Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Charge transport and hydrodynamics in materials

Abstract

As high-quality single-crystal materials used in electronic devices approach the microscale and nanoscale, charge-transport phenomena in these devices result in inhomogeneous spatial signatures with strong implications for observable material properties. These signatures include spatially varying dissipation, which affects thermal management strategies in devices, and interface resistance between different materials, and are essential for the functional control of devices. In this Review, we investigate the spatially inhomogeneous signatures of charge flow in conductors, with particular emphasis on the recently rekindled field of electron hydrodynamics, a regime where electrons are strongly interacting and can flow collectively akin to fluids. We highlight recent experimental advances in transport measurements that enabled the observation of these signatures and review the theoretical frameworks used to interpret and predict these observations. We outline the new charge-transport phenomena introduced by crystal symmetry in materials, provide an outlook on future research opportunities and identify experimental and theoretical challenges in the study of hydrodynamic transport in materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental demonstrations of hydrodynamic flows.
Fig. 2: New charge-transport phenomena.
Fig. 3: Current-density variability in system with hexagonal symmetry.

Similar content being viewed by others

References

  1. International Energy Agency. Digitalization and energy (IEA, 2017).

  2. Shehabi, A., Smith, S. J., Masanet, E. & Koomey, J. Data center growth in the United States: decoupling the demand for services from electricity use. Env. Res. Lett. 13, 124030 (2018).

    Article  Google Scholar 

  3. Masanet, E., Shehabi, A., Lei, N., Smith, S. & Koomey, J. Recalibrating global data center energy-use estimates. Science 367, 984–986 (2020).

    Article  CAS  Google Scholar 

  4. International Energy Agency. Data centres and data transmission networks. IEA https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks (2022).

  5. Lundstrom, M. S. & Alam, M. A. Moore’s law: the journey ahead. Science 378, 722–723 (2022).

    Article  CAS  Google Scholar 

  6. Molenkamp, L. & de Jong, M. Observation of Knudsen and Gurzhi transport regimes in a two-dimensional wire. Solid State Electron. 37, 551–553 (1994).

    Article  CAS  Google Scholar 

  7. de Jong, M. J. M. & Molenkamp, L. W. Hydrodynamic electron flow in high-mobility wires. Phys. Rev. B 51, 13389–13402 (1995). Early 2DEG hydrodynamic transport observations and dual-relaxation-time Boltzmann transport equation formalism.

    Article  Google Scholar 

  8. Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann–Franz law in graphene. Science 351, 1058–1061 (2016). One of three papers that were published back to back reporting transport measurements suggesting electron hydrodynamics.

    Article  CAS  Google Scholar 

  9. Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016). Another of the three papers that were published back to back reporting transport measurements suggesting electron hydrodynamics.

    Article  CAS  Google Scholar 

  10. Moll, P. J. W., Kushwaha, P., Nandi, N., Schmidt, B. & Mackenzie, A. P. Evidence for hydrodynamic electron flow in PdCoO2. Science 351, 1061–1064 (2016). The third of three papers that were published back to back reporting transport measurements suggesting electron hydrodynamics.

    Article  CAS  Google Scholar 

  11. Levitov, L. & Falkovich, G. Electron viscosity, current vortices and negative nonlocal resistance in graphene. Nat. Phys. 12, 672–676 (2016).

    Article  CAS  Google Scholar 

  12. Bandurin, D. A. et al. Fluidity onset in graphene. Nat. Commun. 9, 4533 (2018).

    Article  Google Scholar 

  13. Gurzhi, R. Minimum of resistance in impurity-free conductors. Sov. Phys. JETP 44, 771 (1963).

    CAS  Google Scholar 

  14. Gurzhi, R. N. Hydrodynamic effects in solids at low temperature. Sov. Phys. Usp. 11, 255 (1968). Early review article by Gurzhi, who predicted electron hydrodynamics theoretically.

    Article  Google Scholar 

  15. Kiselev, E. I. & Schmalian, J. Boundary conditions of viscous electron flow. Phys. Rev. B 99, 035430 (2019).

    Article  CAS  Google Scholar 

  16. Moessner, R., Morales-Durán, N., Surówka, P. & Witkowski, P. Boundary-condition and geometry engineering in electronic hydrodynamics. Phys. Rev. B 100, 155115 (2019).

    Article  CAS  Google Scholar 

  17. Aharon-Steinberg, A. et al. Direct observation of vortices in an electron fluid. Nature 607, 74–80 (2022). Direct observation of vortices in electron fluids in non-channel geometries.

    Article  CAS  Google Scholar 

  18. Wolf, Y., Aharon-Steinberg, A., Yan, B. & Holder, T. Para-hydrodynamics from weak surface scattering in ultraclean thin flakes. Nat. Commun. 14, 2334 (2023).

    Article  CAS  Google Scholar 

  19. Sulpizio, J. A. et al. Visualizing Poiseuille flow of hydrodynamic electrons. Nature 576, 75–79 (2019). Direct visualization of electron hydrodynamics using spatially resolved transport measurements.

    Article  CAS  Google Scholar 

  20. Ku, M. J. H. et al. Imaging viscous flow of the Dirac fluid in graphene. Nature 583, 537–541 (2020).

    Article  CAS  Google Scholar 

  21. Gooth, J. et al. Thermal and electrical signatures of a hydrodynamic electron fluid in tungsten diphosphide. Nat. Commun. 9, 4093 (2018).

    Article  CAS  Google Scholar 

  22. Vool, U. et al. Imaging phonon-mediated hydrodynamic flow in WTe2. Nat. Phys. 17, 1216–1220 (2021). Observation of electron hydrodynamics in bulk high-carrier-density materials.

    Article  CAS  Google Scholar 

  23. Varnavides, G., Jermyn, A. S., Anikeeva, P., Felser, C. & Narang, P. Electron hydrodynamics in anisotropic materials. Nat. Commun. 11, 4710 (2020). Group-theoretical classification of viscosity tensor components in anisotropic materials beyond graphene.

    Article  CAS  Google Scholar 

  24. Varnavides, G., Wang, Y., Moll, P. J. W., Anikeeva, P. & Narang, P. Mesoscopic finite-size effects of unconventional electron transport in pdcoo2. Phys. Rev. Mater. 6, 045002 (2022).

    Article  CAS  Google Scholar 

  25. Wang, Y. et al. Generalized design principles for hydrodynamic electron transport in anisotropic metals. Phys. Rev. Mater. 6, 083802 (2022).

    Article  CAS  Google Scholar 

  26. Lucas, A. & Fong, K. C. Hydrodynamics of electrons in graphene. J. Phys. Condens. Matter 30, 053001 (2018).

    Article  Google Scholar 

  27. Narozhny, B. N. Hydrodynamic approach to two-dimensional electron systems. Riv. Nuovo Climento 45, 661–736 (2022).

    Article  CAS  Google Scholar 

  28. Fritz, L. & Scaffidi, T. Hydrodynamic electronic transport. Preprint at https://doi.org/10.48550/arXiv.2303.14205 (2023).

  29. Kumar, N. et al. Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2. Nat. Commun. 8, 1642 (2017).

    Article  Google Scholar 

  30. Kumar, N. et al. Extremely high conductivity observed in the triple point topological metal MoP. Nat. Commun. 10, 2475 (2019).

    Article  Google Scholar 

  31. Gooth, J. et al. Experimental signatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP. Nature 547, 324–327 (2017).

    Article  CAS  Google Scholar 

  32. Kumar, N., Guin, S. N., Manna, K., Shekhar, C. & Felser, C. Topological quantum materials from the viewpoint of chemistry. Chem. Rev. 121, 2780–2815 (2021).

    Article  CAS  Google Scholar 

  33. Wang, J., Yox, P. & Kovnir, K. Flux growth of phosphide and arsenide crystals. Front. Chem. 8, 186 (2020).

    Article  CAS  Google Scholar 

  34. Takatsu, H. et al. Roles of high-frequency optical phonons in the physical properties of the conductive delafossite PdCoO2. J. Phys. Soc. Jpn 76, 104701 (2007).

    Article  Google Scholar 

  35. Bachmann, M. D. et al. Directional ballistic transport in the two-dimensional metal PdCoO2. Nat. Phys. 18, 819–824 (2022).

    Article  CAS  Google Scholar 

  36. Han, H. J. et al. Topological metal MoP nanowire for interconnect. Adv. Mater. 35, 2208965 (2023).

    Article  CAS  Google Scholar 

  37. Callaway, J. Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959).

    Article  CAS  Google Scholar 

  38. Jaoui, A. et al. Departure from the Wiedemann–Franz law in WP2 driven by mismatch in T-square resistivity prefactors. npj Quant. Mater. 3, 64 (2018).

    Article  CAS  Google Scholar 

  39. Jaoui, A., Fauqué, B. & Behnia, K. Thermal resistivity and hydrodynamics of the degenerate electron fluid in antimony. Nat. Commun. 12, 195 (2021).

    Article  CAS  Google Scholar 

  40. Lee, S. et al. Anomalously low electronic thermal conductivity in metallic vanadium dioxide. Science 355, 371–374 (2017).

    Article  CAS  Google Scholar 

  41. Torre, I., Tomadin, A., Geim, A. K. & Polini, M. Nonlocal transport and the hydrodynamic shear viscosity in graphene. Phys. Rev. B 92, 165433 (2015).

    Article  Google Scholar 

  42. Krishna Kumar, R. et al. Superballistic flow of viscous electron fluid through graphene constrictions. Nat. Phys. 13, 1182–1185 (2017).

    Article  CAS  Google Scholar 

  43. Levin, A. D., Gusev, G. M., Levinson, E. V., Kvon, Z. D. & Bakarov, A. K. Vorticity-induced negative nonlocal resistance in a viscous two-dimensional electron system. Phys. Rev. B 97, 245308 (2018).

    Article  CAS  Google Scholar 

  44. Braem, B. A. et al. Scanning gate microscopy in a viscous electron fluid. Phys. Rev. B 98, 241304 (2018).

    Article  CAS  Google Scholar 

  45. Berdyugin, A. I. et al. Measuring Hall viscosity of graphene’s electron fluid. Science 364, 162–165 (2019).

    Article  CAS  Google Scholar 

  46. Kim, M. et al. Control of electron–electron interaction in graphene by proximity screening. Nat. Commun. 11, 2339 (2020).

    Article  CAS  Google Scholar 

  47. Gusev, G. M., Jaroshevich, A. S., Levin, A. D., Kvon, Z. D. & Bakarov, A. K. Stokes flow around an obstacle in viscous two-dimensional electron liquid. Sci. Rep. 10, 7860 (2020).

    Article  CAS  Google Scholar 

  48. Ginzburg, L. V. et al. Superballistic electron flow through a point contact in a Ga[Al]As heterostructure. Phys. Rev. Res. 3, 023033 (2021).

    Article  CAS  Google Scholar 

  49. Gupta, A. et al. Hydrodynamic and ballistic transport over large length scales in GaAs/AlGaAs. Phys. Rev. Lett. 126, 076803 (2021).

    Article  CAS  Google Scholar 

  50. Pellegrino, F. M. D., Torre, I., Geim, A. K. & Polini, M. Electron hydrodynamics dilemma: whirlpools or no whirlpools. Phys. Rev. B 94, 155414 (2016).

    Article  Google Scholar 

  51. Jenkins, A. et al. Imaging the breakdown of ohmic transport in graphene. Phys. Rev. Lett. 129, 087701 (2022).

    Article  CAS  Google Scholar 

  52. Lorentz, H. A. Le mouvement des électrons dans les métaux [French]. Arch. Néerl. 10, 336 (1905).

    CAS  Google Scholar 

  53. Ledwith, P., Guo, H., Shytov, A. & Levitov, L. Tomographic dynamics and scale-dependent viscosity in 2D electron systems. Phys. Rev. Lett. 123, 116601 (2019).

    Article  CAS  Google Scholar 

  54. Ledwith, P. J., Guo, H. & Levitov, L. The hierarchy of excitation lifetimes in two-dimensional Fermi gases. Ann. Phys. 411, 167913 (2019).

    Article  CAS  Google Scholar 

  55. Okulov, V. & Ustinov, V. Boundary condition for the distribution function of conduction electrons scattered by a metal surface. Zh. Eksp. Teor. Fiz. 67, 1176 (1974).

    Google Scholar 

  56. Holder, T. et al. Ballistic and hydrodynamic magnetotransport in narrow channels. Phys. Rev. B 100, 245305 (2019).

    Article  CAS  Google Scholar 

  57. Epstein, J. M. & Mandadapu, K. K. Time-reversal symmetry breaking in two-dimensional nonequilibrium viscous fluids. Phys. Rev. E 101, 052614 (2020).

    Article  CAS  Google Scholar 

  58. Nye, J. F. Physical Properties of Crystals: Their Representation by Tensors and Matrices (Clarendon, 1984).

  59. Neumann, F. Vorlesungen über die Theorie der Elastizität der Festen Körper und des Lichtäthers [German] (B. G. Teubner, 1885).

  60. Principi, A., Vignale, G., Carrega, M. & Polini, M. Bulk and shear viscosities of the two-dimensional electron liquid in a doped graphene sheet. Phys. Rev. B 93, 125410 (2016).

    Article  Google Scholar 

  61. Cook, C. Q. & Lucas, A. Viscometry of electron fluids from symmetry. Phys. Rev. Lett. 127, 176603 (2021).

    Article  CAS  Google Scholar 

  62. Link, J. M., Narozhny, B. N., Kiselev, E. I. & Schmalian, J. Out-of-bounds hydrodynamics in anisotropic Dirac fluids. Phys. Rev. Lett. 120, 196801 (2018).

    Article  CAS  Google Scholar 

  63. Avron, J. E. Odd viscosity. J. Stat. Phys. 92, 543–557 (1998).

    Article  Google Scholar 

  64. Delacrétaz, L. V. & Gromov, A. Transport signatures of the Hall viscosity. Phys. Rev. Lett. 119, 226602 (2017).

    Article  Google Scholar 

  65. Scaffidi, T., Nandi, N., Schmidt, B., Mackenzie, A. P. & Moore, J. E. Hydrodynamic electron flow and Hall viscosity. Phys. Rev. Lett. 118, 226601 (2017).

    Article  Google Scholar 

  66. Gusev, G. M., Levin, A. D., Levinson, E. V. & Bakarov, A. K. Viscous transport and Hall viscosity in a two-dimensional electron system. Phys. Rev. B 98, 161303 (2018).

    Article  CAS  Google Scholar 

  67. Holder, T., Queiroz, R. & Stern, A. Unified description of the classical Hall viscosity. Phys. Rev. Lett. 123, 106801 (2019).

    Article  CAS  Google Scholar 

  68. Rao, P. & Bradlyn, B. Hall viscosity in quantum systems with discrete symmetry: point group and lattice anisotropy. Phys. Rev. X 10, 021005 (2020).

    CAS  Google Scholar 

  69. Cook, C. Q. & Lucas, A. Electron hydrodynamics with a polygonal Fermi surface. Phys. Rev. B 99, 235148 (2019).

    Article  CAS  Google Scholar 

  70. Varnavides, G., Jermyn, A. S., Anikeeva, P. & Narang, P. Probing carrier interactions using electron hydrodynamics. Preprint at https://arxiv.org/abs/2204.06004 (2022).

  71. Coulter, J., Sundararaman, R. & Narang, P. Microscopic origins of hydrodynamic transport in the type-II Weyl semimetal WP2. Phys. Rev. B 98, 115130 (2018).

    Article  CAS  Google Scholar 

  72. Allen, P. B. New method for solving Boltzmann’s equation for electrons in metals. Phys. Rev. B 17, 3725–3734 (1978).

    Article  CAS  Google Scholar 

  73. Jermyn, A. S. et al. Transport of hot carriers in plasmonic nanostructures. Phys. Rev. Mater. 3, 075201 (2019).

    Article  CAS  Google Scholar 

  74. Varnavides, G., Jermyn, A. S., Anikeeva, P. & Narang, P. Nonequilibrium phonon transport across nanoscale interfaces. Phys. Rev. B 100, 115402 (2019).

    Article  CAS  Google Scholar 

  75. Kumar, C. et al. Imaging hydrodynamic electrons flowing without Landauer–Sharvin resistance. Nature 609, 276–281 (2022).

    Article  CAS  Google Scholar 

  76. Levchenko, A. & Schmalian, J. Transport properties of strongly coupled electron–phonon liquids. Ann. Phys. 419, 168218 (2020).

    Article  CAS  Google Scholar 

  77. Yang, H.-Y. et al. Evidence of a coupled electron–phonon liquid in NbGe2. Nat. Commun. 12, 5292 (2021).

    Article  CAS  Google Scholar 

  78. Huang, X. & Lucas, A. Electron–phonon hydrodynamics. Phys. Rev. B 103, 155128 (2021).

    Article  CAS  Google Scholar 

  79. Krebs, Z. J. et al. Imaging the breaking of electrostatic dams in graphene for ballistic and viscous fluids. Science 379, 671–676 (2023).

    Article  CAS  Google Scholar 

  80. Mendoza, M., Herrmann, H. J. & Succi, S. Preturbulent regimes in graphene flow. Phys. Rev. Lett. 106, 156601 (2011).

    Article  CAS  Google Scholar 

  81. Galitski, V., Kargarian, M. & Syzranov, S. Dynamo effect and turbulence in hydrodynamic Weyl metals. Phys. Rev. Lett. 121, 176603 (2018).

    Article  CAS  Google Scholar 

  82. Di Sante, D. et al. Turbulent hydrodynamics in strongly correlated kagome metals. Nat. Commun. 11, 3997 (2020).

    Article  Google Scholar 

  83. Morimoto, T., Zhong, S., Orenstein, J. & Moore, J. E. Semiclassical theory of nonlinear magneto-optical responses with applications to topological Dirac/Weyl semimetals. Phys. Rev. B 94, 245121 (2016).

    Article  Google Scholar 

  84. Sano, R., Toshio, R. & Kawakami, N. Nonreciprocal electron hydrodynamics under magnetic fields: applications to nonreciprocal surface magnetoplasmons. Phys. Rev. B 104, L241106 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Jermyn for discussions. G.V. acknowledges support from the Miller Institute for Basic Research in Science. A.Y. acknowledges support from the Army Research Office under grant no. W911NF-22-1-0248, the Gordon and Betty Moore Foundation through grant GBMF 9468, and the Quantum Science Center (QSC), a National Quantum Information Science Research Center of the US Department of Energy. P.N. acknowledges support from the QSC, a National Quantum Information Science Research Center of the US Department of Energy, the Office of Naval Research under grant no. 13672292 and the Gordon and Betty Moore Foundation through grant no. 8048.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to literature review, manuscript writing, figure composition and article integration. G.V. and P.N. conceived the topical focus of this Review. P.N. supervised the project.

Corresponding authors

Correspondence to Georgios Varnavides or Prineha Narang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Gregory Falkovich and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varnavides, G., Yacoby, A., Felser, C. et al. Charge transport and hydrodynamics in materials. Nat Rev Mater 8, 726–741 (2023). https://doi.org/10.1038/s41578-023-00597-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-023-00597-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing