Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mass spectrometry-based metabolomics in microbiome investigations

Abstract

Microbiotas are a malleable part of ecosystems, including the human ecosystem. Microorganisms affect not only the chemistry of their specific niche, such as the human gut, but also the chemistry of distant environments, such as other parts of the body. Mass spectrometry-based metabolomics is one of the key technologies to detect and identify the small molecules produced by the human microbiota, and to understand the functional role of these microbial metabolites. This Review provides a foundational introduction to common forms of untargeted mass spectrometry and the types of data that can be obtained in the context of microbiome analysis. Data analysis remains an obstacle; therefore, the emphasis is placed on data analysis approaches and integrative analysis, including the integration of microbiome sequencing data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mass spectrometry-based metabolomics for studying the microbiota.
Fig. 2: Computational tools for metabolite annotation, substructure assessment and chemical classification.
Fig. 3: Data analysis tools to uncover microbiome-derived molecules.

Similar content being viewed by others

References

  1. The Human Microbiome Project Consortium Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Google Scholar 

  2. Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host. Cell Humans. Cell 164, 337–340 (2016).

    CAS  PubMed  Google Scholar 

  3. Sharon, G. et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177, 1600–1618.e17 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Claesen, J. et al. A Cutibacterium acnes antibiotic modulates human skin microbiota composition in hair follicles. Sci. Transl. Med. 12, eaay5445 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Garg, N. et al. Natural products as mediators of disease. Nat. Prod. Rep. 34, 194–219 (2017).

    CAS  PubMed  Google Scholar 

  6. Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011).

    CAS  PubMed  Google Scholar 

  7. Douglas, A. E. Multiorganismal insects: diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2015).

    CAS  PubMed  Google Scholar 

  8. Morita, M. & Schmidt, E. W. Parallel lives of symbionts and hosts: chemical mutualism in marine animals. Nat. Prod. Rep. 35, 357–378 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Aksenov, A. A., da Silva, R., Knight, R., Lopes, N. P. & Dorrestein, P. C. Global chemical analysis of biology by mass spectrometry. Nat. Rev. Chem. 1, 0054 (2017).

    CAS  Google Scholar 

  10. Misra, B. B. The connection and disconnection between microbiome and metabolome: a critical appraisal in clinical research. Biol. Res. Nurs. 22, 561–576 (2020).

    PubMed  Google Scholar 

  11. Dhariwal, A. et al. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45, W180–W188 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ceccarani, C. et al. Diversity of vaginal microbiome and metabolome during genital infections. Sci. Rep. 9, 14095 (2019).

    PubMed  PubMed Central  Google Scholar 

  13. Wilmanski, T. et al. Blood metabolome predicts gut microbiome α-diversity in humans. Nat. Biotechnol. 37, 1217–1228 (2019).

    CAS  PubMed  Google Scholar 

  14. Gower, J. C. Generalized Procrustes analysis. Psychometrika 40, 33–51 (1975). Generalized Procrustes analysis is a canonical correlation method to shape the distribution of multi-omics datasets.

    Google Scholar 

  15. Morton, J. T. et al. Learning representations of microbe-metabolite interactions. Nat. Methods 16, 1306–1314 (2019). mmvec integrates metabolomic and microbiome data to estimate microbe–metabolite interactions based on the co-occurrence probabilities.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016). Global Natural Products Social Molecular Networking is a Web-based MS ecosystem created by the community for the community to share, process and annotate MS/MS data.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Aksenov, A. A. et al. Auto-deconvolution and molecular networking of gas chromatography–mass spectrometry data. Nat. Biotechnol. 39, 169–173 (2020). Autodeconvolution by machine learning and molecular networking of GC–MS data within the GNPS platform.

    PubMed  PubMed Central  Google Scholar 

  18. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gonzalez, A. et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat. Methods 15, 796–798 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Giacomoni, F. et al. Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics. Bioinformatics 31, 1493–1495 (2015).

    CAS  PubMed  Google Scholar 

  21. Chong, J., Liu, P., Zhou, G. & Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 15, 799–821 (2020).

    CAS  PubMed  Google Scholar 

  22. Stanstrup, J. et al. The metaRbolomics toolbox in Bioconductor and beyond. Metabolites 9, 200 (2019).

    CAS  PubMed Central  Google Scholar 

  23. McNally, C. P., Eng, A., Noecker, C., Gagne-Maynard, W. C. & Borenstein, E. BURRITO: an interactive multi-omic tool for visualizing taxa-function relationships in microbiome data. Front. Microbiol. 9, 365 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Zhang, X.-W., Li, Q.-H., Xu, Z.-D. & Dou, J.-J. Mass spectrometry-based metabolomics in health and medical science: a systematic review. RSC Adv. 10, 3092–3104 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ren, J.-L., Zhang, A.-H., Kong, L. & Wang, X.-J. Advances in mass spectrometry-based metabolomics for investigation of metabolites. RSC Adv. 8, 22335–22350 (2018).

    CAS  PubMed Central  Google Scholar 

  26. Nguyen, D. H., Nguyen, C. H. & Mamitsuka, H. Recent advances and prospects of computational methods for metabolite identification: a review with emphasis on machine learning approaches. Brief. Bioinform. 20, 2028–2043 (2019).

    CAS  PubMed  Google Scholar 

  27. Shih, C.-J., Chen, P.-Y., Liaw, C.-C., Lai, Y.-M. & Yang, Y.-L. Bringing microbial interactions to light using imaging mass spectrometry. Nat. Prod. Rep. 31, 739–755 (2014).

    CAS  PubMed  Google Scholar 

  28. Watrous, J. D. & Dorrestein, P. C. Imaging mass spectrometry in microbiology. Nat. Rev. Microbiol. 9, 683–694 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Weisskopf, L., Schulz, S. & Garbeva, P. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nat. Rev. Microbiol. 19, 391–404 (2021).

    CAS  PubMed  Google Scholar 

  30. Freiwald, A. & Sauer, S. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat. Protoc. 4, 732–742 (2009).

    CAS  PubMed  Google Scholar 

  31. Clark, C. M. et al. Using the open-source MALDI TOF-MS IDBac pipeline for analysis of microbial protein and specialized metabolite data. J. Vis. Exp. 147, e59219 (2019).

    Google Scholar 

  32. Clark, C. M., Costa, M. S., Sanchez, L. M. & Murphy, B. T. Coupling MALDI-TOF mass spectrometry protein and specialized metabolite analyses to rapidly discriminate bacterial function. Proc. Natl Acad. Sci. USA 115, 4981–4986 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Watrous, J. D. et al. Microbial metabolic exchange in 3D. ISME J. 7, 770–780 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Liebeke, M. et al. Unique metabolites protect earthworms against plant polyphenols. Nat. Commun. 6, 7869 (2015).

    CAS  PubMed  Google Scholar 

  35. Geier, B. et al. Spatial metabolomics of in situ host–microbe interactions at the micrometre scale. Nat. Microbiol. 5, 498–510 (2020).

    CAS  PubMed  Google Scholar 

  36. Rath, C. M. et al. Molecular analysis of model gut microbiotas by imaging mass spectrometry and nanodesorption electrospray ionization reveals dietary metabolite transformations. Anal. Chem. 84, 9259–9267 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bouslimani, A. et al. Molecular cartography of the human skin surface in 3D. Proc. Natl Acad. Sci. USA 112, E2120–E2129 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Floros, D. J. et al. Mass spectrometry based molecular 3D-cartography of plant metabolites. Front. Plant. Sci. 8, 429 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. Protsyuk, I. et al. 3D molecular cartography using LC–MS facilitated by Optimus and ‘ili software. Nat. Protoc. 13, 134–154 (2018).

    CAS  PubMed  Google Scholar 

  41. Alexandrov, T. et al. METASPACE: a community-populated knowledge base of spatial metabolomes in health and disease. bioRxiv. https://doi.org/10.1101/539478 (2019).

    Article  Google Scholar 

  42. Robichaud, G., Garrard, K. P., Barry, J. A. & Muddiman, D. C. MSiReader: an open-source interface to view and analyze high resolving power MS imaging files on Matlab platform. J. Am. Soc. Mass. Spectrom. 24, 718–721 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wandy, J. et al. In silico optimization of mass spectrometry fragmentation strategies in metabolomics. Metabolites 9, 219 (2019).

    CAS  PubMed Central  Google Scholar 

  44. Papadimitropoulos, M.-E. P., Vasilopoulou, C. G., Maga-Nteve, C. & Klapa, M. I. Untargeted GC-MS metabolomics. Methods Mol. Biol. 1738, 133–147 (2018).

    CAS  PubMed  Google Scholar 

  45. Keppler, E. A. H., Jenkins, C. L., Davis, T. J. & Bean, H. D. Advances in the application of comprehensive two-dimensional gas chromatography in metabolomics. Trends Analyt. Chem. 109, 275–286 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. Stein, S. E. An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J. Am. Soc. Mass. Spectrom. 10, 770–781 (1999).

    CAS  Google Scholar 

  47. Tsugawa, H. et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12, 523–526 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tautenhahn, R., Patti, G. J., Rinehart, D. & Siuzdak, G. XCMS Online: a web-based platform to process untargeted metabolomic data. Anal. Chem. 84, 5035–5039 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pluskal, T., Castillo, S., Villar-Briones, A. & Oresic, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinforma 11, 395 (2010).

    Google Scholar 

  50. Smirnov, A. et al. ADAP-GC 4.0: application of clustering-assisted multivariate curve resolution to spectral deconvolution of gas chromatography-mass spectrometry metabolomics data. Anal. Chem. 91, 9069–9077 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Schymanski, E. L. et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ. Sci. Technol. 48, 2097–2098 (2014).

    CAS  PubMed  Google Scholar 

  53. Kuang, E., Marney, M., Cuevas, D., Edwards, R. A. & Forsberg, E. M. Towards predicting gut microbial metabolism: integration of flux balance analysis and untargeted metabolomics. Metabolites 10, 156 (2020).

    CAS  PubMed Central  Google Scholar 

  54. Bordbar, A. et al. Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics. Sci. Rep. 7, 46249 (2017).

    PubMed  PubMed Central  Google Scholar 

  55. Ibáñez, A. J. et al. Mass spectrometry-based metabolomics of single yeast cells. Proc. Natl Acad. Sci. USA 110, 8790–8794 (2013).

    PubMed  PubMed Central  Google Scholar 

  56. Li, Z. et al. Single-cell mass spectrometry analysis of metabolites facilitated by cell electro-migration and electroporation. Anal. Chem. 92, 10138–10144 (2020).

    CAS  PubMed  Google Scholar 

  57. Chijiiwa, R. et al. Single-cell genomics of uncultured bacteria reveals dietary fiber responders in the mouse gut microbiota. Microbiome 8, 5 (2020).

    PubMed  PubMed Central  Google Scholar 

  58. Sharma, P. V. & Thaiss, C. A. Host-microbiome interactions in the era of single-cell biology. Front. Cell. Infect. Microbiol. 10, 569070 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Edison, A. S. et al. NMR: unique strengths that enhance modern metabolomics research. Anal. Chem. 93, 478–499 (2020).

    PubMed  Google Scholar 

  60. Horai, H. et al. MassBank: a public repository for sharing mass spectral data for life sciences. J. Mass. Spectrom. 45, 703–714 (2010).

    CAS  PubMed  Google Scholar 

  61. Oberacher, H., Whitley, G. & Berger, B. Evaluation of the sensitivity of the ‘Wiley registry of tandem mass spectral data, MSforID’ with MS/MS data of the ‘NIST/NIH/EPA mass spectral library’. J. Mass. Spectrom. 48, 487–496 (2013).

    CAS  PubMed  Google Scholar 

  62. Guijas, C. et al. METLIN: a technology platform for identifying knowns and unknowns. Anal. Chem. 90, 3156–3164 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Scheubert, K. et al. Significance estimation for large scale metabolomics annotations by spectral matching. Nat. Commun. 8, 1494 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Li, D. et al. XY-meta: a high-efficiency search engine for large-scale metabolome annotation with accurate FDR estimation. Anal. Chem. 92, 5701–5707 (2020).

    CAS  PubMed  Google Scholar 

  65. Wang, X. et al. Target-decoy-based false discovery rate estimation for large-scale metabolite identification. J. Proteome Res. 17, 2328–2334 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. da Silva, R. R., Dorrestein, P. C. & Quinn, R. A. Illuminating the dark matter in metabolomics. Proc. Natl Acad. Sci. USA 112, 12549–12550 (2015).

    PubMed  PubMed Central  Google Scholar 

  67. Gauglitz, J. M. et al. Reference data based insights expand understanding of human metabolomes. bioRxiv https://doi.org/10.1101/2020.07.08.194159 (2020). This article introduces a reference database of food to show the potential of large-scale reference data to complement the understanding of the microbiome.

    Article  Google Scholar 

  68. Moorthy, A. S., Wallace, W. E., Kearsley, A. J., Tchekhovskoi, D. V. & Stein, S. E. Combining fragment-ion and neutral-loss matching during mass spectral library searching: a new general purpose algorithm applicable to illicit drug identification. Anal. Chem. 89, 13261–13268 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Garg, N. et al. Three-dimensional microbiome and metabolome cartography of a diseased human lung. Cell Host Microbe 22, 705–716.e4 (2017). MS-based cartography allows the visualization of host and microbially derived metabolites by using molecular networking and reference data of microbial cultures.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Albarracín Orio, A. G. et al. Fungal-bacterial interaction selects for quorum sensing mutants with increased production of natural antifungal compounds. Commun. Biol. 3, 670 (2020).

    PubMed  PubMed Central  Google Scholar 

  71. Wolf, S., Schmidt, S., Müller-Hannemann, M. & Neumann, S. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics 11, 148 (2010).

    PubMed  PubMed Central  Google Scholar 

  72. Allen, F., Greiner, R. & Wishart, D. Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics 11, 98–110 (2015).

    CAS  Google Scholar 

  73. Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 16, 299–302 (2019). This article describes an in silico fragmentation method based on fragmentation trees to improve metabolite annotation in metabolomics based on MS data.

    PubMed  Google Scholar 

  74. Ludwig, M. et al. Database-independent molecular formula annotation using Gibbs sampling through ZODIAC. Nat. Mach. Intell. 2, 629–641 (2020).

    Google Scholar 

  75. Tsugawa, H. et al. Hydrogen rearrangement rules: computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Anal. Chem. 88, 7946–7958 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. da Silva, R. R. et al. Propagating annotations of molecular networks using in silico fragmentation. PLoS Comput. Biol. 14, e1006089 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. Djoumbou-Feunang, Y. et al. BioTransformer: a comprehensive computational tool for small molecule metabolism prediction and metabolite identification. J. Cheminform. 11, 2 (2019).

    PubMed  PubMed Central  Google Scholar 

  78. Showalter, M. R., Cajka, T. & Fiehn, O. Epimetabolites: discovering metabolism beyond building and burning. Curr. Opin. Chem. Biol. 36, 70–76 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kautsar, S. A. et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 48, D454–D458 (2020).

    PubMed  Google Scholar 

  80. Eldjárn, G. H. et al. Ranking microbial metabolomic and genomic links in the NPLinker framework using complementary scoring functions. PLoS Comput. Biol. 17, e1008920 (2021).

    Google Scholar 

  81. Kersten, R. D. et al. Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules. Proc. Natl Acad. Sci. USA 110, E4407–E4416 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kersten, R. D. et al. A mass spectrometry–guided genome mining approach for natural product peptidogenomics. Nat. Chem. Biol. 7, 794–802 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Mohimani, H. et al. Dereplication of microbial metabolites through database search of mass spectra. Nat. Commun. 9, 4035 (2018).

    PubMed  PubMed Central  Google Scholar 

  84. Gurevich, A. et al. Increased diversity of peptidic natural products revealed by modification-tolerant database search of mass spectra. Nat. Microbiol. 3, 319–327 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Medema, M. H. et al. Pep2Path: automated mass spectrometry-guided genome mining of peptidic natural products. PLoS Comput. Biol. 10, e1003822 (2014).

    PubMed  PubMed Central  Google Scholar 

  86. Ibrahim, A. et al. Dereplicating nonribosomal peptides using an informatic search algorithm for natural products (iSNAP) discovery. Proc. Natl Acad. Sci. USA 109, 19196–19201 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Mohimani, H. et al. Automated genome mining of ribosomal peptide natural products. ACS Chem. Biol. 9, 1545–1551 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Mohimani, H. et al. NRPquest: coupling mass spectrometry and genome mining for nonribosomal peptide discovery. J. Nat. Prod. 77, 1902–1909 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Merwin, N. J. et al. DeepRiPP integrates multiomics data to automate discovery of novel ribosomally synthesized natural products. Proc. Natl Acad. Sci. USA 117, 371–380 (2020).

    CAS  PubMed  Google Scholar 

  90. van Santen, J. A. et al. The natural products atlas: an open access knowledge base for microbial natural products discovery. ACS Cent. Sci. 5, 1824–1833 (2019).

    PubMed  PubMed Central  Google Scholar 

  91. Wang, Q. & Xu, R. Automatic extraction, prioritization and analysis of gut microbial metabolites from biomedical literature. Sci. Rep. 10, 9996 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang, M. et al. Mass spectrometry searches using MASST. Nat. Biotechnol. 38, 23–26 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. van der Hooft, J. J. J., Wandy, J., Barrett, M. P., Burgess, K. E. V. & Rogers, S. Topic modeling for untargeted substructure exploration in metabolomics. Proc. Natl Acad. Sci. USA 113, 13738–13743 (2016). MS2LDA recognizes and annotates motifs from MS data as chemical substructures.

    PubMed  PubMed Central  Google Scholar 

  94. Ernst, M. et al. MolNetEnhancer: enhanced molecular networks by integrating metabolome mining and annotation tools. Metabolites 9, 144 (2019).

    CAS  PubMed Central  Google Scholar 

  95. Djoumbou Feunang, Y. et al. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J. Cheminform. 8, 61 (2016).

    PubMed  PubMed Central  Google Scholar 

  96. Dührkop, K. et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat. Biotechnol. 39, 462–471 (2020).

    PubMed  Google Scholar 

  97. Tripathi, A. et al. Chemically informed analyses of metabolomics mass spectrometry data with Qemistree. Nat. Chem. Biol. 17, 146–151 (2020).

    PubMed  PubMed Central  Google Scholar 

  98. Ridder, L. et al. Substructure-based annotation of high-resolution multistage MSn spectral trees. Rapid Commun. Mass. Spectrom. 26, 2461–2471 (2012).

    CAS  PubMed  Google Scholar 

  99. Wang, J., Peake, D. A., Mistrik, R. & Huang, Y. A platform to identify endogenous metabolites using a novel high performance Orbitrap MS and the mzCloud Library. Blood 4, 2–8 (2013).

    Google Scholar 

  100. Hulme, H. et al. Microbiome-derived carnitine mimics as previously unknown mediators of gut-brain axis communication. Sci. Adv. 6, eaax6328 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sugiura, Y. et al. Visualization of in vivo metabolic flows reveals accelerated utilization of glucose and lactate in penumbra of ischemic heart. Sci. Rep. 6, 32361 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Mohammadi, S. A. & Prasanna, B. M. Analysis of genetic diversity in crop plants — salient statistical tools and considerations. Crop. Sci. 43, 1235–1248 (2003).

    Google Scholar 

  103. Lee, L. C., Liong, C.-Y. & Jemain, A. A. Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: a review of contemporary practice strategies and knowledge gaps. Analyst 143, 3526–3539 (2018).

    CAS  PubMed  Google Scholar 

  104. Jolliffe, I. T. A note on the use of principal components in regression. Appl. Stat. 31, 300 (1982).

    Google Scholar 

  105. Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3, 470–480 (2018).

    CAS  PubMed  Google Scholar 

  106. Gauglitz, J. M. et al. Metabolome-informed microbiome analysis refines metadata classifications and reveals unexpected medication transfer in captive cheetahs. mSystems 5, e00635-19 (2020).

    PubMed  PubMed Central  Google Scholar 

  107. Naveja, J. J., Rico-Hidalgo, M. P. & Medina-Franco, J. L. Analysis of a large food chemical database: chemical space, diversity, and complexity. F1000Res 7, 993 (2018).

    Google Scholar 

  108. Neveu, V. et al. Exposome-Explorer: a manually-curated database on biomarkers of exposure to dietary and environmental factors. Nucleic Acids Res. 45, D979–D984 (2017).

    CAS  PubMed  Google Scholar 

  109. Pearson, K. Determination of the coefficient of correlation. Science 30, 23–25 (1909).

    CAS  PubMed  Google Scholar 

  110. Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 15, 72 (1904).

    Google Scholar 

  111. Kendall, M. G. & Gibbons, J. D. Rank Correlation Methods (Oxford University Press, 1990).

  112. Basu, S. et al. Sparse network modeling and metscape-based visualization methods for the analysis of large-scale metabolomics data. Bioinformatics 33, 1545–1553 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Noecker, C., Chiu, H.-C., McNally, C. P. & Borenstein, E. Defining and evaluating microbial contributions to metabolite variation in microbiome-metabolome association studies. mSystems 4, e00579-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  114. Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).

    PubMed  PubMed Central  Google Scholar 

  115. Knight, R. et al. Best practices for analysing microbiomes. Nat. Rev. Microbiol. 16, 410–422 (2018).

    CAS  PubMed  Google Scholar 

  116. Weinstock, G. M. Genomic approaches to studying the human microbiota. Nature 489, 250–256 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Freilich, S. et al. The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Res. 38, 3857–3868 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).

    PubMed  PubMed Central  Google Scholar 

  119. Melnik, A. V. et al. Coupling targeted and untargeted mass spectrometry for metabolome-microbiome-wide association studies of human fecal samples. Anal. Chem. 89, 7549–7559 (2017).

    CAS  PubMed  Google Scholar 

  120. Ayeni, F. A. et al. Infant and adult gut microbiome and metabolome in rural Bassa and urban settlers from Nigeria. Cell Rep. 23, 3056–3067 (2018).

    CAS  PubMed  Google Scholar 

  121. Yuan, C., Graham, M., Staley, C. & Subramanian, S. Mucosal microbiota and metabolome along the intestinal tracts reveals location specific relationship. mSystems 5, e00055-20 (2020).

    PubMed  PubMed Central  Google Scholar 

  122. Visconti, A. et al. Interplay between the human gut microbiome and host metabolism. Nat. Commun. 10, 4505 (2019).

    PubMed  PubMed Central  Google Scholar 

  123. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Douglas, G. M. et al. PICRUSt2: An improved and customizable approach for metagenome inference. bioRxiv https://doi.org/10.1101/672295 (2020).

    Article  Google Scholar 

  126. Li, S. et al. Predicting network activity from high throughput metabolomics. PLoS Comput. Biol. 9, e1003123 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Magnúsdóttir, S. et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35, 81–89 (2017).

    PubMed  Google Scholar 

  128. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Slenter, D. N. et al. WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res. 46, D661–D667 (2018).

    CAS  PubMed  Google Scholar 

  130. Caspi, R. et al. The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 36, D623–D631 (2008).

    CAS  PubMed  Google Scholar 

  131. Michelini, S. et al. A reverse metabolic approach to weaning: in silico identification of immune-beneficial infant gut bacteria, mining their metabolism for prebiotic feeds and sourcing these feeds in the natural product space. Microbiome 6, 171 (2018).

    PubMed  PubMed Central  Google Scholar 

  132. Moradi, F., Olovsson, T. & Tsigas, P. in 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014) (IEEE, 2014).

  133. Carr, R. & Borenstein, E. NetSeed: a network-based reverse-ecology tool for calculating the metabolic interface of an organism with its environment. Bioinformatics 28, 734–735 (2012).

    CAS  PubMed  Google Scholar 

  134. Su, Y., Wang, B. & Zhang, X. A seed-expanding method based on random walks for community detection in networks with ambiguous community structures. Sci. Rep. 7, 41830 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Mallick, H. et al. Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences. Nat. Commun. 10, 3136 (2019).

    PubMed  PubMed Central  Google Scholar 

  136. Yin, X. et al. A comparative evaluation of tools to predict metabolite profiles from microbiome sequencing data. Front. Microbiol. 11, 595910 (2020).

    PubMed  PubMed Central  Google Scholar 

  137. Karnovsky, A. et al. Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics 28, 373–380 (2012).

    CAS  PubMed  Google Scholar 

  138. Kamburov, A., Cavill, R., Ebbels, T. M. D., Herwig, R. & Keun, H. C. Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics 27, 2917–2918 (2011).

    CAS  PubMed  Google Scholar 

  139. Hosseini, R., Hassanpour, N., Liu, L.-P. & Hassoun, S. Pathway-activity likelihood analysis and metabolite annotation for untargeted metabolomics using probabilistic modeling. Metabolites 10, 183 (2020).

    CAS  PubMed Central  Google Scholar 

  140. McLuskey, K. et al. Decomposing metabolite set activity levels with PALS. bioRxiv https://doi.org/10.1101/2020.06.07.138974 (2020).

    Article  Google Scholar 

  141. Shaffer, M. et al. AMON: annotation of metabolite origins via networks to integrate microbiome and metabolome data. BMC Bioinformatics 20, 614 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Yang, L.-N. et al. Integrated metabolomics and proteomics analysis revealed second messenger system disturbance in hippocampus of chronic social defeat stress rat. Front. Neurosci. 13, 247 (2019).

    PubMed  PubMed Central  Google Scholar 

  143. Noecker, C. et al. Metabolic model-based integration of microbiome taxonomic and metabolomic profiles elucidates mechanistic links between ecological and metabolic variation. mSystems 1, e00013-15 (2016).

    PubMed  PubMed Central  Google Scholar 

  144. Barupal, D. K. & Fiehn, O. Chemical Similarity Enrichment Analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets. Sci. Rep. 7, 14567 (2017).

    PubMed  PubMed Central  Google Scholar 

  145. Bryrup, T. et al. Metformin-induced changes of the gut microbiota in healthy young men: results of a non-blinded, one-armed intervention study. Diabetologia 62, 1024–1035 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Savage, N. The complex relationship between drugs and the microbiome. Nature 577, S10–S11 (2020).

    CAS  PubMed  Google Scholar 

  147. Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Vich Vila, A. et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun. 11, 362 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Mullard, A. Understanding how microbiome bugs metabolize drugs. Nat. Rev. Drug Discov. 18, 488 (2019).

    PubMed  Google Scholar 

  150. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    CAS  PubMed  Google Scholar 

  151. Hehemann, J.-H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908–912 (2010).

    CAS  PubMed  Google Scholar 

  152. Kolodziejczyk, A. A., Zheng, D. & Elinav, E. Diet–microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 17, 742–753 (2019).

    CAS  PubMed  Google Scholar 

  153. Maini Rekdal, V., Bess, E. N., Bisanz, J. E., Turnbaugh, P. J. & Balskus, E. P. Discovery and inhibition of an interspecies gut bacterial pathway for levodopa metabolism. Science 364, eaau6323 (2019).

    PubMed  Google Scholar 

  154. Delzenne, N. M. & Bindels, L. B. Food for thought about manipulating gut bacteria. Nature 577, 32–34 (2020).

    CAS  PubMed  Google Scholar 

  155. Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).

    PubMed  PubMed Central  Google Scholar 

  156. Bauermeister, A., Zucchi, T. D. & Moraes, L. A. B. Mass spectrometric approaches for the identification of anthracycline analogs produced by actinobacteria. J. Mass. Spectrom. 51, 437–445 (2016).

    CAS  PubMed  Google Scholar 

  157. Johnson, A. R. & Carlson, E. E. Collision-induced dissociation mass spectrometry: a powerful tool for natural product structure elucidation. Anal. Chem. 87, 10668–10678 (2015).

    CAS  PubMed  Google Scholar 

  158. Lermyte, F., Valkenborg, D., Loo, J. A. & Sobott, F. Radical solutions: principles and application of electron-based dissociation in mass spectrometry-based analysis of protein structure. Mass. Spectrom. Rev. 37, 750–771 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Paglia, G., Kliman, M., Claude, E., Geromanos, S. & Astarita, G. Applications of ion-mobility mass spectrometry for lipid analysis. Anal. Bioanal. Chem. 407, 4995–5007 (2015).

    CAS  PubMed  Google Scholar 

  160. Tian, H., Li, B. & Shui, G. Untargeted LC–MS data preprocessing in metabolomics. J. Anal. Test. 1, 187–192 (2017).

    Google Scholar 

  161. Röst, H. L. et al. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat. Methods 13, 741–748 (2016).

    PubMed  Google Scholar 

  162. Tautenhahn, R., Böttcher, C. & Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinforma. 9, 504 (2008).

    Google Scholar 

  163. Kapoore, R. V. & Vaidyanathan, S. Towards quantitative mass spectrometry-based metabolomics in microbial and mammalian systems. Philos. Trans. A Math. Phys. Eng. Sci. 374, 20150363 (2016).

    PubMed  PubMed Central  Google Scholar 

  164. Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R. & Neumann, S. CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 84, 283–289 (2012).

    CAS  PubMed  Google Scholar 

  165. Broeckling, C. D., Afsar, F. A., Neumann, S., Ben-Hur, A. & Prenni, J. E. RAMClust: a novel feature clustering method enables spectral-matching-based annotation for metabolomics data. Anal. Chem. 86, 6812–6817 (2014).

    CAS  PubMed  Google Scholar 

  166. Schmid, R. et al. Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment. Nat. Commun. 12, 3832 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Qi, B.-L. et al. Derivatization for liquid chromatography-mass spectrometry. Trends Analyt. Chem. 59, 121–132 (2014).

    CAS  Google Scholar 

  168. Furey, A., Moriarty, M., Bane, V., Kinsella, B. & Lehane, M. Ion suppression; a critical review on causes, evaluation, prevention and applications. Talanta 115, 104–122 (2013).

    CAS  PubMed  Google Scholar 

  169. Li, B., Selmi, C., Tang, R., Gershwin, M. E. & Ma, X. The microbiome and autoimmunity: a paradigm from the gut–liver axis. Cell. Mol. Immunol. 15, 595–609 (2018).

    PubMed  PubMed Central  Google Scholar 

  170. Zitvogel, L., Daillère, R., Roberti, M. P., Routy, B. & Kroemer, G. Anticancer effects of the microbiome and its products. Nat. Rev. Microbiol. 15, 465–478 (2017).

    CAS  PubMed  Google Scholar 

  171. Wan, Y. et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut 68, 1417–1429 (2019).

    CAS  PubMed  Google Scholar 

  172. Nakatsuji, T. et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci. Transl. Med. 9, eaah4680 (2017). S. hominis, a commensal bacterium from the human skin, produces an antibiotic metabolite that controls the growth of S. aureus, contributing to the equilibrium of the microbiota.

    PubMed  PubMed Central  Google Scholar 

  173. Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013). This article reports treatment of a mouse model of autism spectrum disorder to restore some symptoms and modulate behaviour, which supports a gut–microbiome–brain connection.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Chevrette, M. G. et al. The antimicrobial potential of Streptomyces from insect microbiomes. Nat. Commun. 10, 516 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.B. acknowledges FAPESP (2018/24865-4), H.M.-R. acknowledges the Brazilian Fulbright Commission and CNPq (142014/2018-4), L.V.C.-L. acknowledges FAPESP (2015/17177-6 and 2018/07098-0) and CNPq (443281/2019-0 and 306913/2017-8) and P.C.D. acknowledges the NIH (1 U19 AG063744), the Gordon and Betty Moore Foundation and the Crohn’s & Colitis Foundation for financial support.

Author information

Authors and Affiliations

Authors

Contributions

P.C.D, A.B., H.M-R. and A.K.J. researched data for article. P.C.D, A.B., H.M-R., L.V.C.-L and A.K.J. substantially contributed to the discussion of content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Alan K. Jarmusch or Pieter C. Dorrestein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks M. Fischbach, B. B. Misra, O. Pedersen, who co-reviewed with Y. Fan, and P. Turnbaugh for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

GNPS: https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp

SCiLS Lab: https://scils.de

Supplementary information

Glossary

Alpha diversity

A metric that summarizes the number of taxonomic groups or unique molecular features (species richness) and the evenness or balance of those microorganisms (species diversity) or molecular features that can be detected in the sample.

Beta diversity

The ratio between the diversity of molecules or organisms in the entire dataset and the diversity of the specific sample. This metric represents the diversity of microbial communities across different environments, also referred to ‘compositional heterogeneity’.

Rarefaction

A strategy whereby the summed number of unique data points (for example, operational taxonomic units in microbiome data or fragmentation spectra in mass spectrometry) are inventoried with each sample that is added to the sample set. It is often used to standardize samples of different sizes and determine whether a sample has been sequenced enough to represent its true diversity.

Procrustes analysis

A statistical model based on canonical correlation to shape the distribution of two or more groups of features from different omics datasets.

mmvec

One-layer neural networking method using bi-log–linear multinominal regression to predict the probability for co-occurrence relative to metadata.

Principal coordinate analysis

Unsupervised multivariate analysis used to calculate the interrelationships of a dataset, often used to reduce the dimensionality of large datasets.

MS1

Precursor mass of the intact molecular ion.

Liquid chromatography

(LC). A technique to separate two or more compounds present in a sample by exploiting the affinity balance between a stationary phase placed inside the chromatographic column and a mobile phase that flows through it.

Gas chromatography

(GC). A technique to separate compounds in a mixture by injecting a gaseous or liquid sample into a mobile phase, usually an inert gas such as helium.

Metabolomics Standards Initiative

(MSI). A formal initiative to define metabolite annotation and identification. It comprises four levels: level 1 represents the identified metabolites; level 2 represents the putatively annotated compounds; level 3 represents the putatively characterized chemical classes or molecular family; level 4 represents an unknown but detected mass spectrometry signal.

Schymanski system

A system for metabolite annotation. Level 1 represents the confirmed structure. Level 2 represents the probable structure. Level 3 represents the tentative candidate of the compound class. Levels 4 and 5 correspond to an unequivocal molecular formula assignment, and an exact mass of interest that still lacks molecular formula assignment.

False discovery rate

(FDR). The proportion of events that falsely seem to be significant.

Molecular networking

A computational algorithm that organizes fragmentation spectra by spectral similarities from which structural similarity is inferred. It is obtained via spectral alignment.

In silico annotation tools

Computational methods to improve compound annotation by exploring other approaches besides spectral libraries, such as machine learning.

Substructures

Small parts or functional groups in a chemical entity.

Machine learning

Application of artificial intelligence that is able to learn, adapt and improve its accuracy over time without being explicitly programmed.

Biosynthetic gene cluster

(BGC). A group of two or more genes in a particular genome that together encode a biosynthetic pathway.

ClassyFire

A hierarchical chemical classification of chemical entities.

Neural networks

A set of algorithms designed to recognize patterns and used to classify entities or make predictions. Modelled around the concept of neurons.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauermeister, A., Mannochio-Russo, H., Costa-Lotufo, L.V. et al. Mass spectrometry-based metabolomics in microbiome investigations. Nat Rev Microbiol 20, 143–160 (2022). https://doi.org/10.1038/s41579-021-00621-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-021-00621-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research