Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Structural insights into the signalling mechanisms of two-component systems

Abstract

Two-component systems reprogramme diverse aspects of microbial physiology in response to environmental cues. Canonical systems are composed of a transmembrane sensor histidine kinase and its cognate response regulator. They catalyse three reactions: autophosphorylation of the histidine kinase, transfer of the phosphoryl group to the regulator and dephosphorylation of the phosphoregulator. Elucidating signal transduction between sensor and output domains is highly challenging given the size, flexibility and dynamics of histidine kinases. However, recent structural work has provided snapshots of the catalytic mechanisms of the three enzymatic reactions and described the conformation and dynamics of the enzymatic moiety in the kinase-competent and phosphatase-competent states. Insight into signalling mechanisms across the membrane is also starting to emerge from new crystal structures encompassing both sensor and transducer domains of sensor histidine kinases. In this Progress article, we highlight such important advances towards understanding at the molecular level the signal transduction mechanisms mediated by these fascinating molecular machines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Architectures of two-component systems and of sensor kinases.
Fig. 2: The kinase and phosphatase states.
Fig. 3: Sensing and signalling by SHKs.

Similar content being viewed by others

References

  1. Zschiedrich, C. P., Keidel, V. & Szurmant, H. Molecular mechanisms of two-component signal transduction. J. Mol. Biol. 428, 3752–3775 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Krell, T. et al. Bacterial sensor-kinases: diversity in the recognition of environmental signals. Annu. Rev. Microbiol. 64, 539–559 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Mascher, T., Helmann, J. D. & Unden, G. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol. Mol. Biol. Rev. 70, 910–938 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stock, A. M., Robinson, V. L. & Goudreau, P. N. Two-component signal transduction. Annu. Rev. Biochem. 69, 183–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Gushchin, I. & Gordeliy, V. Transmembrane signal transduction in two-component systems: piston, scissoring, or helical rotation? Bioessays 40, 2 (2018).

    Article  CAS  Google Scholar 

  6. Parkinson, J. S., Hazelbauer, G. L. & Falke, J. J. Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update. Trends Microbiol. 23, 257–266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gao, R. & Stock, A. M. Biological insights from structures of two-component proteins. Annu. Rev. Microbiol. 63, 133–154 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rivera-Cancel, G., Ko, W. H., Tomchick, D. R., Correa, F. & Gardner, K. H. Full-length structure of a monomeric histidine kinase reveals basis for sensory regulation. Proc. Natl Acad. Sci. USA 111, 17839–17844 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pfluger, T. et al. Signaling ammonium across membranes through an ammonium sensor histidine kinase. Nat. Commun. 9, 164 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ortega, A., Zhulin, I. B. & Krell, T. Sensory repertoire of bacterial chemoreceptors. Microbiol. Mol. Biol. Rev. 81, 28 (2017).

    Article  Google Scholar 

  11. Albanesi, D. et al. Structural plasticity and catalysis regulation of a thermosensor histidine kinase. Proc. Natl Acad. Sci. USA 106, 16185–16190 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Möglich, A., Ayers, R. A. & Moffat, K. Design and signaling mechanism of light-regulated histidine kinases. J. Mol. Biol. 385, 1433–1444 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Moukhametzianov, R. et al. Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Nature 440, 115–119 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Vogt, S. & Raivio, T. Just scratching the surface: an expanding view of the Cpx envelope stress response. FEMS Microbiol. Lett. 326, 2–11 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Dupre, E. et al. Virulence regulation with venus flytrap domains: structure and function of the periplasmic moiety of the sensor-kinase BvgS. PLOS Pathog. 11, e1004700 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Dubrac, S. & Msadek, T. Tearing down the wall: peptidoglycan metabolism and the WalK/WalR (YycG/YycF) essential two-component system. Adv. Exp. Med. Biol. 631, 214–228 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Leonard, P. G., Golemi-Kotra, D. & Stock, A. M. Phosphorylation-dependent conformational changes and domain rearrangements in Staphylococcus aureus VraR activation. Proc. Natl Acad. Sci. USA 110, 8525–8530 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bourret, R. B. & Silversmith, R. E. Two-component signal transduction. Curr. Opin. Microbiol. 13, 113–115 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Casino, P., Rubio, V. & Marina, A. The mechanism of signal transduction by two-component systems. Curr. Opin. Struct. Biol. 20, 763–771 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Cheung, J. & Hendrickson, W. A. Sensor domains of two-component regulatory systems. Curr. Opin. Microbiol. 13, 116–123 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Galperin, M. Y. Diversity of structure and function of response regulator output domains. Curr. Opin. Microbiol. 13, 150–159 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao, R. & Stock, A. M. Molecular strategies for phosphorylation-mediated regulation of response regulator activity. Curr. Opin. Microbiol. 13, 160–167 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bhate, M. P., Molnar, K. S., Goulian, M. & DeGrado, W. F. Signal transduction in histidine kinases: insights from new structures. Structure 23, 981–994 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Casino, P., Rubio, V. & Marina, A. Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. Cell 139, 325–336 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Etzkorn, M. et al. Plasticity of the PAS domain and a potential role for signal transduction in the histidine kinase DcuS. Nat. Struct. Mol. Biol. 15, 1031–1039 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Hulko, M. et al. The HAMP domain structure implies helix rotation in transmembrane signaling. Cell 126, 929–940 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Molnar, K. S. et al. Cys-scanning disulfide crosslinking and bayesian modeling probe the transmembrane signaling mechanism of the histidine kinase, PhoQ. Structure 22, 1239–1251 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Paul, R. et al. Allosteric regulation of histidine kinases by their cognate response regulator determines cell fate. Cell 133, 452–461 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Trajtenberg, F. et al. Allosteric activation of bacterial response regulators: the role of the cognate histidine kinase beyond phosphorylation. mBio 5, e02105 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mechaly, A. E. et al. Structural coupling between autokinase and phosphotransferase reactions in a bacterial histidine kinase. Structure 25, 939–944 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Rinaldi, J. et al. Structural insights into the HWE histidine kinase family: the Brucella blue light-activated histidine kinase domain. J. Mol. Biol. 428, 1165–1179 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Mechaly, A. E., Sassoon, N., Betton, J. M. & Alzari, P. M. Segmental helical motions and dynamical asymmetry modulate histidine kinase autophosphorylation. PLOS Biol. 12, e1001776 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Casino, P., Miguel-Romero, L. & Marina, A. Visualizing autophosphorylation in histidine kinases. Nat. Commun. 5, 3258 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Cai, Y. et al. Conformational dynamics of the essential sensor histidine kinase WalK. Acta Crystallogr. D Struct. Biol. 73, 793–803 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ferris, H. U., Coles, M., Lupas, A. N. & Hartmann, M. D. Crystallographic snapshot of the Escherichia coli EnvZ histidine kinase in an active conformation. J. Struct. Biol. 186, 376–379 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, C. et al. Mechanistic insights revealed by the crystal structure of a histidine kinase with signal transducer and sensor domains. PLOS Biol. 11, e1001493 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dago, A. E. et al. Structural basis of histidine kinase autophosphorylation deduced by integrating genomics, molecular dynamics, and mutagenesis. Proc. Natl Acad. Sci. USA 109, E1733–E1742 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Trajtenberg, F., Grana, M., Ruetalo, N., Botti, H. & Buschiazzo, A. Structural and enzymatic insights into the ATP binding and autophosphorylation mechanism of a sensor histidine kinase. J. Biol. Chem. 285, 24892–24903 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ashenberg, O., Keating, A. E. & Laub, M. T. Helix bundle loops determine whether histidine kinases autophosphorylate in cis or in trans. J. Mol. Biol. 425, 1198–1209 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marsico, F. et al. Multiscale approach to the activation and phosphotransfer mechanism of CpxA histidine kinase reveals a tight coupling between conformational and chemical steps. Biochem. Biophys. Res. Commun. 498, 305–312 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Willett, J. W. & Kirby, J. R. Genetic and biochemical dissection of a HisKA domain identifies residues required exclusively for kinase and phosphatase activities. PLOS Genet. 8, e1003084 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Trajtenberg, F. et al. Regulation of signaling directionality revealed by 3D snapshots of a kinase:regulator complex in action. eLife 5, e21422 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. West, A. H. & Stock, A. M. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci. 6, 369–376 (2001).

    Article  Google Scholar 

  44. Willett, J. W., Herrou, J., Briegel, A., Rotskoff, G. & Crosson, S. Structural asymmetry in a conserved signaling system that regulates division, replication, and virulence of an intracellular pathogen. Proc. Natl Acad. Sci. USA 112, E3709–3718 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zapf, J., Sen, U., Madhusudan, Hoch, J. A. & Varughese, K. I. A transient interaction between two phosphorelay proteins trapped in a crystal lattice reveals the mechanism of molecular recognition and phosphotransfer in signal transduction. Structure 8, 851–862 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Varughese, K. I., Tsigelny, I. & Zhao, H. The crystal structure of beryllofluoride Spo0F in complex with the phosphotransferase Spo0B represents a phosphotransfer pretransition state. J. Bacteriol. 188, 4970–4977 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, Y. et al. A pH-gated conformational switch regulates the phosphatase activity of bifunctional HisKA-family histidine kinases. Nat. Commun. 8, 2104 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Huynh, T. N., Noriega, C. E. & Stewart, V. Conserved mechanism for sensor phosphatase control of two-component signaling revealed in the nitrate sensor NarX. Proc. Natl Acad. Sci. USA 107, 21140–21145 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gushchin, I. et al. Mechanism of transmembrane signaling by sensor histidine kinases. Science 356, eaah6345 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Gordeliy, V. I. et al. Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419, 484–487 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Ishchenko, A. et al. New insights on signal propagation by sensory rhodopsin ii/transducer complex. Sci. Rep. 7, 41811 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Salvi, M. et al. Sensory domain contraction in histidine kinase CitA triggers transmembrane signaling in the membrane-bound sensor. Proc. Natl Acad. Sci. USA 114, 3115–3120 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nan, B. et al. From signal perception to signal transduction: ligand-induced dimeric switch of DctB sensory domain in solution. Mol. Microbiol. 75, 1484–1494 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Lowe, E. C., Basle, A., Czjzek, M., Firbank, S. J. & Bolam, D. N. A scissor blade-like closing mechanism implicated in transmembrane signaling in a Bacteroides hybrid two-component system. Proc. Natl Acad. Sci. USA 109, 7298–7303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moore, J. O. & Hendrickson, W. A. An asymmetry-to-symmetry switch in signal transmission by the histidine kinase receptor for TMAO. Structure 20, 729–741 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, Z. & Hendrickson, W. A. Structural characterization of the predominant family of histidine kinase sensor domains. J. Mol. Biol. 400, 335–353 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, B., Zhao, A., Novick, R. P. & Muir, T. W. Activation and inhibition of the receptor histidine kinase AgrC occurs through opposite helical transduction motions. Mol. Cell 53, 929–940 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Monzel, C. & Unden, G. Transmembrane signaling in the sensor kinase DcuS of Escherichia coli: A long-range piston-type displacement of transmembrane helix 2. Proc. Natl Acad. Sci. USA 112, 11042–11047 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cheung, J. & Hendrickson, W. A. Structural analysis of ligand stimulation of the histidine kinase NarX. Structure 17, 190–201 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Neiditch, M. B. et al. Ligand-induced asymmetry in histidine sensor kinase complex regulates quorum sensing. Cell 126, 1095–1108 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Scheu, P. et al. Polar accumulation of the metabolic sensory histidine kinases DcuS and CitA in Escherichia coli. Microbiology 154, 2463–2472 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Lemmin, T., Soto, C. S., Clinthorne, G., DeGrado, W. F. & Dal Peraro, M. Assembly of the transmembrane domain of E. coli PhoQ histidine kinase: implications for signal transduction from molecular simulations. PLOS Comput. Biol. 9, e1002878 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Goldberg, S. D., Clinthorne, G. D., Goulian, M. & DeGrado, W. F. Transmembrane polar interactions are required for signaling in the Escherichia coli sensor kinase PhoQ. Proc. Natl Acad. Sci. USA 107, 8141–8146 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Abriata, L. A., Albanesi, D., Dal Peraro, M. & de Mendoza, D. Signal sensing and transduction by histidine kinases as unveiled through studies on a temperature sensor. Acc. Chem. Res. 50, 1359–1366 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Aravind, L. & Ponting, C. P. The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiol. Lett. 176, 111–116 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Ferris, H. U. et al. Mechanism of regulation of receptor histidine kinases. Structure 20, 56–66 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Ferris, H. U. et al. The mechanisms of HAMP-mediated signaling in transmembrane receptors. Structure 19, 378–385 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Airola, M. V., Watts, K. J., Bilwes, A. M. & Crane, B. R. Structure of concatenated HAMP domains provides a mechanism for signal transduction. Structure 18, 436–448 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Swain, K. E., Gonzalez, M. A. & Falke, J. J. Engineered socket study of signaling through a four-helix bundle: evidence for a yin-yang mechanism in the kinase control module of the aspartate receptor. Biochemistry 48, 9266–9277 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Zhu, L., Bolhuis, P. G. & Vreede, J. The HAMP signal relay domain adopts multiple conformational states through collective piston and tilt motions. PLOS Comput. Biol. 9, e1002913 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Parkinson, J. S. Signaling mechanisms of HAMP domains in chemoreceptors and sensor kinases. Annu. Rev. Microbiol. 64, 101–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Sukomon, N., Widom, J., Borbat, P. P., Freed, J. H. & Crane, B. R. Stability and conformation of a chemoreceptor HAMP domain chimera correlates with signaling properties. Biophys. J. 112, 1383–1395 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dunin-Horkawicz, S. & Lupas, A. N. Comprehensive analysis of HAMP domains: implications for transmembrane signal transduction. J. Mol. Biol. 397, 1156–1174 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Matamouros, S., Hager, K. R. & Miller, S. I. HAMP domain rotation and tilting movements associated with signal transduction in the PhoQ sensor kinase. mBio 6, e00616–00615 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Anantharaman, V., Balaji, S. & Aravind, L. The signaling helix: a common functional theme in diverse signaling proteins. Biol. Direct 1, 25 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Stewart, V. & Chen, L. L. The S helix mediates signal transmission as a HAMP domain coiled-coil extension in the NarX nitrate sensor from Escherichia coli K-12. J. Bacteriol. 192, 734–745 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Saita, E. et al. A coiled coil switch mediates cold sensing by the thermosensory protein DesK. Mol. Microbiol. 98, 258–271 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Lesne, E. et al. Balance between coiled-coil stability and dynamics regulates activity of BvgS sensor kinase in Bordetella. mBio 7, e02089 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lesne, E. et al. Coiled coils antagonisms regulate activity of Venus flytrap-domain-containing sensor-kinases of the BvgS family. mBio 9, e02052–17 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Schmidt, N. W., Grigoryan, G. & DeGrado, W. F. The accommodation index measures the perturbation associated with insertions and deletions in coiled-coils. Application to understand signaling in histidine kinases. Protein Sci. 26, 414–435 (2016).

    Article  CAS  Google Scholar 

  81. Kitanovic, S., Ames, P. & Parkinson, J. S. A. Trigger residue for transmembrane signaling in the Escherichia coli serine chemoreceptor. J. Bacteriol. 197, 2568–2579 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu, J. et al. Mutational analysis of dimeric linkers in peri- and cytoplasmic domains of histidine kinase DctB reveals their functional roles in signal transduction. Open Biol. 4, 140023 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Zhou, Q., Ames, P. & Parkinson, J. S. Mutational analyses of HAMP helices suggest a dynamic bundle model of input-output signalling in chemoreceptors. Mol. Microbiol. 73, 801–814 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Möglich, A., Ayers, R. A. & Moffat, K. Structure and signaling mechanism of Per-ARNT-Sim domains. Structure 17, 1282–1294 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Ayers, R. A. & Moffat, K. Changes in quaternary structure in the signaling mechanisms of PAS domains. Biochemistry 47, 12078–12086 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Diensthuber, R. P., Bommer, M., Gleichmann, T. & Möglich, A. Full-length structure of a sensor histidine kinase pinpoints coaxial coiled coils as signal transducers and modulators. Structure 21, 1127–1136 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Berntsson, O. et al. Time-resolved x-ray solution scattering reveals the structural photoactivation of a light-oxygen-voltage photoreceptor. Structure 25, 933–938 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Berntsson, O. et al. Sequential conformational transitions and α-helical supercoiling regulate a sensor histidine kinase. Nat. Commun. 8, 284 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Yamada, S. et al. Structure of PAS-linked histidine kinase and the response regulator complex. Structure 17, 1333–1344 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Garcia, D., Watts, K. J., Johnson, M. S. & Taylor, B. L. Delineating PAS-HAMP interaction surfaces and signalling-associated changes in the aerotaxis receptor Aer. Mol. Microbiol. 100, 156–172 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bem, A. E. et al. Bacterial histidine kinases as novel antibacterial drug targets. ACS Chem. Biol. 10, 213–224 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Tiwari, S. et al. Two-component signal transduction systems of pathogenic bacteria as targets for antimicrobial therapy: an overview. Front. Microbiol. 8, 1878 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Velikova, N. et al. Putative histidine kinase inhibitors with antibacterial effect against multi-drug resistant clinical isolates identified by in vitro and in silico screens. Sci. Rep. 6, 26085 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank E. Pradel for carefully reading the manuscript. They also thank A. Buschiazzo, F. Trajtenberg and J. Imelio (Institut Pasteur of Montevideo) for kindly sharing the coordinates file of the DesK–DesR complex model shown in Fig. 2a. The work in F.J.-D.’s group was supported by the Agence Nationale de la Recherche (grant ANR-10-BLAN-1306). The authors apologize to all colleagues whose excellent work on two-component systems could not be cited because of space limitations.

Reviewer information

Nature Reviews Microbiology thanks V. Gordeliy and A. Möglich and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

F.J.-D., A.M., J.-M.B. and R.A. researched data for the article and made substantial contributions to discussions of the content. F.J.-D., J.-M.B. and A.M. wrote the article. F.J.-D., A.M. and R.A. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Françoise Jacob-Dubuisson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob-Dubuisson, F., Mechaly, A., Betton, JM. et al. Structural insights into the signalling mechanisms of two-component systems. Nat Rev Microbiol 16, 585–593 (2018). https://doi.org/10.1038/s41579-018-0055-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-018-0055-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing