Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomaterials for cell transplantation

Abstract

Cell transplantation holds immense potential for reversing diseases that are currently incurable and for regenerating tissues. However, poor cell survival, cell aggregation and lack of cell integration into the host tissue constitute major challenges for the clinical translation of cell transplantation approaches. Biomaterials can influence cell behaviour in vitro and in vivo. The mechanical and biochemical properties of biomaterials can be tailored to affect cell survival, differentiation and migration. Therefore, the integration of advanced material design with stem cell biology may hold the key to improving the efficacy of cell transplantation. In this Review, we discuss biomaterial design strategies for their potential to influence the fate of transplanted cells and to manipulate the host microenvironment. We examine how biomaterial properties can be modulated to improve transplanted cell survival, differentiation and cell engraftment and how the host tissue can be manipulated for cell transplantation by inducing plasticity and vascularization. Finally, we emphasize the importance of the host immune cells for tissue repair and cell transplantation and discuss strategies to tune the immune response through modulating the mechanical properties, architecture, chemistry and functionalization of biomaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biomaterials for cell transplantation.
Fig. 2: Injectable biomaterials.
Fig. 3: Regulation of angiogenesis by biomaterials.
Fig. 4: Biomaterials impact host immune response.

Similar content being viewed by others

References

  1. Godwin, J. The promise of perfect adult tissue repair and regeneration in mammals: learning from regenerative amphibians and fish. Bioessays 36, 861–871 (2014).

    CAS  Google Scholar 

  2. Andersson-Rolf, A., Zilbauer, M., Koo, B. K. & Clevers, H. Stem cells in repair of gastrointestinal epithelia. Physiol. (Bethesda) 32, 278–289 (2017).

    CAS  Google Scholar 

  3. Gonzalez, G., Sasamoto, Y., Ksander, B. R., Frank, M. H. & Frank, N. Y. Limbal stem cells: identity, developmental origin, and therapeutic potential. Wiley Interdiscip. Rev. Dev. Biol. https://doi.org/10.1002/wdev.303 (2018).

    Article  Google Scholar 

  4. Fuchs, E. Epithelial skin biology: three decades of developmental biology, a hundred questions answered and a thousand new ones to address. Curr. Top. Dev. Biol. 116, 357–374 (2016).

    Google Scholar 

  5. Diehl, A. M. & Chute, J. Underlying potential: cellular and molecular determinants of adult liver repair. J. Clin. Invest. 123, 1858–1860 (2013).

    CAS  Google Scholar 

  6. Hatzimichael, E. & Tuthill, M. Hematopoietic stem cell transplantation. Stem Cells Clon. 3, 105–117 (2010).

    Google Scholar 

  7. Cavazzana, M., Six, E., Lagresle-Peyrou, C., Andre-Schmutz, I. & Hacein-Bey-Abina, S. Gene therapy for X-linked severe combined immunodeficiency: where do we stand? Hum. Gene Ther. 27, 108–116 (2016).

    CAS  Google Scholar 

  8. Marquardt, L. M. & Heilshorn, S. C. Design of injectable materials to improve stem cell transplantation. Curr. Stem Cell. Rep. 2, 207–220 (2016).

    CAS  Google Scholar 

  9. Sortwell, C. E., Pitzer, M. R. & Collier, T. J. Time course of apoptotic cell death within mesencephalic cell suspension grafts: implications for improving grafted dopamine neuron survival. Exp. Neurol. 165, 268–277 (2000).

    CAS  Google Scholar 

  10. Muller-Ehmsen, J. et al. Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction. J. Mol. Cell. Cardiol. 41, 876–884 (2006).

    Google Scholar 

  11. Richardson, P. M., McGuinness, U. M. & Aguayo, A. J. Axons from CNS neurons regenerate into PNS grafts. Nature 284, 264–265 (1980).

    CAS  Google Scholar 

  12. Wictorin, K., Brundin, P., Gustavii, B., Lindvall, O. & Bjorklund, A. Reformation of long axon pathways in adult rat central nervous system by human forebrain neuroblasts. Nature 347, 556–558 (1990).

    CAS  Google Scholar 

  13. Shewan, D., Berry, M. & Cohen, J. Extensive regeneration in vitro by early embryonic neurons on immature and adult CNS tissue. J. Neurosci. 15, 2057–2062 (1995).

    CAS  Google Scholar 

  14. Peled, A. et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283, 845–848 (1999).

    CAS  Google Scholar 

  15. Voermans, C. et al. In vitro migratory capacity of CD34+ cells is related to hematopoietic recovery after autologous stem cell transplantation. Blood 97, 799–804 (2001).

    CAS  Google Scholar 

  16. MacLaren, R. E. et al. Retinal repair by transplantation of photoreceptor precursors. Nature 444, 203–207 (2006).

    CAS  Google Scholar 

  17. Payne, S. L. et al. In vitro maturation of human iPSC-derived neuroepithelial cells influences transplant survival in the stroke-injured rat brain. Tissue Eng. Part A. 24, 351–360 (2018).

    CAS  Google Scholar 

  18. Bahlmann, L. C., Fokina, A. & Shoichet, M. S. Dynamic bioengineered hydrogels as scaffolds for advanced stem cell and organoid culture. MRS Commun. 7, 472–486 (2017).

    CAS  Google Scholar 

  19. Ruprecht, V. et al. How cells respond to environmental cues - insights from bio-functionalized substrates. J. Cell. Sci. 130, 51–61 (2017).

    CAS  Google Scholar 

  20. Amer, M. H., White, L. J. & Shakesheff, K. M. The effect of injection using narrow-bore needles on mammalian cells: administration and formulation considerations for cell therapies. J. Pharm. Pharmacol. 67, 640–650 (2015).

    CAS  Google Scholar 

  21. Aguado, B. A., Mulyasasmita, W., Su, J., Lampe, K. J. & Heilshorn, S. C. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng. Part A. 18, 806–815 (2012).

    CAS  Google Scholar 

  22. Agashi, K., Chau, D. Y. & Shakesheff, K. M. The effect of delivery via narrow-bore needles on mesenchymal cells. Regen. Med. 4, 49–64 (2009).

    CAS  Google Scholar 

  23. Amer, M. H., Rose, F. R. A. J., Shakesheff, K. M., Modo, M. & White, L. J. Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges. NPJ Regen. Med. 2, 23 (2017).

    Google Scholar 

  24. Rodell, C. B., Kaminski, A. L. & Burdick, J. A. Rational design of network properties in guest-host assembled and shear-thinning hyaluronic acid hydrogels. Biomacromolecules 14, 4125–4134 (2013).

    CAS  Google Scholar 

  25. Ballios, B. G. et al. A hyaluronan-based injectable hydrogel improves the survival and integration of stem cell progeny following transplantation. Stem Cell. Rep. 4, 1031–1045 (2015).

    CAS  Google Scholar 

  26. Ballios, B. G., Cooke, M. J., van der Kooy, D. & Shoichet, M. S. A hydrogel-based stem cell delivery system to treat retinal degenerative diseases. Biomaterials 31, 2555–2564 (2010).

    CAS  Google Scholar 

  27. Roche, E. T. et al. Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials 35, 6850–6858 (2014).

    CAS  Google Scholar 

  28. Amini, A. R., Laurencin, C. T. & Nukavarapu, S. P. Bone tissue engineering: recent advances and challenges. Crit. Rev. Biomed. Eng. 40, 363–408 (2012).

    Google Scholar 

  29. Fuhrmann, T., Anandakumaran, P. N. & Shoichet, M. S. Combinatorial therapies after spinal cord injury: how can biomaterials help? Adv. Healthc. Mater. https://doi.org/10.1002/adhm.201601130 (2017).

    Article  Google Scholar 

  30. Pan, Z. & Ding, J. Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus. 2, 366–377 (2012).

    Google Scholar 

  31. Bozkurt, G. et al. Chitosan channels containing spinal cord-derived stem/progenitor cells for repair of subacute spinal cord injury in the rat. Neurosurgery 67, 1733–1744 (2010).

    Google Scholar 

  32. Frisch, S. M. & Francis, H. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124, 619–626 (1994).

    CAS  Google Scholar 

  33. Lee, J. W. & Juliano, R. Mitogenic signal transduction by integrin- and growth factor receptor-mediated pathways. Mol. Cells 17, 188–202 (2004).

    CAS  Google Scholar 

  34. Vachon, P. H. Integrin signaling, cell survival, and anoikis: distinctions, differences, and differentiation. J. Signal. Transduct 2011, 738137 (2011).

    Google Scholar 

  35. Mitrousis, N., Tam, R. Y., Baker, A. E. G., van der Kooy, D. & Shoichet, M. S. Hyaluronic acid-based hydrogels enable rod photoreceptor survival and maturation in vitro through activation of the mTOR pathway. Adv. Funct. Mater. 26, 1975–1985 (2016).

    CAS  Google Scholar 

  36. Tate, C. C. et al. Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain. J. Tissue Eng. Regen. Med. 3, 208–217 (2009).

    CAS  Google Scholar 

  37. Pierschbacher, M. D. & Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30–33 (1984).

    CAS  Google Scholar 

  38. Plow, E. F., Haas, T. A., Zhang, L., Loftus, J. & Smith, J. W. Ligand binding to integrins. J. Biol. Chem. 275, 21785–21788 (2000).

    CAS  Google Scholar 

  39. Hersel, U., Dahmen, C. & Kessler, H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24, 4385–4415 (2003).

    CAS  Google Scholar 

  40. Ho, S. S., Murphy, K. C., Binder, B. Y., Vissers, C. B. & Leach, J. K. Increased survival and function of mesenchymal stem cell spheroids entrapped in instructive alginate hydrogels. Stem Cells Transl Med. 5, 773–781 (2016).

    CAS  Google Scholar 

  41. Adil, M. M. et al. Engineered hydrogels increase the post-transplantation survival of encapsulated hESC-derived midbrain dopaminergic neurons. Biomaterials 136, 1–11 (2017).

    CAS  Google Scholar 

  42. Fuhrmann, T. et al. Injectable hydrogel promotes early survival of induced pluripotent stem cell-derived oligodendrocytes and attenuates longterm teratoma formation in a spinal cord injury model. Biomaterials 83, 23–36 (2016).

    CAS  Google Scholar 

  43. Mhanna, R. et al. GFOGER-modified MMP-sensitive polyethylene glycol hydrogels induce chondrogenic differentiation of human mesenchymal stem cells. Tissue Eng. Part A. 20, 1165–1174 (2014).

    CAS  Google Scholar 

  44. Moshayedi, P. et al. Systematic optimization of an engineered hydrogel allows for selective control of human neural stem cell survival and differentiation after transplantation in the stroke brain. Biomaterials 105, 145–155 (2016).

    CAS  Google Scholar 

  45. Somaa, F. A. et al. Peptide-based scaffolds support human cortical progenitor graft integration to reduce atrophy and promote functional repair in a model of stroke. Cell. Rep. 20, 1964–1977 (2017).

    CAS  Google Scholar 

  46. Tam, R. Y., Fuehrmann, T., Mitrousis, N. & Shoichet, M. S. Regenerative therapies for central nervous system diseases: a biomaterials approach. Neuropsychopharmacology 39, 169–188 (2014).

    CAS  Google Scholar 

  47. Wang, C., Liu, Y., Fan, Y. & Li, X. The use of bioactive peptides to modify materials for bone tissue repair. Regen. Biomater. 4, 191–206 (2017).

    CAS  Google Scholar 

  48. Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).

    CAS  Google Scholar 

  49. Murase, K. et al. Developmental changes in nerve growth factor level in rat serum. J. Neurosci. Res. 33, 282–288 (1992).

    CAS  Google Scholar 

  50. Zadik, Z., Chalew, S. A., McCarter, R. J. Jr, Meistas, M. & Kowarski, A. A. The influence of age on the 24-hour integrated concentration of growth hormone in normal individuals. J. Clin. Endocrinol. Metab. 60, 513–516 (1985).

    CAS  Google Scholar 

  51. Parker, J., Mitrousis, N. & Shoichet, M. S. Hydrogel for simultaneous tunable growth factor delivery and enhanced viability of encapsulated cells in vitro. Biomacromolecules 17, 476–484 (2016).

    CAS  Google Scholar 

  52. Hill, E., Boontheekul, T. & Mooney, D. J. Regulating activation of transplanted cells controls tissue regeneration. Proc. Natl Acad. Sci. USA 103, 2494–2499 (2006).

    CAS  Google Scholar 

  53. Sandgren, E. P., Luetteke, N. C., Palmiter, R. D., Brinster, R. L. & Lee, D. C. Overexpression of TGF alpha in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell 61, 1121–1135 (1990).

    CAS  Google Scholar 

  54. Matsui, Y., Halter, S. A., Holt, J. T., Hogan, B. L. & Coffey, R. J. Development of mammary hyperplasia and neoplasia in MMTV-TGF alpha transgenic mice. Cell 61, 1147–1155 (1990).

    CAS  Google Scholar 

  55. Jhappan, C. et al. TGF alpha overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell 61, 1137–1146 (1990).

    CAS  Google Scholar 

  56. Cahill, K. S., Chi, J. H., Day, A. & Claus, E. B. Prevalence, complications, and hospital charges associated with use of bone-morphogenetic proteins in spinal fusion procedures. JAMA 302, 58–66 (2009).

    CAS  Google Scholar 

  57. James, A. W. et al. A review of the clinical side effects of bone morphogenetic protein-2. Tissue Eng. Part B. Rev. 22, 284–297 (2016).

    CAS  Google Scholar 

  58. Wang, T. Y. et al. Functionalized composite scaffolds improve the engraftment of transplanted dopaminergic progenitors in a mouse model of Parkinson’s disease. Biomaterials 74, 89–98 (2016).

    CAS  Google Scholar 

  59. Wiley, H. S. Trafficking of the ErbB receptors and its influence on signaling. Exp. Cell Res. 284, 78–88 (2003).

    CAS  Google Scholar 

  60. Fan, V. H. et al. Tethered epidermal growth factor provides a survival advantage to mesenchymal stem cells. Stem Cells 25, 1241–1251 (2007).

    CAS  Google Scholar 

  61. Nuschke, A. et al. Epidermal growth factor tethered to beta-tricalcium phosphate bone scaffolds via a high-affinity binding peptide enhances survival of human mesenchymal stem cells/multipotent stromal cells in an immune-competent parafascial implantation assay in mice. Stem Cells Transl Med. 5, 1580–1586 (2016).

    CAS  Google Scholar 

  62. Martino, M. M. et al. Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci. Transl. Med. 3, 100ra89 (2011).

    Google Scholar 

  63. Tam, R. Y., Cooke, M. J. & Shoichet, M. S. A covalently modified hydrogel blend of hyaluronan-methyl cellulose with peptides and growth factors influences neural stem/progenitor cell fate. J. Mater. Chem. 22, 19402–19411 (2012).

    CAS  Google Scholar 

  64. Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell. Biol. 18, 728–742 (2017).

    CAS  Google Scholar 

  65. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS  Google Scholar 

  66. Leipzig, N. D. & Shoichet, M. S. The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 30, 6867–6878 (2009).

    CAS  Google Scholar 

  67. Baker, B. M. & Chen, C. S. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J. Cell. Sci. 125, 3015–3024 (2012).

    CAS  Google Scholar 

  68. Caliari, S. R., Vega, S. L., Kwon, M., Soulas, E. M. & Burdick, J. A. Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments. Biomaterials 103, 314–323 (2016).

    CAS  Google Scholar 

  69. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    CAS  Google Scholar 

  70. Rammensee, S., Kang, M. S., Georgiou, K., Kumar, S. & Schaffer, D. V. Dynamics of mechanosensitive neural stem cell differentiation. Stem Cells 35, 497–506 (2017).

    CAS  Google Scholar 

  71. Tharp, K. M. et al. Actomyosin-mediated tension orchestrates uncoupled respiration in adipose tissues. Cell Metab. 27, 602–615.e4 (2018).

    CAS  Google Scholar 

  72. Handorf, A. M., Zhou, Y., Halanski, M. A. & Li, W. J. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 11, 1–15 (2015).

    Google Scholar 

  73. Young, J. L. & Engler, A. J. Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials 32, 1002–1009 (2011).

    CAS  Google Scholar 

  74. Caliari, S. R. & Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016).

    CAS  Google Scholar 

  75. Yoon, Y. et al. Photocrosslinkable hydrogel for myocyte cell culture and injection. J. Biomed. Mater. Res. 8B, 312–322 (2007).

    Google Scholar 

  76. Killion, J. A. et al. Modulating the mechanical properties of photopolymerised polyethylene glycol–polypropylene glycol hydrogels for bone regeneration. J. Mater. Sci. 47, 6577–6585 (2012).

    CAS  Google Scholar 

  77. Rodell, C. B. et al. Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo. Adv. Funct. Mater. 25, 636–644 (2015).

    CAS  Google Scholar 

  78. Huiyuan, W. et al. Covalently adaptable elastin–like protein–hyaluronic acid (ELP–HA) hybrid hydrogels with secondary thermoresponsive crosslinking for injectable stem cell delivery. Adv. Funct. Mater. 27, 1605609 (2017).

    Google Scholar 

  79. De France, K. J. et al. Injectable anisotropic nanocomposite hydrogels direct in situ growth and alignment of myotubes. Nano Lett. 17, 6487–6495 (2017).

    Google Scholar 

  80. Montgomery, M. et al. Flexible shape-memory scaffold for minimally invasive delivery of functional tissues. Nat. Mater. 16, 1038–1046 (2017).

    CAS  Google Scholar 

  81. Fujie, T. et al. Micropatterned polymeric nanosheets for local delivery of an engineered epithelial monolayer. Adv. Mater. 26, 1699–1705 (2014).

    CAS  Google Scholar 

  82. Yao, R., Zhang, R., Lin, F. & Luan, J. Injectable cell/hydrogel microspheres induce the formation of fat lobule-like microtissues and vascularized adipose tissue regeneration. Biofabrication 4, 045003 (2012).

    Google Scholar 

  83. Huang, C. C. et al. Injectable PLGA porous beads cellularized by hAFSCs for cellular cardiomyoplasty. Biomaterials 33, 4069–4077 (2012).

    CAS  Google Scholar 

  84. Griffin, D. R., Weaver, W. M., Scumpia, P. O., Di Carlo, D. & Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 14, 737–744 (2015).

    CAS  Google Scholar 

  85. Mealy, J. E. et al. Injectable granular hydrogels with multifunctional properties for biomedical applications. Adv. Mater. 30, e1705912 (2018).

    Google Scholar 

  86. Nih, L. R., Sideris, E., Carmichael, S. T. & Segura, T. Injection of microporous annealing particle (MAP) hydrogels in the stroke cavity reduces gliosis and inflammation and promotes NPC migration to the lesion. https://doi.org/10.1002/adma.201606471 (2017).

    Google Scholar 

  87. Huebsch, N. et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat. Mater. 14, 1269–1277 (2015).

    CAS  Google Scholar 

  88. Simmons, C. A., Alsberg, E., Hsiong, S., Kim, W. J. & Mooney, D. J. Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 35, 562–569 (2004).

    CAS  Google Scholar 

  89. Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    CAS  Google Scholar 

  90. Beederman, M. et al. BMP signaling in mesenchymal stem cell differentiation and bone formation. J. Biomed. Sci. Eng. 6, 32–52 (2013).

    Google Scholar 

  91. Park, S. H. et al. BMP2-modified injectable hydrogel for osteogenic differentiation of human periodontal ligament stem cells. Sci. Rep. 7, 6603 (2017).

    Google Scholar 

  92. Kim, H., Zahir, T., Tator, C. H. & Shoichet, M. S. Effects of dibutyryl cyclic-AMP on survival and neuronal differentiation of neural stem/progenitor cells transplanted into spinal cord injured rats. PLOS One 6, e21744 (2011).

    CAS  Google Scholar 

  93. Han, L. H. et al. Winner of the young investigator award of the society for biomaterials at the 10th world biomaterials congress, may 17–22, 2016, Montreal QC, Canada: microribbon-based hydrogels accelerate stem cell-based bone regeneration in a mouse critical-size cranial defect model. J. Biomed. Mater. Res. A. 104, 1321–1331 (2016).

    CAS  Google Scholar 

  94. Bencherif, S. A. et al. Injectable preformed scaffolds with shape-memory properties. Proc. Natl Acad. Sci. USA 109, 19590–19595 (2012).

    CAS  Google Scholar 

  95. Cameron, A. R., Frith, J. E. & Cooper-White, J. J. The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials 32, 5979–5993 (2011).

    CAS  Google Scholar 

  96. McKinnon, D. D., Domaille, D. W., Cha, J. N. & Anseth, K. S. Biophysically defined and cytocompatible covalently adaptable networks as viscoelastic 3D cell culture systems. Adv. Mater. 26, 865–872 (2014).

    CAS  Google Scholar 

  97. Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    CAS  Google Scholar 

  98. Darnell, M. et al. Substrate stress-relaxation regulates scaffold remodeling and bone formation in vivo. Adv. Healthc. Mater. 6, 1601185 (2017).

    Google Scholar 

  99. Barthes, J. et al. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. Biomed. Res. Int. 2014, 921905 (2014).

    Google Scholar 

  100. Jones, D. L. & Wagers, A. J. No place like home: anatomy and function of the stem cell niche. Nat. Rev. Mol. Cell. Biol. 9, 11–21 (2008).

    CAS  Google Scholar 

  101. Goodship, A. E. & Kenwright, J. The influence of induced micromovement upon the healing of experimental tibial fractures. J. Bone Joint Surg. Br. 67, 650–655 (1985).

    CAS  Google Scholar 

  102. Kenwright, J. & Goodship, A. E. Controlled mechanical stimulation in the treatment of tibial fractures. Clin. Orthop. Relat. Res. 241, 36–47 (1989).

    Google Scholar 

  103. Epari, D. R., Duda, G. N. & Thompson, M. S. Mechanobiology of bone healing and regeneration: in vivo models. Proc. Inst. Mech. Eng. H. 224, 1543–1553 (2010).

    CAS  Google Scholar 

  104. Goodship, A. E., Cunningham, J. L. & Kenwright, J. Strain rate and timing of stimulation in mechanical modulation of fracture healing. Clin. Orthop. Relat. Res. 355 (Suppl), S105–S115 (1998).

    Google Scholar 

  105. Claes, L. E. & Heigele, C. A. Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J. Biomech. 32, 255–266 (1999).

    CAS  Google Scholar 

  106. Wolf, S. et al. Effects of high-frequency, low-magnitude mechanical stimulus on bone healing. Clin. Orthop. Relat. Res. 385, 192–198 (2001).

    Google Scholar 

  107. Salter, D. M., Wallace, W. H., Robb, J. E., Caldwell, H. & Wright, M. O. Human bone cell hyperpolarization response to cyclical mechanical strain is mediated by an interleukin-1beta autocrine/paracrine loop. J. Bone Miner. Res. 15, 1746–1755 (2000).

    CAS  Google Scholar 

  108. Tampieri, A. et al. A conceptually new type of bio-hybrid scaffold for bone regeneration. Nanotechnology 22, 015104 (2011).

    CAS  Google Scholar 

  109. Panseri, S. et al. F. J. Biomed. Mater. Res. A. 100, 2278–2286 (2012).

    CAS  Google Scholar 

  110. Meng, J. et al. Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Sci. Rep. 3, 2655 (2013).

    Google Scholar 

  111. Kotani, H. et al. Strong static magnetic field stimulates bone formation to a definite orientation in vitro and in vivo. J. Bone Miner. Res. 17, 1814–1821 (2002).

    Google Scholar 

  112. Yun, H. M. et al. Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation. Biomaterials 85, 88–98 (2016).

    CAS  Google Scholar 

  113. Vandenburgh, H. H. & Karlisch, P. Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator. In Vitro Cell. Dev. Biol. 25, 607–616 (1989).

    CAS  Google Scholar 

  114. Vandenburgh, H. & Kaufman, S. In vitro model for stretch-induced hypertrophy of skeletal muscle. Science 203, 265–268 (1979).

    CAS  Google Scholar 

  115. Moon du, G., Christ, G., Stitzel, J. D., Atala, A. & Yoo, J. J. Cyclic mechanical preconditioning improves engineered muscle contraction. Tissue Eng. Part A. 14, 473–482 (2008).

    Google Scholar 

  116. Powell, C. A., Smiley, B. L., Mills, J. & Vandenburgh, H. H. Mechanical stimulation improves tissue-engineered human skeletal muscle. Am. J. Physiol. Cell. Physiol. 283, C1557–C1565 (2002).

    CAS  Google Scholar 

  117. Crane, J. D. et al. Massage therapy attenuates inflammatory signaling after exercise-induced muscle damage. Sci. Transl. Med. 4, 119ra13 (2012).

    Google Scholar 

  118. Weerapong, P., Hume, P. A. & Kolt, G. S. The mechanisms of massage and effects on performance, muscle recovery and injury prevention. Sports Med. 35, 235–256 (2005).

    Google Scholar 

  119. Butterfield, T. A., Zhao, Y., Agarwal, S., Haq, F. & Best, T. M. Cyclic compressive loading facilitates recovery after eccentric exercise. Med. Sci. Sports Exerc. 40, 1289–1296 (2008).

    Google Scholar 

  120. Haas, C. et al. Dose-dependency of massage-like compressive loading on recovery of active muscle properties following eccentric exercise: rabbit study with clinical relevance. Br. J. Sports Med. 47, 83–88 (2013).

    Google Scholar 

  121. Haas, C. et al. Massage timing affects postexercise muscle recovery and inflammation in a rabbit model. Med. Sci. Sports Exerc. 45, 1105–1112 (2013).

    Google Scholar 

  122. Cezar, C. A. et al. Biphasic ferrogels for triggered drug and cell delivery. Adv. Healthc. Mater. 3, 1869–1876 (2014).

    CAS  Google Scholar 

  123. Cezar, C. A. et al. Biologic-free mechanically induced muscle regeneration. Proc. Natl Acad. Sci. USA 113, 1534–1539 (2016).

    CAS  Google Scholar 

  124. Henstock, J. R., Rotherham, M., Rashidi, H., Shakesheff, K. M. & El Haj, A. J. Remotely activated mechanotransduction via magnetic nanoparticles promotes mineralization synergistically with bone morphogenetic protein 2: applications for injectable cell therapy. Stem Cells Transl. Med. 3, 1363–1374 (2014).

    CAS  Google Scholar 

  125. Xue, M. & Jackson, C. J. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv. Wound. Care. (New Rochelle) 4, 119–136 (2015).

    Google Scholar 

  126. Adams, K. L. & Gallo, V. The diversity and disparity of the glial scar. Nat. Neurosci. 21, 9–15 (2018).

    CAS  Google Scholar 

  127. McKeon, R. J., Schreiber, R. C., Rudge, J. S. & Silver, J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci. 11, 3398–3411 (1991).

    CAS  Google Scholar 

  128. Fawcett, J. W. The extracellular matrix in plasticity and regeneration after CNS injury and neurodegenerative disease. Prog. Brain Res. 218, 213–226 (2015).

    Google Scholar 

  129. Deepa, S. S. et al. Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans. J. Biol. Chem. 281, 17789–17800 (2006).

    CAS  Google Scholar 

  130. Bradbury, E. J. et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640 (2002).

    CAS  Google Scholar 

  131. Soleman, S., Yip, P. K., Duricki, D. A. & Moon, L. D. Delayed treatment with chondroitinase ABC promotes sensorimotor recovery and plasticity after stroke in aged rats. Brain 135, 1210–1223 (2012).

    Google Scholar 

  132. Hill, J. J., Jin, K., Mao, X. O., Xie, L. & Greenberg, D. A. Intracerebral chondroitinase ABC and heparan sulfate proteoglycan glypican improve outcome from chronic stroke in rats. Proc. Natl Acad. Sci. USA 109, 9155–9160 (2012).

    CAS  Google Scholar 

  133. Karimi-Abdolrezaee, S., Eftekharpour, E., Wang, J., Schut, D. & Fehlings, M. G. Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J. Neurosci. 30, 1657–1676 (2010).

    CAS  Google Scholar 

  134. Ikegami, T. et al. Chondroitinase ABC combined with neural stem/progenitor cell transplantation enhances graft cell migration and outgrowth of growth-associated protein-43-positive fibers after rat spinal cord injury. Eur. J. Neurosci. 22, 3036–3046 (2005).

    Google Scholar 

  135. Ma, J., Kabiel, M., Tucker, B. A., Ge, J. & Young, M. J. Combining chondroitinase ABC and growth factors promotes the integration of murine retinal progenitor cells transplanted into Rho(−/−) mice. Mol. Vis. 17, 1759–1770 (2011).

    CAS  Google Scholar 

  136. Suzuki, T. et al. Chondroitinase ABC treatment enhances synaptogenesis between transplant and host neurons in model of retinal degeneration. Cell Transplant. 16, 493–503 (2007).

    Google Scholar 

  137. Tester, N. J., Plaas, A. H. & Howland, D. R. Effect of body temperature on chondroitinase ABC’s ability to cleave chondroitin sulfate glycosaminoglycans. J. Neurosci. Res. 85, 1110–1118 (2007).

    CAS  Google Scholar 

  138. Pakulska, M. M., Vulic, K. & Shoichet, M. S. Affinity-based release of chondroitinase ABC from a modified methylcellulose hydrogel. J. Control. Release 171, 11–16 (2013).

    CAS  Google Scholar 

  139. Vulic, K. & Shoichet, M. S. Tunable growth factor delivery from injectable hydrogels for tissue engineering. J. Am. Chem. Soc. 134, 882–885 (2012).

    CAS  Google Scholar 

  140. Pakulska, M. M., Tator, C. H. & Shoichet, M. S. Local delivery of chondroitinase ABC with or without stromal cell-derived factor 1alpha promotes functional repair in the injured rat spinal cord. Biomaterials 134, 13–21 (2017).

    CAS  Google Scholar 

  141. Fuhrmann, T. et al. Combined delivery of chondroitinase ABC and human induced pluripotent stem cell-derived neuroepithelial cells promote tissue repair in an animal model of spinal cord injury. Biomed. Mater. 13, 024103 (2018).

    Google Scholar 

  142. Lee, H., McKeon, R. J. & Bellamkonda, R. V. Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proc. Natl Acad. Sci. USA 107, 3340–3345 (2010).

    CAS  Google Scholar 

  143. Begni, V., Riva, M. A. & Cattaneo, A. Cellular and molecular mechanisms of the brain-derived neurotrophic factor in physiological and pathological conditions. Clin. Sci. (Lond.) 131, 123–138 (2017).

    CAS  Google Scholar 

  144. Barde, Y. A., Edgar, D. & Thoenen, H. Purification of a new neurotrophic factor from mammalian brain. EMBO J. 1, 549–553 (1982).

    CAS  Google Scholar 

  145. Leibrock, J. et al. Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341, 149–152 (1989).

    CAS  Google Scholar 

  146. Korte, M. et al. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc. Natl Acad. Sci. USA 92, 8856–8860 (1995).

    CAS  Google Scholar 

  147. Patterson, S. L. et al. Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16, 1137–1145 (1996).

    CAS  Google Scholar 

  148. Bosch, M. & Hayashi, Y. Structural plasticity of dendritic spines. Curr. Opin. Neurobiol. 22, 383–388 (2012).

    CAS  Google Scholar 

  149. Mantilla, C. B., Gransee, H. M., Zhan, W. Z. & Sieck, G. C. Motoneuron BDNF/TrkB signaling enhances functional recovery after cervical spinal cord injury. Exp. Neurol. 247, 101–109 (2013).

    CAS  Google Scholar 

  150. Ploughman, M. et al. Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats. Stroke 40, 1490–1495 (2009).

    CAS  Google Scholar 

  151. Bonner, J. F. et al. Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. J. Neurosci. 31, 4675–4686 (2011).

    CAS  Google Scholar 

  152. Tom, V. J. et al. Exogenous BDNF enhances the integration of chronically injured axons that regenerate through a peripheral nerve grafted into a chondroitinase-treated spinal cord injury site. Exp. Neurol. 239, 91–100 (2013).

    CAS  Google Scholar 

  153. Seiler, M. J. et al. BDNF-treated retinal progenitor sheets transplanted to degenerate rats: improved restoration of visual function. Exp. Eye Res. 86, 92–104 (2008).

    CAS  Google Scholar 

  154. Boyce, V. S., Park, J., Gage, F. H. & Mendell, L. M. Differential effects of brain-derived neurotrophic factor and neurotrophin-3 on hindlimb function in paraplegic rats. Eur. J. Neurosci. 35, 221–232 (2012).

    Google Scholar 

  155. Lu, P. et al. Motor axonal regeneration after partial and complete spinal cord transection. J. Neurosci. 32, 8208–8218 (2012).

    CAS  Google Scholar 

  156. Patist, C. M. et al. Freeze-dried poly(D,L-lactic acid) macroporous guidance scaffolds impregnated with brain-derived neurotrophic factor in the transected adult rat thoracic spinal cord. Biomaterials 25, 1569–1582 (2004).

    CAS  Google Scholar 

  157. Stokols, S. & Tuszynski, M. H. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials 27, 443–451 (2006).

    CAS  Google Scholar 

  158. Jain, A., Kim, Y. T., McKeon, R. J. & Bellamkonda, R. V. In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials 27, 497–504 (2006).

    CAS  Google Scholar 

  159. Bloch, J., Fine, E. G., Bouche, N., Zurn, A. D. & Aebischer, P. Nerve growth factor- and neurotrophin-3-releasing guidance channels promote regeneration of the transected rat dorsal root. Exp. Neurol. 172, 425–432 (2001).

    CAS  Google Scholar 

  160. Cook, D. J. et al. Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke. J. Cereb. Blood Flow Metab. 37, 1030–1045 (2017).

    CAS  Google Scholar 

  161. Folkman, J. & Hochberg, M. Self-regulation of growth in three dimensions. J. Exp. Med. 138, 745–753 (1973).

    CAS  Google Scholar 

  162. Carmeliet, P. Angiogenesis in health and disease. Nat. Med. 9, 653–660 (2003).

    CAS  Google Scholar 

  163. Ferrara, N. Vascular endothelial growth factor. Arterioscler. Thromb. Vasc. Biol. 29, 789–791 (2009).

    CAS  Google Scholar 

  164. Miyagi, Y. et al. Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials 32, 1280–1290 (2011).

    CAS  Google Scholar 

  165. Bates, D. O. Vascular endothelial growth factors and vascular permeability. Cardiovasc. Res. 87, 262–271 (2010).

    CAS  Google Scholar 

  166. Shen, Y. H., Shoichet, M. S. & Radisic, M. Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells. Acta Biomater. 4, 477–489 (2008).

    CAS  Google Scholar 

  167. Chen, T. T. et al. Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. J. Cell Biol. 188, 595–609 (2010).

    CAS  Google Scholar 

  168. Zhu, S., Nih, L., Carmichael, S. T., Lu, Y. & Segura, T. Enzyme-responsive delivery of multiple proteins with spatiotemporal control. Adv. Mater. 27, 3620–3625 (2015).

    CAS  Google Scholar 

  169. Li, S. et al. Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability. Nat. Mater. 16, 953–961 (2017).

    CAS  Google Scholar 

  170. Wells, L. A., Valic, M. S., Alexandra, L. & Sefton, M. V. Angiogenic biomaterials to promote tissue vascularization and integration. Isr. J. Chem. 53, 637–645 (2013).

    CAS  Google Scholar 

  171. Brauker, J. H. et al. Neovascularization of synthetic membranes directed by membrane microarchitecture. J. Biomed. Mater. Res. 29, 1517–1524 (1995).

    CAS  Google Scholar 

  172. Artel, A., Mehdizadeh, H., Chiu, Y. C., Brey, E. M. & Cinar, A. An agent-based model for the investigation of neovascularization within porous scaffolds. Tissue Eng. Part A. 17, 2133–2141 (2011).

    CAS  Google Scholar 

  173. Xiao, X. et al. The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways. Sci. Rep. 5, 9409 (2015).

    CAS  Google Scholar 

  174. Mastrogiacomo, M. et al. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials 27, 3230–3237 (2006).

    CAS  Google Scholar 

  175. Bai, F. et al. The correlation between the internal structure and vascularization of controllable porous bioceramic materials in vivo: a quantitative study. Tissue Eng. Part A. 16, 3791–3803 (2010).

    CAS  Google Scholar 

  176. Eckhaus, A. A., Fish, J. S., Skarja, G., Semple, J. L. & Sefton, M. V. A preliminary study of the effect of poly(methacrylic acid-co-methyl methacrylate) beads on angiogenesis in rodent skin grafts and the quality of the panniculus carnosus. Plast. Reconstr. Surg. 122, 1361–1370 (2008).

    CAS  Google Scholar 

  177. Martin, D. C., Semple, J. L. & Sefton, M. V. Poly(methacrylic acid-co-methyl methacrylate) beads promote vascularization and wound repair in diabetic mice. J. Biomed. Mater. Res. A. 93, 484–492 (2010).

    Google Scholar 

  178. Butler, M. J. & Sefton, M. V. Poly(butyl methacrylate-co-methacrylic acid) tissue engineering scaffold with pro-angiogenic potential in vivo. J. Biomed. Mater. Res. A. 82, 265–273 (2007).

    Google Scholar 

  179. Fitzpatrick, L. E., Lisovsky, A. & Sefton, M. V. The expression of sonic hedgehog in diabetic wounds following treatment with poly(methacrylic acid-co-methyl methacrylate) beads. Biomaterials 33, 5297–5307 (2012).

    CAS  Google Scholar 

  180. Lisovsky, A., Zhang, D. K. & Sefton, M. V. Effect of methacrylic acid beads on the sonic hedgehog signaling pathway and macrophage polarization in a subcutaneous injection mouse model. Biomaterials 98, 203–214 (2016).

    CAS  Google Scholar 

  181. Wells, L. A., Guo, H., Emili, A. & Sefton, M. V. The profile of adsorbed plasma and serum proteins on methacrylic acid copolymer beads: effect on complement activation. Biomaterials 118, 74–83 (2017).

    CAS  Google Scholar 

  182. Chong, M. S., Ng, W. K. & Chan, J. K. Concise review: endothelial progenitor cells in regenerative medicine: applications and challenges. Stem Cells Transl Med. 5, 530–538 (2016).

    CAS  Google Scholar 

  183. Patan, S. Vasculogenesis and angiogenesis. Cancer Treat. Res. 117, 3–32 (2004).

    CAS  Google Scholar 

  184. Fadini, G. P. et al. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J. Am. Coll. Cardiol. 45, 1449–1457 (2005).

    CAS  Google Scholar 

  185. Aragona, C. O. et al. Endothelial progenitor cells for diagnosis and prognosis in cardiovascular disease. Stem Cells Int. 2016, 8043792 (2016).

    Google Scholar 

  186. Atluri, P. et al. Tissue-engineered, hydrogel-based endothelial progenitor cell therapy robustly revascularizes ischemic myocardium and preserves ventricular function. J. Thorac. Cardiovasc. Surg. 148, 1090–1097; discussion 1097–1098 (2014).

    CAS  Google Scholar 

  187. Hanjaya-Putra, D. et al. Controlled activation of morphogenesis to generate a functional human microvasculature in a synthetic matrix. Blood 118, 804–815 (2011).

    CAS  Google Scholar 

  188. Silva, E. A., Kim, E. S., Kong, H. J. & Mooney, D. J. Material-based deployment enhances efficacy of endothelial progenitor cells. Proc. Natl Acad. Sci. USA 105, 14347–14352 (2008).

    CAS  Google Scholar 

  189. Chen, X. et al. Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng. Part A. 15, 1363–1371 (2009).

    CAS  Google Scholar 

  190. Chen, X. et al. Rapid anastomosis of endothelial progenitor cell-derived vessels with host vasculature is promoted by a high density of cotransplanted fibroblasts. Tissue Eng. Part A. 16, 585–594 (2010).

    CAS  Google Scholar 

  191. Wu, X. et al. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am. J. Physiol. Heart Circ. Physiol. 287, H480–H487 (2004).

    CAS  Google Scholar 

  192. Baranski, J. D. et al. Geometric control of vascular networks to enhance engineered tissue integration and function. Proc. Natl Acad. Sci. USA 110, 7586–7591 (2013).

    CAS  Google Scholar 

  193. Vlahos, A. E., Cober, N. & Sefton, M. V. Modular tissue engineering for the vascularization of subcutaneously transplanted pancreatic islets. Proc. Natl Acad. Sci. USA 114, 9337–9342 (2017).

    CAS  Google Scholar 

  194. Sadtler, K. et al. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science 352, 366–370 (2016).

    CAS  Google Scholar 

  195. Mase, V. J. Jr et al. Clinical application of an acellular biologic scaffold for surgical repair of a large, traumatic quadriceps femoris muscle defect. Orthopedics 33, 511(2010).

    Google Scholar 

  196. Sicari, B. M. et al. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci. Transl. Med. 6, 234ra58 (2014).

    Google Scholar 

  197. Brown, B. N. et al. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 8, 978–987 (2012).

    CAS  Google Scholar 

  198. Mendes Junior, D. et al. Study of mesenchymal stem cells cultured on a poly(lactic-co-glycolic acid) scaffold containing simvastatin for bone healing. J. Appl. Biomater. Funct. Mater. 15, e133–e141 (2017).

    Google Scholar 

  199. Tomita, M. et al. Biodegradable polymer composite grafts promote the survival and differentiation of retinal progenitor cells. Stem Cells 23, 1579–1588 (2005).

    Google Scholar 

  200. Yoshida, M. & Babensee, J. E. Poly(lactic-co-glycolic acid) enhances maturation of human monocyte-derived dendritic cells. J. Biomed. Mater. Res. A. 71, 45–54 (2004).

    Google Scholar 

  201. Yoshida, M., Mata, J. & Babensee, J. E. Effect of poly(lactic-co-glycolic acid) contact on maturation of murine bone marrow-derived dendritic cells. J. Biomed. Mater. Res. A. 80, 7–12 (2007).

    Google Scholar 

  202. Park, J. & Babensee, J. E. Differential functional effects of biomaterials on dendritic cell maturation. Acta Biomater. 8, 3606–3617 (2012).

    CAS  Google Scholar 

  203. Park, J., Gerber, M. H. & Babensee, J. E. Phenotype and polarization of autologous T cells by biomaterial-treated dendritic cells. J. Biomed. Mater. Res. A. 103, 170–184 (2015).

    Google Scholar 

  204. Rogers, T. H. & Babensee, J. E. The role of integrins in the recognition and response of dendritic cells to biomaterials. Biomaterials 32, 1270–1279 (2011).

    CAS  Google Scholar 

  205. Rogers, T. H. & Babensee, J. E. Altered adherent leukocyte profile on biomaterials in Toll-like receptor 4 deficient mice. Biomaterials 31, 594–601 (2010).

    CAS  Google Scholar 

  206. Grandjean-Laquerriere, A. et al. Involvement of toll-like receptor 4 in the inflammatory reaction induced by hydroxyapatite particles. Biomaterials 28, 400–404 (2007).

    CAS  Google Scholar 

  207. Misra, S., Hascall, V. C., Markwald, R. R. & Ghatak, S. Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Front. Immunol. 6, 201 (2015).

    Google Scholar 

  208. Hu, W. J., Eaton, J. W., Ugarova, T. P. & Tang, L. Molecular basis of biomaterial-mediated foreign body reactions. Blood 98, 1231–1238 (2001).

    CAS  Google Scholar 

  209. Ostuni, E., Chapman, R. G., Holmlin, R. E., Takayama, S. & Whitesides, G. M. A. Survey of structure−property relationships of surfaces that resist the adsorption of protein. Langmuir 17, 5605–5620 (2001).

    CAS  Google Scholar 

  210. Kou, P. M., Schwartz, Z., Boyan, B. D. & Babensee, J. E. Dendritic cell responses to surface properties of clinical titanium surfaces. Acta Biomater. 7, 1354–1363 (2011).

    CAS  Google Scholar 

  211. Rayahin, J. E., Buhrman, J. S., Zhang, Y., Koh, T. J. & Gemeinhart, R. A. High and low molecular weight hyaluronic acid differentially influence macrophage activation. ACS Biomater. Sci. Eng. 1, 481–493 (2015).

    CAS  Google Scholar 

  212. Siiskonen, H., Oikari, S., Pasonen-Seppanen, S. & Rilla, K. Hyaluronan synthase 1: a mysterious enzyme with unexpected functions. Front. Immunol. 6, 43 (2015).

    Google Scholar 

  213. Mack, J. A. et al. Enhanced inflammation and accelerated wound closure following tetraphorbol ester application or full-thickness wounding in mice lacking hyaluronan synthases Has1 and Has3. J. Invest. Dermatol. 132, 198–207 (2012).

    CAS  Google Scholar 

  214. Camenisch, T. D. et al. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J. Clin. Invest. 106, 349–360 (2000).

    CAS  Google Scholar 

  215. Bauer, C. et al. Chondroprotective effect of high-molecular-weight hyaluronic acid on osteoarthritic chondrocytes in a co-cultivation inflammation model with M1 macrophages. J. Inflamm. (Lond.) 13, 31 (2016).

    Google Scholar 

  216. Suzuki, Y. & Yamaguchi, T. Effects of hyaluronic acid on macrophage phagocytosis and active oxygen release. Agents Act. 38, 32–37 (1993).

    CAS  Google Scholar 

  217. Babensee, J. E. & Paranjpe, A. Differential levels of dendritic cell maturation on different biomaterials used in combination products. J. Biomed. Mater. Res. A. 74, 503–510 (2005).

    Google Scholar 

  218. Bollyky, P. L. et al. Intact extracellular matrix and the maintenance of immune tolerance: high molecular weight hyaluronan promotes persistence of induced CD4+CD25+ regulatory T cells. J. Leukoc. Biol. 86, 567–572 (2009).

    CAS  Google Scholar 

  219. Jiang, D., Liang, J. & Noble, P. W. Hyaluronan in tissue injury and repair. Annu. Rev. Cell Dev. Biol. 23, 435–461 (2007).

    CAS  Google Scholar 

  220. McKee, C. M. et al. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. J. Clin. Invest. 98, 2403–2413 (1996).

    CAS  Google Scholar 

  221. Rizzo, M. et al. Low molecular weight hyaluronan-pulsed human dendritic cells showed increased migration capacity and induced resistance to tumor chemoattraction. PLOS One 9, e107944 (2014).

    Google Scholar 

  222. Yang, C. et al. The high and low molecular weight forms of hyaluronan have distinct effects on CD44 clustering. J. Biol. Chem. 287, 43094–43107 (2012).

    CAS  Google Scholar 

  223. Lesley, J., Hascall, V. C., Tammi, M. & Hyman, R. Hyaluronan binding by cell surface CD44. J. Biol. Chem. 275, 26967–26975 (2000).

    CAS  Google Scholar 

  224. Wolny, P. M. et al. Analysis of CD44-hyaluronan interactions in an artificial membrane system: insights into the distinct binding properties of high and low molecular weight hyaluronan. J. Biol. Chem. 285, 30170–30180 (2010).

    CAS  Google Scholar 

  225. Jiang, D. et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat. Med. 11, 1173–1179 (2005).

    CAS  Google Scholar 

  226. Tesar, B. M. et al. The role of hyaluronan degradation products as innate alloimmune agonists. Am. J. Transplant. 6, 2622–2635 (2006).

    CAS  Google Scholar 

  227. Thevenot, P., Hu, W. & Tang, L. Surface chemistry influences implant biocompatibility. Curr. Top. Med. Chem. 8, 270–280 (2008).

    CAS  Google Scholar 

  228. Keselowsky, B. G., Collard, D. M. & Garcia, A. J. Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials 25, 5947–5954 (2004).

    CAS  Google Scholar 

  229. Grafahrend, D. et al. Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation. Nat. Mater. 10, 67–73 (2011).

    CAS  Google Scholar 

  230. Kingshott, P. & Griesser, H. J. Surfaces that resist bioadhesion. Curr. Opin. Solid State Mater. Sci. 4, 403–412 (1999).

    CAS  Google Scholar 

  231. Lynn, A. D., Kyriakides, T. R. & Bryant, S. J. Characterization of the in vitro macrophage response and in vivo host response to poly(ethylene glycol)-based hydrogels. J. Biomed. Mater. Res. A. 93, 941–953 (2010).

    Google Scholar 

  232. Lynn, A. D., Blakney, A. K., Kyriakides, T. R. & Bryant, S. J. Temporal progression of the host response to implanted poly(ethylene glycol)-based hydrogels. J. Biomed. Mater. Res. A. 96, 621–631 (2011).

    Google Scholar 

  233. Li, W. A. et al. The effect of surface modification of mesoporous silica micro-rod scaffold on immune cell activation and infiltration. Biomaterials 83, 249–256 (2016).

    CAS  Google Scholar 

  234. Zhang, L. et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31, 553–556 (2013).

    CAS  Google Scholar 

  235. Jiang, S. & Cao, Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 22, 920–932 (2010).

    CAS  Google Scholar 

  236. Chen, S., Zheng, J., Li, L. & Jiang, S. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials. J. Am. Chem. Soc. 127, 14473–14478 (2005).

    CAS  Google Scholar 

  237. Schlenoff, J. B. Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir 30, 9625–9636 (2014).

    CAS  Google Scholar 

  238. Clarke, M. L., Wang, J. & Chen, Z. Conformational changes of fibrinogen after adsorption. J. Phys. Chem. B 109, 22027–22035 (2005).

    CAS  Google Scholar 

  239. Grunkemeier, J., Wan, C. & Horbett, T. Changes in binding affinity of a monoclonal antibody to a platelet binding domain of fibrinogen adsorbed to biomaterials. J. Biomater. Sci. Polym. Ed. 8, 189–209 (1996).

    CAS  Google Scholar 

  240. Chiumiento, A., Lamponi, S. & Barbucci, R. Role of fibrinogen conformation in platelet activation. Biomacromolecules 8, 523–531 (2007).

    CAS  Google Scholar 

  241. Kao, W. J., Lee, D., Schense, J. C. & Hubbell, J. A. Fibronectin modulates macrophage adhesion and FBGC formation: the role of RGD, PHSRN, and PRRARV domains. J. Biomed. Mater. Res. 55, 79–88 (2001).

    CAS  Google Scholar 

  242. Swartzlander, M. D. et al. Linking the foreign body response and protein adsorption to PEG-based hydrogels using proteomics. Biomaterials 41, 26–36 (2015).

    CAS  Google Scholar 

  243. Tang, D. et al. Regulation of macrophage polarization and promotion of endothelialization by NO generating and PEG-YIGSR modified vascular graft. Mater. Sci. Eng. C. Mater. Biol. Appl. 84, 1–11 (2018).

    Google Scholar 

  244. Matlaga, B. F., Yasenchak, L. P. & Salthouse, T. N. Tissue response to implanted polymers: the significance of sample shape. J. Biomed. Mater. Res. 10, 391–397 (1976).

    CAS  Google Scholar 

  245. Taylor, S. R. & Gibbons, D. F. Effect of surface texture on the soft tissue response to polymer implants. J. Biomed. Mater. Res. 17, 205–227 (1983).

    Google Scholar 

  246. Veiseh, O. et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–651 (2015).

    CAS  Google Scholar 

  247. Kuai, R., Ochyl, L. J., Bahjat, K. S., Schwendeman, A. & Moon, J. J. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 16, 489–496 (2017).

    CAS  Google Scholar 

  248. Cheung, A. S., Zhang, D. K. Y., Koshy, S. T. & Mooney, D. J. Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells. Nat. Biotechnol. 36, 160–169 (2018).

    CAS  Google Scholar 

  249. Hachim, D., LoPresti, S. T., Yates, C. C. & Brown, B. N. Shifts in macrophage phenotype at the biomaterial interface via IL-4 eluting coatings are associated with improved implant integration. Biomaterials 112, 95–107 (2017).

    CAS  Google Scholar 

  250. Mokarram, N., Merchant, A., Mukhatyar, V., Patel, G. & Bellamkonda, R. V. Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials 33, 8793–8801 (2012).

    CAS  Google Scholar 

  251. Reeves, A. R., Spiller, K. L., Freytes, D. O., Vunjak-Novakovic, G. & Kaplan, D. L. Controlled release of cytokines using silk-biomaterials for macrophage polarization. Biomaterials 73, 272–283 (2015).

    CAS  Google Scholar 

  252. Browne, S. & Pandit, A. Biomaterial-mediated modification of the local inflammatory environment. Front. Bioeng. Biotechnol. 3, 67 (2015).

    Google Scholar 

  253. Nih, L. R., Gojgini, S., Carmichael, S. T. & Segura, T. Dual-function injectable angiogenic biomaterial for the repair of brain tissue following stroke. Nat. Mater. 17, 642–651 (2018).

    CAS  Google Scholar 

  254. Tuladhar, A. & Shoichet, M. S. Biomaterials driving repair after stroke. Nat. Mater. 17, 573–574 (2018).

    CAS  Google Scholar 

  255. Olson, T. S. et al. Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning. Blood 121, 5238–5249 (2013).

    CAS  Google Scholar 

  256. Caselli, A. et al. IGF-1-mediated osteoblastic niche expansion enhances long-term hematopoietic stem cell engraftment after murine bone marrow transplantation. Stem Cells 31, 2193–2204 (2013).

    CAS  Google Scholar 

  257. Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    CAS  Google Scholar 

  258. Adams, G. B. et al. Therapeutic targeting of a stem cell niche. Nat. Biotechnol. 25, 238–243 (2007).

    CAS  Google Scholar 

  259. Greenbaum, A. et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495, 227–230 (2013).

    CAS  Google Scholar 

  260. Talcott, K. E. et al. Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. Invest. Ophthalmol. Vis. Sci. 52, 2219–2226 (2011).

    CAS  Google Scholar 

  261. Kauper, K. et al. Two-year intraocular delivery of ciliary neurotrophic factor by encapsulated cell technology implants in patients with chronic retinal degenerative diseases. Invest. Ophthalmol. Vis. Sci. 53, 7484–7491 (2012).

    CAS  Google Scholar 

  262. Rhee, K. D. et al. CNTF-mediated protection of photoreceptors requires initial activation of the cytokine receptor gp130 in Muller glial cells. Proc. Natl Acad. Sci. USA 110, E4520–E4529 (2013).

    CAS  Google Scholar 

  263. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  Google Scholar 

  264. Berger, A. Th1 and Th2 responses: what are they? BMJ 321, 424 (2000).

    CAS  Google Scholar 

  265. Romagnani, S. T cell subsets (Th1 versus Th2). Ann. Allergy Asthma Immunol. 85, 9–18 (2000).

    CAS  Google Scholar 

  266. Allen, J. E. & Wynn, T. A. Evolution of Th2 immunity: a rapid repair response to tissue destructive pathogens. PLOS Pathog. 7, e1002003 (2011).

    CAS  Google Scholar 

  267. Hirahara, K. & Nakayama, T. CD4+ T cell subsets in inflammatory diseases: beyond the Th1/Th2 paradigm. Int. Immunol. 28, 163–171 (2016).

    CAS  Google Scholar 

  268. Arango Duque, G. & Descoteaux, A. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 5, 491 (2014).

    Google Scholar 

  269. Stein, M., Keshav, S., Harris, N. & Gordon, S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J. Exp. Med. 176, 287–292 (1992).

    CAS  Google Scholar 

  270. Muraille, E., Leo, O. & Moser, M. TH1/TH2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front. Immunol. 5, 603 (2014).

    Google Scholar 

  271. Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787–795 (2012).

    CAS  Google Scholar 

  272. Sefcik, L. S., Petrie Aronin, C. E., Wieghaus, K. A. & Botchwey, E. A. Sustained release of sphingosine 1-phosphate for therapeutic arteriogenesis and bone tissue engineering. Biomaterials 29, 2869–2877 (2008).

    CAS  Google Scholar 

  273. Chow, L. W. et al. A bioactive self-assembled membrane to promote angiogenesis. Biomaterials 32, 1574–1582 (2011).

    CAS  Google Scholar 

  274. Binder, B. Y., Sondergaard, C. S., Nolta, J. A. & Leach, J. K. Lysophosphatidic acid enhances stromal cell-directed angiogenesis. PLOS One 8, e82134 (2013).

    Google Scholar 

  275. Anderson, E. M. et al. VEGF and IGF delivered from alginate hydrogels promote stable perfusion recovery in ischemic hind limbs of aged mice and young rabbits. J. Vasc. Res. 54, 288–298 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for funding from the Natural Sciences and Engineering Research Council of Canada (Discovery Grant to M.S.S., NSERC CREATE in M3 scholarship to N.M.), the Canadian Institutes of Health Research (Foundation Grant to M.S.S.), the Canada First Research Excellence Fund for Medicine by Design at the University of Toronto (to M.S.S.) and the Tier 1 Canada Research Chair (to M.S.S.). The authors thank members of the Shoichet laboratory for thoughtful review of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

N.M., A.F. and M.S.S. conceived the manuscript; N.M. and A.F. wrote the manuscript; A.F. designed the figures; N.M., A.F. and M.S.S. edited the manuscript.

Corresponding author

Correspondence to Molly S. Shoichet.

Ethics declarations

Competing interests

The authors declare no competing interests but acknowledge a composition of matter patent on HAMC cell delivery.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitrousis, N., Fokina, A. & Shoichet, M.S. Biomaterials for cell transplantation. Nat Rev Mater 3, 441–456 (2018). https://doi.org/10.1038/s41578-018-0057-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-018-0057-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research