Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Splenic stromal niches in homeostasis and immunity

Abstract

The spleen is a gatekeeper of systemic immunity where immune responses against blood-borne pathogens are initiated and sustained. Non-haematopoietic stromal cells construct microanatomical niches in the spleen that make diverse contributions to physiological spleen functions and regulate the homeostasis of immune cells. Additional signals from spleen autonomic nerves also modify immune responses. Recent insight into the diversity of the splenic fibroblastic stromal cells has revised our understanding of how these cells help to orchestrate splenic responses to infection and contribute to immune responses. In this Review, we examine our current understanding of how stromal niches and neuroimmune circuits direct the immunological functions of the spleen, with a focus on T cell immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spleen architecture and the white pulp niche in mice and humans.
Fig. 2: Spleen fibroblastic cell niches.
Fig. 3: Spleen remodelling and control of T cell fate during infection.

Similar content being viewed by others

References

  1. Amemiya, C. T., Saha, N. R. & Zapata, A. Evolution and development of immunological structures in the lamprey. Curr. Opin. Immunol. 19, 535–541 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Pivkin, I. V. et al. Biomechanics of red blood cells in human spleen and consequences for physiology and disease. Proc. Natl Acad. Sci. USA 113, 7804–7809 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ilardo, M. A. et al. Physiological and genetic adaptations to diving in sea nomads. Cell 173, 569–580.e15 (2018).

    Article  PubMed  CAS  Google Scholar 

  4. Stewart, I. B. & McKenzie, D. C. The human spleen during physiological stress. Sports Med. 32, 361–369 (2002).

    Article  PubMed  Google Scholar 

  5. Crane, G. M., Jeffery, E. & Morrison, S. J. Adult haematopoietic stem cell niches. Nat. Rev. Immunol. 17, 573–590 (2017).

    Article  PubMed  CAS  Google Scholar 

  6. Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial cells. Cell 180, 764–779.e20 (2020).

    Article  PubMed  CAS  Google Scholar 

  7. Lucas, T. A., Zhu, L. & Buckwalter, M. S. Spleen glia are a transcriptionally unique glial subtype interposed between immune cells and sympathetic axons. Glia 69, 1799–1815 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Alexandre, Y. O. et al. A diverse fibroblastic stromal cell landscape in the spleen directs tissue homeostasis and immunity. Sci. Immunol. 7, eabj0641 (2022). This study reveals the transcriptional and phenotypic diversity of stromal cell subsets in the spleen and responses to infection.

    Article  PubMed  CAS  Google Scholar 

  9. Klein Wolterink, R. G. J., Wu, G. S., Chiu, I. M. & Veiga-Fernandes, H. Neuroimmune interactions in peripheral organs. Annu. Rev. Neurosci. 45, 339–360 (2022).

    Article  PubMed  Google Scholar 

  10. Schmidt, E. E., MacDonald, I. C. & Groom, A. C. Comparative aspects of splenic microcirculatory pathways in mammals: the region bordering the white pulp. Scanning Microsc. 7, 613–628 (1993).

    PubMed  CAS  Google Scholar 

  11. Steiniger, B. S. Human spleen microanatomy: why mice do not suffice. Immunology 145, 334–346 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Cesta, M. F. Normal structure, function, and histology of the spleen. Toxicol. Pathol. 34, 455–465 (2006).

    Article  PubMed  Google Scholar 

  13. Steiniger, B., Ulfig, N., Risse, M. & Barth, P. J. Fetal and early post-natal development of the human spleen: from primordial arterial B cell lobules to a non-segmented organ. Histochem. Cell Biol. 128, 205–215 (2007).

    Article  PubMed  CAS  Google Scholar 

  14. Steiniger, B. S., Wilhelmi, V., Seiler, A., Lampp, K. & Stachniss, V. Heterogeneity of stromal cells in the human splenic white pulp. Fibroblastic reticulum cells, follicular dendritic cells and a third superficial stromal cell type. Immunology 143, 462–477 (2014). This study uses immunohistochemistry to reveal the heterogeneity of stromal cells in the human spleen WP.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cheng, H. W. et al. Origin and differentiation trajectories of fibroblastic reticular cells in the splenic white pulp. Nat. Commun. 10, 1739 (2019). This study uses a new CCL19 mouse model to unravel the developmental trajectories of splenic stromal cells.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Steiniger, B. S., Pfeffer, H., Gaffling, S. & Lobachev, O. The human splenic microcirculation is entirely open as shown by 3D models in virtual reality. Sci. Rep. 12, 16487 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Steiniger, B., Bette, M. & Schwarzbach, H. The open microcirculation in human spleens: a three-dimensional approach. J. Histochem. Cytochem. 59, 639–648 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Steiniger, B., Trabandt, M. & Barth, P. J. The follicular dendritic cell network in secondary follicles of human palatine tonsils and spleens. Histochem. Cell Biol. 135, 327–336 (2011).

    Article  PubMed  CAS  Google Scholar 

  19. Steiniger, B. S., Seiler, A., Lampp, K., Wilhelmi, V. & Stachniss, V. B lymphocyte compartments in the human splenic red pulp: capillary sheaths and periarteriolar regions. Histochem. Cell Biol. 141, 507–518 (2014).

    Article  PubMed  CAS  Google Scholar 

  20. Puga, I. et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat. Immunol. 13, 170–180 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Magri, G. et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat. Immunol. 15, 354–364 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Suo, C. et al. Mapping the developing human immune system across organs. Science 376, eabo0510 (2022).

    Article  PubMed  CAS  Google Scholar 

  23. Bellomo, A. et al. Reticular fibroblasts expressing the transcription factor WT1 define a stromal niche that maintains and replenishes splenic red pulp macrophages. Immunity 53, 127–142.e7 (2020). This study identifies the role of RPRCs for macrophage homeostasis in the spleen.

    Article  PubMed  CAS  Google Scholar 

  24. Pezoldt, J. et al. Single-cell transcriptional profiling of splenic fibroblasts reveals subset-specific innate immune signatures in homeostasis and during viral infection. Commun. Biol. 4, 1355 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Inra, C. N. et al. A perisinusoidal niche for extramedullary haematopoiesis in the spleen. Nature 527, 466–471 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hargreaves, D. C. et al. A coordinated change in chemokine responsiveness guides plasma cell movements. J. Exp. Med. 194, 45–56 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ellyard, J. I., Avery, D. T., Mackay, C. R. & Tangye, S. G. Contribution of stromal cells to the migration, function and retention of plasma cells in human spleen: potential roles of CXCL12, IL-6 and CD54. Eur. J. Immunol. 35, 699–708 (2005).

    Article  PubMed  CAS  Google Scholar 

  28. Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

    Article  PubMed  CAS  Google Scholar 

  29. Moon, E. H. et al. Essential role for TMEM100 in vascular integrity but limited contributions to the pathogenesis of hereditary haemorrhagic telangiectasia. Cardiovasc. Res. 105, 353–360 (2015).

    Article  PubMed  CAS  Google Scholar 

  30. Sitnik, K. M. et al. Context-dependent development of lymphoid stroma from adult CD34+ adventitial progenitors. Cell Rep. 14, 2375–2388 (2016).

    Article  PubMed  CAS  Google Scholar 

  31. Horsnell, H. L. et al. Lymph node homeostasis and adaptation to immune challenge resolved by fibroblast network mechanics. Nat. Immunol. 23, 1169–1182 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Assen, F. P. et al. Multitier mechanics control stromal adaptations in the swelling lymph node. Nat. Immunol. 23, 1246–1255 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Luther, S. A., Tang, H. L., Hyman, P. L., Farr, A. G. & Cyster, J. G. Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc. Natl Acad. Sci. USA 97, 12694–12699 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Link, A. et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat. Immunol. 8, 1255–1265 (2007).

    Article  PubMed  CAS  Google Scholar 

  35. Rodda, L. B. et al. Single-cell RNA sequencing of lymph node stromal cells reveals niche-associated heterogeneity. Immunity 48, 1014–1028.e6 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kapoor, V. N. et al. Gremlin 1+ fibroblastic niche maintains dendritic cell homeostasis in lymphoid tissues. Nat. Immunol. 22, 571–585 (2021).

    Article  PubMed  CAS  Google Scholar 

  37. Rodda, L. B., Bannard, O., Ludewig, B., Nagasawa, T. & Cyster, J. G. Phenotypic and morphological properties of germinal center dark zone Cxcl12-expressing reticular cells. J. Immunol. 195, 4781–4791 (2015).

    Article  PubMed  CAS  Google Scholar 

  38. Pikor, N. B. et al. Remodeling of light and dark zone follicular dendritic cells governs germinal center responses. Nat. Immunol. 21, 649–659 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Fasnacht, N. et al. Specific fibroblastic niches in secondary lymphoid organs orchestrate distinct Notch-regulated immune responses. J. Exp. Med. 211, 2265–2279 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Camara, A. et al. CD169+ macrophages in lymph node and spleen critically depend on dual RANK and LTbetaR signaling. Proc. Natl Acad. Sci. USA 119, e2108540119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Tadayon, S. et al. Clever-1 contributes to lymphocyte entry into the spleen via the red pulp. Sci. Immunol. 4, eaat0297 (2019). This study reveals the path that lymphocytes use to enter the spleen, via the RP, and the role of clever 1-mediated adhesion for this process.

    Article  PubMed  CAS  Google Scholar 

  42. Bajenoff, M., Glaichenhaus, N. & Germain, R. N. Fibroblastic reticular cells guide T lymphocyte entry into and migration within the splenic T cell zone. J. Immunol. 181, 3947–3954 (2008).

    Article  PubMed  CAS  Google Scholar 

  43. Russo, E. et al. CD112 regulates angiogenesis and T cell entry into the spleen. Cells 10, 169 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Werth, K. et al. Expression of ACKR4 demarcates the ‘peri-marginal sinus,’ a specialized vascular compartment of the splenic red pulp. Cell Rep. 36, 109346 (2021).

    Article  PubMed  CAS  Google Scholar 

  45. Nolte, M. A., Hamann, A., Kraal, G. & Mebius, R. E. The strict regulation of lymphocyte migration to splenic white pulp does not involve common homing receptors. Immunology 106, 299–307 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lo, C. G., Lu, T. T. & Cyster, J. G. Integrin-dependence of lymphocyte entry into the splenic white pulp. J. Exp. Med. 197, 353–361 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Chauveau, A. et al. Visualization of T cell migration in the spleen reveals a network of perivascular pathways that guide entry into T zones. Immunity 52, 794–807.e7 (2020). Using intravital imaging, this study reveals the dynamics of cell entry into the spleen WP via the bridging channels.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Shimba, A. et al. Glucocorticoids drive diurnal oscillations in T cell distribution and responses by inducing interleukin-7 receptor and CXCR4. Immunity 48, 286–298.e6 (2018).

    Article  PubMed  CAS  Google Scholar 

  49. Khanna, K. M., McNamara, J. T. & Lefrancois, L. In situ imaging of the endogenous CD8 T cell response to infection. Science 318, 116–120 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Arnon, T. I., Horton, R. M., Grigorova, I. L. & Cyster, J. G. Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress. Nature 493, 684–688 (2013).

    Article  PubMed  CAS  Google Scholar 

  51. Liu, D., Duan, L. & Cyster, J. G. Chemo- and mechanosensing by dendritic cells facilitate antigen surveillance in the spleen. Immunol. Rev. 306, 25–42 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Steinman, R. M., Pack, M. & Inaba, K. Dendritic cells in the T-cell areas of lymphoid organs. Immunol. Rev. 156, 25–37 (1997).

    Article  PubMed  CAS  Google Scholar 

  53. Calabro, S. et al. Differential intrasplenic migration of dendritic cell subsets tailors adaptive immunity. Cell Rep. 16, 2472–2485 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Lu, E., Dang, E. V., McDonald, J. G. & Cyster, J. G. Distinct oxysterol requirements for positioning naive and activated dendritic cells in the spleen. Sci. Immunol. 2, eaal5237 (2017). This study defines how oxysterol production by stromal cells delineates DC positioning in defined niches in the spleen.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Eisenbarth, S. C. Dendritic cell subsets in T cell programming: location dictates function. Nat. Rev. Immunol. 19, 89–103 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Grant, S. M., Lou, M., Yao, L., Germain, R. N. & Radtke, A. J. The lymph node at a glance — how spatial organization optimizes the immune response. J. Cell Sci. 133, jcs241828 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Benedict, C. A. et al. Specific remodeling of splenic architecture by cytomegalovirus. PLoS Pathog. 2, e16 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Montes de Oca, M., Engwerda, C. R. & Kaye, P. M. Cytokines and splenic remodelling during Leishmania donovani infection. Cytokine X 2, 100036 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Aoshi, T. et al. Bacterial entry to the splenic white pulp initiates antigen presentation to CD8+ T cells. Immunity 29, 476–486 (2008).

    Article  PubMed  CAS  Google Scholar 

  60. Rosche, K. L., Aljasham, A. T., Kipfer, J. N., Piatkowski, B. T. & Konjufca, V. Infection with Salmonella enterica serovar typhimurium leads to increased proportions of F4/80+ red pulp macrophages and decreased proportions of B and T lymphocytes in the spleen. PLoS ONE 10, e0130092 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ugel, S. et al. Immune tolerance to tumor antigens occurs in a specialized environment of the spleen. Cell Rep. 2, 628–639 (2012).

    Article  PubMed  CAS  Google Scholar 

  62. Henry, B. et al. The human spleen in malaria: filter or shelter? Trends Parasitol. 36, 435–446 (2020).

    Article  PubMed  CAS  Google Scholar 

  63. Norris, B. A. et al. Chronic but not acute virus infection induces sustained expansion of myeloid suppressor cell numbers that inhibit viral-specific T cell immunity. Immunity 38, 309–321 (2013).

    Article  PubMed  CAS  Google Scholar 

  64. Gregory, J. L. et al. Infection programs sustained lymphoid stromal cell responses and shapes lymph node remodeling upon secondary challenge. Cell Rep. 18, 406–418 (2017).

    Article  PubMed  CAS  Google Scholar 

  65. Scandella, E. et al. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nat. Immunol. 9, 667–675 (2008).

    Article  PubMed  CAS  Google Scholar 

  66. Hsu, K. M., Pratt, J. R., Akers, W. J., Achilefu, S. I. & Yokoyama, W. M. Murine cytomegalovirus displays selective infection of cells within hours after systemic administration. J. Gen. Virol. 90, 33–43 (2009).

    Article  PubMed  CAS  Google Scholar 

  67. Bekiaris, V. et al. Ly49H+ NK cells migrate to and protect splenic white pulp stroma from murine cytomegalovirus infection. J. Immunol. 180, 6768–6776 (2008).

    Article  PubMed  CAS  Google Scholar 

  68. Cocita, C. et al. Natural killer cell sensing of infected cells compensates for MyD88 deficiency but not IFN-I activity in resistance to mouse cytomegalovirus. PLoS Pathog. 11, e1004897 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Mueller, S. N. et al. Viral targeting of fibroblastic reticular cells contributes to immunosuppression and persistence during chronic infection. Proc. Natl Acad. Sci. USA 104, 15430–15435 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Mueller, S. N. et al. PD-L1 has distinct functions in hematopoietic and nonhematopoietic cells in regulating T cell responses during chronic infection in mice. J. Clin. Invest. 120, 2508–2515 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Mueller, S. N. et al. Regulation of homeostatic chemokine expression and cell trafficking during immune responses. Science 317, 670–674 (2007). This study discovers regulation of homeostatic chemokines in spleen stromal cells and how this regulates cell trafficking during immune responses.

    Article  PubMed  CAS  Google Scholar 

  72. Zeng, M. et al. Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J. Clin. Invest. 121, 998–1008 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Estes, J. D. Pathobiology of HIV/SIV-associated changes in secondary lymphoid tissues. Immunol. Rev. 254, 65–77 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Samal, J. et al. Human immunodeficiency virus infection induces lymphoid fibrosis in the BM-liver-thymus-spleen humanized mouse model. JCI Insight 3, e120430 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mu, X. et al. Sectm1a facilitates protection against inflammation-induced organ damage through promoting TRM self-renewal. Mol. Ther. 29, 1294–1311 (2021).

    Article  PubMed  CAS  Google Scholar 

  76. Perez-Shibayama, C. et al. Type I interferon signaling in fibroblastic reticular cells prevents exhaustive activation of antiviral CD8+ T cells. Sci. Immunol. 5, eabb7066 (2020).

    Article  PubMed  CAS  Google Scholar 

  77. Bonilla, W. V. et al. The alarmin interleukin-33 drives protective antiviral CD8+ T cell responses. Science 335, 984–989 (2012).

    Article  PubMed  CAS  Google Scholar 

  78. Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    Article  PubMed  CAS  Google Scholar 

  79. Sharma, N., Benechet, A. P., Lefrancois, L. & Khanna, K. M. CD8 T cells enter the splenic T cell zones independently of CCR7, but the subsequent expansion and trafficking patterns of effector T cells after infection are dysregulated in the absence of CCR7 migratory cues. J. Immunol. 195, 5227–5236 (2015).

    Article  PubMed  CAS  Google Scholar 

  80. Jung, Y. W., Rutishauser, R. L., Joshi, N. S., Haberman, A. M. & Kaech, S. M. Differential localization of effector and memory CD8 T cell subsets in lymphoid organs during acute viral infection. J. Immunol. 185, 5315–5325 (2010).

    Article  PubMed  CAS  Google Scholar 

  81. Kursar, M. et al. Differential requirements for the chemokine receptor CCR7 in T cell activation during Listeria monocytogenes infection. J. Exp. Med. 201, 1447–1457 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Junt, T. et al. Impact of CCR7 on priming and distribution of antiviral effector and memory CTL. J. Immunol. 173, 6684–6693 (2004).

    Article  PubMed  CAS  Google Scholar 

  83. Junt, T. et al. Antiviral immune responses in the absence of organized lymphoid T cell zones in plt/plt mice. J. Immunol. 168, 6032–6040 (2002).

    Article  PubMed  CAS  Google Scholar 

  84. Hu, J. K., Kagari, T., Clingan, J. M. & Matloubian, M. Expression of chemokine receptor CXCR3 on T cells affects the balance between effector and memory CD8 T-cell generation. Proc. Natl Acad. Sci. USA 108, E118–E127 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bangs, D. J. et al. CXCR3 regulates stem and proliferative CD8+ T cells during chronic infection by promoting interactions with DCs in splenic bridging channels. Cell Rep. 38, 110266 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Ozga, A. J. et al. CXCL10 chemokine regulates heterogeneity of the CD8+ T cell response and viral set point during chronic infection. Immunity 55, 82–97.e8 (2022). This study finds that CXCL10 expression specifically contributes to terminally differentiated exhausted T cells during chronic viral infection in mice.

    Article  PubMed  CAS  Google Scholar 

  87. Alexandre, Y. O. et al. XCR1+ dendritic cells promote memory CD8+ T cell recall upon secondary infections with Listeria monocytogenes or certain viruses. J. Exp. Med. 213, 75–92 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Duckworth, B. C. et al. Effector and stem-like memory cell fates are imprinted in distinct lymph node niches directed by CXCR3 ligands. Nat. Immunol. 22, 434–448 (2021).

    Article  PubMed  CAS  Google Scholar 

  89. Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Im, S. J., Konieczny, B. T., Hudson, W. H., Masopust, D. & Ahmed, R. PD-1+ stemlike CD8 T cells are resident in lymphoid tissues during persistent LCMV infection. Proc. Natl Acad. Sci. USA 117, 4292–4299 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Tsui, C. et al. MYB orchestrates T cell exhaustion and response to checkpoint inhibition. Nature 609, 354–360 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Chen, Z. et al. TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision. Immunity 51, 840–855.e5 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Utzschneider, D. T. et al. T cell factor 1-expressing memory-like CD8+ T cells sustain the immune response to chronic viral infections. Immunity 45, 415–427 (2016).

    Article  PubMed  CAS  Google Scholar 

  95. Dahling, S. et al. Type 1 conventional dendritic cells maintain and guide the differentiation of precursors of exhausted T cells in distinct cellular niches. Immunity 55, 656–670.e8 (2022).

    Article  PubMed  Google Scholar 

  96. Leong, Y. A. et al. CXCR5+ follicular cytotoxic T cells control viral infection in B cell follicles. Nat. Immunol. 17, 1187–1196 (2016).

    Article  PubMed  CAS  Google Scholar 

  97. He, R. et al. Follicular CXCR5- expressing CD8+ T cells curtail chronic viral infection. Nature 537, 412–428 (2016).

    Article  PubMed  CAS  Google Scholar 

  98. Mueller, S. N., Gebhardt, T., Carbone, F. R. & Heath, W. R. Memory T cell subsets, migration patterns, and tissue residence. Annu. Rev. Immunol. 31, 137–161 (2013).

    Article  PubMed  CAS  Google Scholar 

  99. Knop, L. et al. IL-7 derived from lymph node fibroblastic reticular cells is dispensable for naive T cell homeostasis but crucial for central memory T cell survival. Eur. J. Immunol. 50, 846–857 (2020).

    Article  PubMed  CAS  Google Scholar 

  100. Jung, Y. W., Kim, H. G., Perry, C. J. & Kaech, S. M. CCR7 expression alters memory CD8 T-cell homeostasis by regulating occupancy in IL-7- and IL-15-dependent niches. Proc. Natl Acad. Sci. USA 113, 8278–8283 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Cui, G. et al. Characterization of the IL-15 niche in primary and secondary lymphoid organs in vivo. Proc. Natl Acad. Sci. USA 111, 1915–1920 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Colpitts, S. L. et al. Transcriptional regulation of IL-15 expression during hematopoiesis. J. Immunol. 191, 3017–3024 (2013).

    Article  PubMed  CAS  Google Scholar 

  103. Zhang, X. et al. Brain control of humoral immune responses amenable to behavioural modulation. Nature 581, 204–208 (2020).

    Article  PubMed  CAS  Google Scholar 

  104. Bellinger, D. L., Felten, S. Y., Lorton, D. & Felten, D. L. Origin of noradrenergic innervation of the spleen in rats. Brain Behav. Immun. 3, 291–311 (1989).

    Article  PubMed  CAS  Google Scholar 

  105. Bellinger, D. L., Lorton, D., Hamill, R. W., Felten, S. Y. & Felten, D. L. Acetylcholinesterase staining and choline acetyltransferase activity in the young adult rat spleen: lack of evidence for cholinergic innervation. Brain Behav. Immun. 7, 191–204 (1993).

    Article  PubMed  CAS  Google Scholar 

  106. Ding, X. et al. Panicle-shaped sympathetic architecture in the spleen parenchyma modulates antibacterial Innate Immunity. Cell Rep. 27, 3799–3807.e3 (2019).

    Article  PubMed  CAS  Google Scholar 

  107. Chen, W. C. et al. Neuropeptide Y is an immunomodulatory factor: direct and indirect. Front. Immunol. 11, 580378 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Mueller, S. N. Neural control of immune cell trafficking. J. Exp. Med. 219, e20211604 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Suzuki, K., Hayano, Y., Nakai, A., Furuta, F. & Noda, M. Adrenergic control of the adaptive immune response by diurnal lymphocyte recirculation through lymph nodes. J. Exp. Med. 213, 2567–2574 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Scheiermann, C. et al. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity 37, 290–301 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Devi, S. et al. Adrenergic regulation of the vasculature impairs leukocyte interstitial migration and suppresses immune responses. Immunity 54, 1219–1230.e7 (2021). This study discovers that activation of the sympathetic nervous system can impair the dynamic migration of leukocytes in tissues and suppress immune responses.

    Article  PubMed  CAS  Google Scholar 

  112. Murray, K. et al. Neuroanatomy of the spleen: mapping the relationship between sympathetic neurons and lymphocytes. PLoS ONE 12, e0182416 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Rosas-Ballina, M. et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc. Natl Acad. Sci. USA 105, 11008–11013 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Bratton, B. O. et al. Neural regulation of inflammation: no neural connection from the vagus to splenic sympathetic neurons. Exp. Physiol. 97, 1180–1185 (2012).

    Article  PubMed  CAS  Google Scholar 

  116. Martelli, D., Farmer, D. G. S., McKinley, M. J., Yao, S. T. & McAllen, R. M. Anti-inflammatory reflex action of splanchnic sympathetic nerves is distributed across abdominal organs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 316, R235–R242 (2019).

    Article  PubMed  CAS  Google Scholar 

  117. Muller, P. A. et al. Microbiota modulate sympathetic neurons via a gut-brain circuit. Nature 583, 441–446 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Yu, J. et al. Neuron-derived neuropeptide Y fine-tunes the splenic immune responses. Neuron 110, 1327–1339.e6 (2022). This study reveals that neuropeptide Y produced by neurons that innervate the spleen can dampen local inflammatory responses.

    Article  PubMed  CAS  Google Scholar 

  119. McKinley, M. J., Martelli, D., Trevizan-Bau, P. & McAllen, R. M. Divergent splanchnic sympathetic efferent nerve pathways regulate interleukin-10 and tumour necrosis factor-alpha responses to endotoxaemia. J. Physiol. 600, 4521–4536 (2022).

    Article  PubMed  CAS  Google Scholar 

  120. Murray, K., Barboza, M., Rude, K. M., Brust-Mascher, I. & Reardon, C. Functional circuitry of neuro-immune communication in the mesenteric lymph node and spleen. Brain Behav. Immun. 82, 214–223 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Mourcin, F. et al. Follicular lymphoma triggers phenotypic and functional remodeling of the human lymphoid stromal cell landscape. Immunity 54, 1788–1806.e7 (2021).

    Article  PubMed  CAS  Google Scholar 

  122. Mutsaers, S. E. The mesothelial cell. Int. J. Biochem. Cell Biol. 36, 9–16 (2004).

    Article  PubMed  CAS  Google Scholar 

  123. Armulik, A., Genove, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).

    Article  PubMed  CAS  Google Scholar 

  124. Schaeuble, K. et al. Perivascular fibroblasts of the developing spleen act as LTalpha1beta2-dependent precursors of both T and B zone organizer cells. Cell Rep. 21, 2500–2514 (2017).

    Article  PubMed  CAS  Google Scholar 

  125. Wang, X. et al. Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers. J. Exp. Med. 208, 2497–2510 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Bannard, O. et al. Germinal center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection. Immunity 39, 912–924 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Brendolan, A., Rosado, M. M., Carsetti, R., Selleri, L. & Dear, T. N. Development and function of the mammalian spleen. Bioessays 29, 166–177 (2007).

    Article  PubMed  CAS  Google Scholar 

  128. Lenti, E. et al. Transcription factor TLX1 controls retinoic acid signaling to ensure spleen development. J. Clin. Invest. 126, 2452–2464 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Krautler, N. J. et al. Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 150, 194–206 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Lenti, E. et al. Fate mapping and scRNA sequencing reveal origin and diversity of lymph node stromal precursors. Immunity 55, 606–622.e6 (2022).

    Article  PubMed  CAS  Google Scholar 

  131. Ngo, V. N. et al. Lymphotoxin alpha/beta and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J. Exp. Med. 189, 403–412 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Withers, D. R. et al. The role of lymphoid tissue inducer cells in splenic white pulp development. Eur. J. Immunol. 37, 3240–3245 (2007).

    Article  PubMed  CAS  Google Scholar 

  133. Bogdanova, D. et al. Essential role of canonical NF-kappaB activity in the development of stromal cell subsets in secondary lymphoid organs. J. Immunol. 201, 3580–3586 (2018).

    Article  PubMed  CAS  Google Scholar 

  134. Astarita, J. L., Acton, S. E. & Turley, S. J. Podoplanin: emerging functions in development, the immune system, and cancer. Front. Immunol. 3, 283 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Herzog, B. H. et al. Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature 502, 105–109 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Acton, S. E. et al. Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2. Immunity 37, 276–289 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. de Winde, C. M. et al. Fibroblastic reticular cell response to dendritic cells requires coordinated activity of podoplanin, CD44 and CD9. J. Cell Sci. 134, jcs258610 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Aw, D. et al. Disorganization of the splenic microanatomy in ageing mice. Immunology 148, 92–101 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Chai, Q. et al. Maturation of lymph node fibroblastic reticular cells from myofibroblastic precursors is critical for antiviral immunity. Immunity 38, 1013–1024 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Groom, H. Horsnell and A. Haque for critical input. S.N.M. is a recipient of a National Health and Medical Research Council (NHMRC) Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Scott N. Mueller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks J. Cyster, B. Ludewig and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Conventional type 1 DCs

(cDC1s). Dendritic cells (DCs) that are specialized in the uptake and cross-presentation of exogenous antigens for T cell activation. cDC1s dominate CD8+ T cell priming in many diseases.

Conventional type 2 DCs

(cDC2s). Dendritic cells (DCs) that are specialized for the priming of CD4+ T cell responses and T helper cell differentiation.

Fibroblastic reticular cells

(FRCs). Specialized fibroblasts found in lymphoid organs that construct and support microenvironments for immune cells.

Marginal zone

(MZ). Region of the spleen that separates the red pulp from the white pulp. The MZ is a transit area for immune cells that arrive from the blood circulation into the spleen. The main role of the MZ is to filter antigens from the blood circulation.

Memory precursor effector T cells

Effector T cells that are present during immune responses that display an enhanced ability to form memory T cells and persist in the body.

Progenitor exhausted T cells

These cells retain stem-like cell properties during chronic infections and cancer with the capacity to expand and differentiate into exhausted T cells.

Red pulp

(RP). Compartment of the spleen filled with venous sinuses and where red blood cells are filtered.

Short-lived effector T cells

The majority of the effector T cells induced during immune responses are short-lived and die via apoptosis after the resolution of an infection.

Trabeculae

Connective tissue that protrudes from the capsule into the splenic tissue and contains blood vessels and associated nerves. The trabeculae and capsule provide structure and rigidity to the spleen.

White pulp

(WP). Lymphoid tissue component of the spleen devoid of red blood cells and where adaptative immune responses are initiated. The WP surrounds the central arteries.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandre, Y.O., Mueller, S.N. Splenic stromal niches in homeostasis and immunity. Nat Rev Immunol 23, 705–719 (2023). https://doi.org/10.1038/s41577-023-00857-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00857-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing