A. & Gill, S. R. Oral microbiome: possible harbinger for children’s health. Int. J. Oral. Sci. 12, 12 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Zhao, S. et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe 25, 656–667.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Allaband, C. et al. Intermittent hypoxia and hypercapnia alter diurnal rhythms of luminal gut microbiome and metabolome. mSystems 6, e00116–e00121 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  142. Marotz, C. et al. Quantifying live microbial load in human saliva samples over time reveals stable composition and dynamic load. mSystems 6, e01182–20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bouslimani, A. et al. The impact of skin care products on skin chemistry and microbiome dynamics. BMC Biol. 17, 47 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697 (2009). This study demonstrates the important variability between body habitats and between individuals across the same body habitat.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kolodziejczyk, A. A., Zheng, D. & Elinav, E. Diet–microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 17, 742–753 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Zaramela, L. S. et al. Gut bacteria responding to dietary change encode sialidases that exhibit preference for red meat-associated carbohydrates. Nat. Microbiol. 4, 2082–2089 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Zmora, N., Suez, J. & Elinav, E. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 35–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Etemadi, A. et al. Mortality from different causes associated with meat, heme iron, nitrates, and nitrites in the NIH-AARP Diet and Health Study: population based cohort study. BMJ 357, j1957 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Durack, J. & Lynch, S. V. The gut microbiome: relationships with disease and opportunities for therapy. J. Exp. Med. 216, 20–40 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lai, Y. et al. Commensal bacteria regulate Toll-like receptor 3–dependent inflammation after skin injury. Nat. Med. 15, 1377–1382 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Chng, K. R. et al. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat. Microbiol. 1, 16106 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Li, H. et al. Skin commensal Malassezia globosa secreted protease attenuates Staphylococcus aureus biofilm formation. J. Invest. Dermatol. 138, 1137–1145 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Shirtliff, M. E., Peters, B. M. & Jabra-Rizk, M. A. Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol. Lett. 299, 1–8 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Santus, W., Devlin, J. R. & Behnsen, J. Crossing kingdoms: how the mycobiota and fungal-bacterial interactions impact host health and disease. Infect. Immun. 89, e00648–20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Taur, Y. et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci. Transl. Med. 10, eaap9489 (2018). This study shows that autologous faecal microbiota transplantation helps to restore the microbiota of patients who underwent antibiotic treatment.

    Article  PubMed  PubMed Central  Google Scholar 

  158. van Nood, E., Dijkgraaf, M. G. W. & Keller, J. J. Duodenal infusion of feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 2145 (2013).

    PubMed  Google Scholar 

  159. Tariq, R., Pardi, D. S., Bartlett, M. G. & Khanna, S. Low cure rates in controlled trials of fecal microbiota transplantation for recurrent Clostridium difficile infection: a systematic review and meta-analysis. Clin. Infect. Dis. 68, 1351–1358 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Panigrahi, P. et al. Corrigendum: a randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 553, 238 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Halkjær, S. I. et al. Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: results from a randomised, double-blind placebo-controlled study. Gut 67, 2107–2115 (2018).

    Article  PubMed  Google Scholar 

  162. Korpela, K. et al. Maternal fecal microbiota transplantation in cesarean-born infants rapidly restores normal gut microbial development: a proof-of-concept study. Cell 183, 324–334.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. Morton, J. T. et al. Learning representations of microbe–metabolite interactions. Nat. Methods 16, 1306–1314 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kehe, J. et al. Positive interactions are common among culturable bacteria. Sci. Adv. 7, eabi7159 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Strandwitz, P. et al. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 4, 396–403 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Rubin, B. E. et al. Species- and site-specific genome editing in complex bacterial communities. Nat. Microbiol. 7, 34–47 (2022).

    Article  CAS  PubMed  Google Scholar 

  167. Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e21 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Schooley, R. T. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61, e00954–17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Mu, A. et al. Effects on the microbiome during treatment of a staphylococcal device infection. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-969336/v1 (2021).

    Article  Google Scholar 

  171. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012). This study reports microbial community alterations between older individuals (aged 65 years and older) dependent on whether they live in the company of others or alone, the latter of which was correlated to worse outcomes (that is, frailty and co-morbidity).

    Article  CAS  PubMed  Google Scholar 

  172. Wu, L. et al. A cross-sectional study of compositional and functional profiles of gut microbiota in Sardinian centenarians. mSystems 4, e00325–19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Kong, F. et al. Gut microbiota signatures of longevity. Curr. Biol. 26, R832–R833 (2016).

    Article  CAS  PubMed  Google Scholar 

  174. Claesson, M. J. et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4586–4591 (2011).

    Article  CAS  PubMed  Google Scholar 

  175. O’Toole, P. W. & Jeffery, I. B. Gut microbiota and aging. Science 350, 1214–1215 (2015).

    Article  PubMed  Google Scholar 

  176. Shibagaki, N. et al. Aging-related changes in the diversity of women’s skin microbiomes associated with oral bacteria. Sci. Rep. 7, 10567 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Liu, S., Wang, Y., Zhao, L., Sun, X. & Feng, Q. Microbiome succession with increasing age in three oral sites. Aging 12, 7874–7907 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Schwartz, J. L. et al. Old age and other factors associated with salivary microbiome variation. BMC Oral. Health 21, 490 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Strati, F. et al. Age and gender affect the composition of fungal population of the human gastrointestinal tract. Front. Microbiol. 7, 01227 (2016).

    Article  Google Scholar 

  180. Wu, L. et al. Age-related variation of bacterial and fungal communities in different body habitats across the young, elderly, and centenarians in Sardinia. mSphere 5, e00558–19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Nagpal, R. et al. Gut microbiome and aging: physiological and mechanistic insights. Nutr. Healthy Aging 4, 267–285 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Wilmanski, T. et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat. Metab. 3, 274–286 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Sato, Y. et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 599, 458–464 (2021). This study finds that centenarians often had high abundances of microorganisms that produced unique secondary bile acids, namely various isoforms of lithocholic acid.

    Article  CAS  PubMed  Google Scholar 

  184. Gill-King, H. in Forensic Taphonomy: the Postmortem Fate of Human Remains 93–108 (CRC, 1997).

  185. Janaway, R. C., Percival, S. L. & Wilson, A. S. in Microbiology and Aging (ed. Percival, S. L) 313–334 (Humana, 2009).

  186. Forbes, S. L., Perrault, K. A. & Comstock, J. L. in Taphonomy of Human Remains: Forensic Analysis of the Dead and the Depositional Environment (eds Schotsmans, E. M. J., Márquez-Grant, N. & Forbes, S. L.) 26–38 (Wiley, 2017).

  187. Heimesaat, M. M. et al. Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice. PLoS ONE 7, e40758 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Parkinson, R. A. et al. in Criminal and Environmental Soil Forensics (eds Ritz, K., Dawson, L. & Miller, D.) 379–394 (Springer, 2009).

  189. Metcalf, J. L. et al. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 351, 158–162 (2016). This study finds that the time since death was predictable through the microbial community composition independent of the soil type and season.

    Article  CAS  PubMed  Google Scholar 

  190. DeBruyn, J. M. & Hauther, K. A. Postmortem succession of gut microbial communities in deceased human subjects. PeerJ 5, e3437 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Pechal, J. L., Schmidt, C. J., Jordan, H. R. & Benbow, M. E. A large-scale survey of the postmortem human microbiome, and its potential to provide insight into the living health condition. Sci. Rep. 8, 5724 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Kodama, W. A. et al. Trace evidence potential in postmortem skin microbiomes: from death scene to morgue. J. Forensic Sci. 64, 791–798 (2019).

    Article  PubMed  Google Scholar 

  193. Hauther, K. A., Cobaugh, K. L., Jantz, L. M., Sparer, T. E. & DeBruyn, J. M. Estimating time since death from postmortem human gut microbial communities. J. Forensic Sci. 60, 1234–1240 (2015).

    Article  PubMed  Google Scholar 

  194. Burcham, Z. M. et al. Fluorescently labeled bacteria provide insight on post-mortem microbial transmigration. Forensic Sci. Int. 264, 63–69 (2016).

    Article  CAS  PubMed  Google Scholar 

  195. Burcham, Z. M. et al. Bacterial community succession, transmigration, and differential gene transcription in a controlled vertebrate decomposition model. Front. Microbiol. 10, 745 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Balzan, S., de Almeida Quadros, C., de Cleva, R., Zilberstein, B. & Cecconello, I. Bacterial translocation: overview of mechanisms and clinical impact. J. Gastroenterol. Hepatol. 22, 464–471 (2007).

    Article  CAS  PubMed  Google Scholar 

  197. Metcalf, J. L. et al. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. eLife 2, e01104 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Hyde, E. R., Haarmann, D. P., Petrosino, J. F., Lynne, A. M. & Bucheli, S. R. Initial insights into bacterial succession during human decomposition. Int. J. Leg. Med. 129, 661–671 (2015).

    Article  Google Scholar 

  199. Javan, G. T., Finley, S. J., Smith, T., Miller, J. & Wilkinson, J. E. Cadaver thanatomicrobiome signatures: the ubiquitous nature of Clostridium species in human decomposition. Front. Microbiol. 8, 2096 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Johnson, H. R. et al. A machine learning approach for using the postmortem skin microbiome to estimate the postmortem interval. PLoS ONE 11, e0167370 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Belk, A. et al. Microbiome data accurately predicts the postmortem interval using random forest regression models. Genes 9, 104 (2018).

    Article  PubMed Central  Google Scholar 

  202. Metcalf, J. L. Estimating the postmortem interval using microbes: knowledge gaps and a path to technology adoption. Forensic Sci. Int. Genet. 38, 211–218 (2019).

    Article  CAS  PubMed  Google Scholar 

  203. Deel, H. et al. A pilot study of microbial succession in human rib skeletal remains during terrestrial decomposition. mSphere 6, e0045521 (2021).

    Article  PubMed  Google Scholar 

  204. Metcalf, J. L. et al. Microbiome tools for forensic science. Trends Biotechnol. 35, 814–823 (2017).

    Article  CAS  PubMed  Google Scholar 

  205. Nguyen, T. T., Hathaway, H., Kosciolek, T., Knight, R. & Jeste, D. V. Gut microbiome in serious mental illnesses: a systematic review and critical evaluation. Schizophr. Res. 234, 24–40 (2021).

    Article  PubMed  Google Scholar 

  206. Jeste, D. V., Koh, S. & Pender, V. B. Perspective: social determinants of mental health for the new decade of healthy aging. Am. J. Geriatr. Psychiatry 30, 733–736 (2022).

    Article  PubMed  Google Scholar 

  207. Matijašić, M. et al. Gut microbiota beyond bacteria-mycobiome, virome, archaeome, and eukaryotic parasites in IBD. Int. J. Mol. Sci. 21, 2668 (2020).

    Article  PubMed Central  Google Scholar 

  208. Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Gerber, G. K. The dynamic microbiome. FEBS Lett. 588, 4131–4139 (2014).

    Article  CAS  PubMed  Google Scholar 

  210. Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20, 1006–1017 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Vázquez-Baeza, Y. et al. Guiding longitudinal sampling in IBD cohorts. Gut 67, 1743–1745 (2018).

    Article  PubMed  Google Scholar 

  212. Kane, P. B., Bittlinger, M. & Kimmelman, J. Individualized therapy trials: navigating patient care, research goals and ethics. Nat. Med. 27, 1679–1686 (2021).

    Article  CAS  PubMed  Google Scholar 

  213. Huang, S. et al. Human skin, oral, and gut microbiomes predict chronological age. mSystems 5, e00630–19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Franzosa, E. A. et al. Identifying personal microbiomes using metagenomic codes. Proc. Nat. Acad. Sci. USA 112, E2930–E2938 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Vangay, P. et al. Microbiome metadata standards: report of the national microbiome data collaborative’s workshop and follow-on activities. mSystems 6, e01194–20 (2021).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institute of Justice under award number 2016-DN-BX-0194 (to R.K and J.L.M.) and the US National Institutes of Health under award number U19AG063744 Project 1: Changes in Gut Microbiome (to R.K.). A.H.D. is supported by the Stein Institute for Research on Aging, the Natasha Josefowitz Predoctoral Fellowship and the Reiter Endowed Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

A.H.D. and C.M. researched data for the article. All authors discussed the content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Rob Knight.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Christopher Stewart and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Keystone community members

Microbial species that have an exceedingly large impact on the stability, or recovery after perturbation, of the whole ecosystem.

Alpha diversity

A measure of within-sample diversity.

Beta diversity

A measure of similarity between samples.

Secondary bile acids

Bile acids that have been altered by the microbiota.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martino, C., Dilmore, A.H., Burcham, Z.M. et al. Microbiota succession throughout life from the cradle to the grave. Nat Rev Microbiol 20, 707–720 (2022). https://doi.org/10.1038/s41579-022-00768-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-022-00768-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing