Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunometabolism at the interface between macrophages and pathogens

Abstract

It is generally regarded that the progression of an infection within host macrophages is the consequence of a failed immune response. However, recent appreciation of macrophage heterogeneity, with respect to both development and metabolism, indicates that the reality is more complex. Different lineages of tissue-resident macrophages respond divergently to microbial, environmental and immunological stimuli. The emerging picture that the developmental origin of macrophages determines their responses to immune stimulation and to infection stresses the importance of in vivo infection models. Recent investigations into the metabolism of infecting microorganisms and host macrophages indicate that their metabolic interface can be a major determinant of pathogen growth or containment. This Review focuses on the integration of data from existing studies, the identification of challenges in generating and interpreting data from ongoing studies and a discussion of the technologies and tools that are required to best address future questions in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phenotypic characteristics of the M1-like and M2-like macrophage polarization states.
Fig. 2: Modulation of macrophage metabolism by microbial mediators.
Fig. 3: The links between macrophage phenotype and S. Typhimurium physiology.
Fig. 4: The links between macrophage phenotype and the progression of Mycobacterium tuberculosis infection in non-human primates and mice.
Fig. 5: Technologies and tools for investigating the metabolic interplay between host and pathogen.

Similar content being viewed by others

References

  1. O’Neill, L. A. & Pearce, E. J. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213, 15–23 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Van den Bossche, J., O’Neill, L. A. & Menon, D. Macrophage immunometabolism: where are we (going)? Trends. Immunol. 38, 395–406 (2017).

    Article  PubMed  CAS  Google Scholar 

  3. VanderVen, B. C., Yates, R. M. & Russell, D. G. Intraphagosomal measurement of the magnitude and duration of the oxidative burst. Traffic 10, 372–378 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. van Furth, R. & Cohn, Z. A. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 128, 415–435 (1968).

    Article  PubMed  PubMed Central  Google Scholar 

  5. van Furth, R. et al. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull. World Health Organ. 46, 845–852 (1972).

    PubMed  PubMed Central  Google Scholar 

  6. Munder, M., Eichmann, K. & Modolell, M. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J. Immunol. 160, 5347–5354 (1998).

    CAS  PubMed  Google Scholar 

  7. Gordon, S. & Martinez-Pomares, L. Physiological roles of macrophages. Pflugers Arch. 469, 365–374 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787–795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xue, J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40, 274–288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439–449 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Ginhoux, F. & Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14, 392–404 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Gordon, S. & Pluddemann, A. Tissue macrophages: heterogeneity and functions. BMC Biol. 15, 53 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Diskin, C. & Palsson-McDermott, E. M. Metabolic modulation in macrophage effector function. Front. Immunol. 9, 270 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Escoll, P. & Buchrieser, C. Metabolic reprogramming of host cells upon bacterial infection: why shift to a Warburg-like metabolism? FEBS J. 285, 2146–2160 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. O’Neill, L. A., Kishton, R. J. & Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Michelucci, A. et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl Acad. Sci. USA 110, 7820–7825 (2013). This study reports the identification of Irg1 as encoding an enzyme that generates itaconate and the finding that itaconate is a potent antimicrobial molecule that can block the growth of intracellular M. tuberculosis and Salmonella spp.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. MacMicking, J. D. et al. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl Acad. Sci. USA 94, 5243–5248 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weiss, G. & Schaible, U. E. Macrophage defense mechanisms against intracellular bacteria. Immunol. Rev. 264, 182–203 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cyster, J. G., Dang, E. V., Reboldi, A. & Yi, T. 25-hydroxycholesterols in innate and adaptive immunity. Nat. Rev. Immunol. 14, 731–743 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Tan, Z. et al. Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J. Immunol. 194, 6082–6089 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gorke, B. & Stulke, J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol. 6, 613–624 (2008).

    Article  PubMed  CAS  Google Scholar 

  24. Olive, A. J. & Sassetti, C. M. Metabolic crosstalk between host and pathogen: sensing, adapting and competing. Nat. Rev. Microbiol. 14, 221–234 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Burton, N. A. et al. Disparate impact of oxidative host defenses determines the fate of Salmonella during systemic infection in mice. Cell Host Microbe 15, 72–83 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Figueira, R. & Holden, D. W. Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology 158, 1147–1161 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Bumann, D. & Schothorst, J. Intracellular Salmonella metabolism. Cell. Microbiol. 19, e12766 (2017).

    Article  CAS  Google Scholar 

  28. Steeb, B. et al. Parallel exploitation of diverse host nutrients enhances Salmonella virulence. PLOS Pathog. 9, e1003301 (2013). This is an extremely comprehensive analysis of the major metabolic pathways that are required to support the survival and growth of Salmonella spp. inside mammalian cells using proteomics, genetics and computational modelling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Isaac, D. T. & Isberg, R. Master manipulators: an update on Legionella pneumophila Icm/Dot translocated substrates and their host targets. Future Microbiol. 9, 343–359 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Eylert, E. et al. Isotopologue profiling of Legionella pneumophila: role of serine and glucose as carbon substrates. J. Biol. Chem. 285, 22232–22243 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oliva, G., Sahr, T. & Buchrieser, C. The life cycle of L. pneumophila: cellular differentiation is linked to virulence and metabolism. Front. Cell. Infect. Microbiol. 8, 3 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hauslein, I. et al. Legionella pneumophila CsrA regulates a metabolic switch from amino acid to glycerolipid metabolism. Open Biol. 7, 170149 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lang, C. & Flieger, A. Characterisation of Legionella pneumophila phospholipases and their impact on host cells. Eur. J. Cell. Biol. 90, 903–912 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Lerner, T. R. et al. Mycobacterium tuberculosis replicates within necrotic human macrophages. J. Cell Biol. 216, 583–594 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mahamed, D. et al. Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells. eLife 6, e28205 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. van der Wel, N. et al. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129, 1287–1298 (2007).

    Article  PubMed  CAS  Google Scholar 

  37. Stanley, S. A., Johndrow, J. E., Manzanillo, P. & Cox, J. S. The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J. Immunol. 178, 3143–3152 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. McKinney, J. D. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735–738 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Pandey, A. K. & Sassetti, C. M. Mycobacterial persistence requires the utilization of host cholesterol. Proc. Natl Acad. Sci. USA 105, 4376–4380 (2008). This study identifies the Mce4 membrane protein complex as the primary transporter of cholesterol in M. tuberculosis and shows that the activity of this transporter is necessary for maintenance of M. tuberculosis infection in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. VanderVen, B. C. et al. Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium’s metabolism is constrained by the intracellular environment. PLOS Pathog. 11, e1004679 (2015). This paper presents the first identification of chemical inhibitors of M. tuberculosis enzymes that are involved in the degradation of host-derived cholesterol. It shows that chemical inhibition of this pathway in the bacteria limits their intracellular growth.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lee, W., VanderVen, B. C., Fahey, R. J. & Russell, D. G. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J. Biol. Chem. 288, 6788–6800 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nazarova, E. V. et al. Rv3723/LucA coordinates fatty acid and cholesterol uptake in Mycobacterium tuberculosis. eLife 6, e26969 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Marrero, J., Trujillo, C., Rhee, K. Y. & Ehrt, S. Glucose phosphorylation is required for Mycobacterium tuberculosis persistence in mice. PLOS Pathog. 9, e1003116 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beste, D. J. et al. 13C-flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular Mycobacterium tuberculosis. Chem. Biol. 20, 1012–1021 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. O’Riordan, M., Moors, M. A. & Portnoy, D. A. Listeria intracellular growth and virulence require host-derived lipoic acid. Science 302, 462–464 (2003).

    Article  PubMed  CAS  Google Scholar 

  46. Grubmuller, S., Schauer, K., Goebel, W., Fuchs, T. M. & Eisenreich, W. Analysis of carbon substrates used by Listeria monocytogenes during growth in J774A.1 macrophages suggests a bipartite intracellular metabolism. Front. Cell. Infect. Microbiol. 4, 156 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. Kochan, I. The role of iron in bacterial infections, with special consideration of host-tubercle bacillus interaction. Curr. Top. Microbiol. Immunol. 60, 1–30 (1973).

    Article  CAS  PubMed  Google Scholar 

  48. Botella, H. et al. Mycobacterial p1-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10, 248–259 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Crouch, M. L., Castor, M., Karlinsey, J. E., Kalhorn, T. & Fang, F. C. Biosynthesis and IroC-dependent export of the siderophore salmochelin are essential for virulence of Salmonella enterica serovar Typhimurium. Mol. Microbiol. 67, 971–983 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Liu, J. Z. et al. Zinc sequestration by the neutrophil protein calprotectin enhances Salmonella growth in the inflamed gut. Cell Host Microbe 11, 227–239 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wolschendorf, F. et al. Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 108, 1621–1626 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bange, F. C., Brown, A. M. & Jacobs, W. R. Jr. Leucine auxotrophy restricts growth of Mycobacterium bovis BCG in macrophages. Infect. Immun. 64, 1794–1799 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Clark-Curtiss, J. E. & Curtiss, R. 3rd. Salmonella vaccines: conduits for protective antigens. J. Immunol. 200, 39–48 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Ensminger, A. W., Yassin, Y., Miron, A. & Isberg, R. R. Experimental evolution of Legionella pneumophila in mouse macrophages leads to strains with altered determinants of environmental survival. PLOS Pathog. 8, e1002731 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vilcheze, C. et al. Rational design of biosafety level 2-approved, multidrug-resistant strains of Mycobacterium tuberculosis through nutrient auxotrophy. mBio 9, e00938 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Murray, P. J. Amino acid auxotrophy as a system of immunological control nodes. Nat. Immunol. 17, 132–139 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pfefferkorn, E. R. Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc. Natl Acad. Sci. USA 81, 908–912 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schmidt, S. V. & Schultze, J. L. New insights into IDO biology in bacterial and viral infections. Front. Immunol. 5, 384 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. O’Neill, L. A. J. & Artyomov, M. N. Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat. Rev. Immunol. (in the press).

  60. Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Weiss, J. M. et al. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors. J. Clin. Invest. 128, 3794–3805 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Honer Zu Bentrup, K., Miczak, A., Swenson, D. L. & Russell, D. G. Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. J. Bacteriol. 181, 7161–7167 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Munoz-Elias, E. J. & McKinney, J. D. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat. Med. 11, 638–644 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Savvi, S. et al. Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids. J. Bacteriol. 190, 3886–3895 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Naujoks, J. et al. IFNs modify the proteome of legionella-containing vacuoles and restrict infection via IRG1-derived itaconic acid. PLOS Pathog. 12, e1005408 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Nair, S. et al. Irg1 expression in myeloid cells prevents immunopathology during M. tuberculosis infection. J. Exp. Med. 215, 1035–1045 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sasikaran, J., Ziemski, M., Zadora, P. K., Fleig, A. & Berg, I. A. Bacterial itaconate degradation promotes pathogenicity. Nat. Chem. Biol. 10, 371–377 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Ito, K. & Suda, T. Metabolic requirements for the maintenance of self-renewing stem cells. Nat. Rev. Mol. Cell. Biol. 15, 243–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vander Heiden, M. G. & DeBerardinis, R. J. Understanding the intersections between metabolism and cancer biology. Cell 168, 657–669 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  71. Everts, B. et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKε supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15, 323–332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rodriguez-Prados, J. C. et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J. Immunol. 185, 605–614 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Tan, Z. et al. The monocarboxylate transporter 4 is required for glycolytic reprogramming and inflammatory response in macrophages. J. Bio. Chem. 290, 46–55 (2015).

    Article  CAS  Google Scholar 

  74. Lachmandas, E. et al. Microbial stimulation of different Toll-like receptor signalling pathways induces diverse metabolic programmes in human monocytes. Nat. Microbiol. 2, 16246 (2016).

    Article  PubMed  CAS  Google Scholar 

  75. Gillmaier, N., Gotz, A., Schulz, A., Eisenreich, W. & Goebel, W. Metabolic responses of primary and transformed cells to intracellular Listeria monocytogenes. PLOS ONE 7, e52378 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Czyz, D. M., Willett, J. W. & Crosson, S. Brucella abortus induces a Warburg shift in host metabolism that is linked to enhanced intracellular survival of the pathogen. J. Bacteriol. 199, e00227 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cheng, S. C. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Netea, M. G. et al. Trained immunity: a program of innate immune memory in health and disease. Science 352, aaf1098 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Escoll, P. et al. Legionella pneumophila modulates mitochondrial dynamics to trigger metabolic repurposing of infected macrophages. Cell Host Microbe 22, 302–316 (2017). This study shows that L. pneumophila modulates the metabolism of its host cell through driving fission of the mitochondria in a DNM1L-dependent manner.

    Article  CAS  PubMed  Google Scholar 

  80. Stavru, F., Bouillaud, F., Sartori, A., Ricquier, D. & Cossart, P. Listeria monocytogenes transiently alters mitochondrial dynamics during infection. Proc. Natl Acad. Sci. USA 108, 3612–3617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Abramovitch, R. B. Mycobacterium tuberculosis reporter strains as tools for drug discovery and development. IUBMB Life 70, 818–825 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Boot, M. et al. Accelerating early antituberculosis drug discovery by creating mycobacterial indicator strains that predict mode of action. Antimicrob. Agents Chemother. 62, e00083 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Claudi, B. et al. Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell 158, 722–733 (2014). This study uses fluorescent TIMER-expressing Salmonella spp. in an in vivo infection model to analyse the rate of bacterial division, identify a subpopulation of non-replicating bacteria and demonstrate that these bacteria have acquired a drug-tolerant phenotype.

    Article  CAS  PubMed  Google Scholar 

  84. Gill, W. P. et al. A replication clock for Mycobacterium tuberculosis. Nat. Med. 15, 211–214 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Helaine, S. et al. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343, 204–208 (2014). In this study, a green fluorescent protein-dilution reporter strain is used to examine non-replicating Salmonella spp. bacteria in vivo and to show that, in vitro, IFNγ-activated macrophages induce markedly higher levels of drug tolerance in Salmonella spp. than do resting macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Helaine, S. & Holden, D. W. Heterogeneity of intracellular replication of bacterial pathogens. Curr. Opin. Microbiol. 16, 184–191 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. MacGilvary, N. J. & Tan, S. Fluorescent Mycobacterium tuberculosis reporters: illuminating host — pathogen interactions. Pathog. Dis. 76, fty017 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  88. Sukumar, N., Tan, S., Aldridge, B. B. & Russell, D. G. Exploitation of Mycobacterium tuberculosis reporter strains to probe the impact of vaccination at sites of infection. PLOS Pathog. 10, e1004394 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Saliba, A. E. et al. Single-cell RNA-seq ties macrophage polarization to growth rate of intracellular Salmonella. Nat. Microbiol. 2, 16206 (2016). This study uses single-cell RNA-seq to show that macrophages that preferentially support the growth of Salmonella spp. in vitro express polarization markers consistent with an M2-like macrophage phenotype.

    Article  CAS  PubMed  Google Scholar 

  90. Westermann, A. J., Barquist, L. & Vogel, J. Resolving host-pathogen interactions by dual RNA-seq. PLOS Pathog. 13, e1006033 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Westermann, A. J. et al. Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions. Nature 529, 496–501 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Bumann, D. & Cunrath, O. Heterogeneity of Salmonella-host interactions in infected host tissues. Curr. Opin. Microbiol. 39, 57–63 (2017).

    Article  PubMed  Google Scholar 

  93. Cadena, A. M., Fortune, S. M. & Flynn, J. L. Heterogeneity in tuberculosis. Nat. Rev. Immunol. 17, 691–702 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Helaine, S. & Kugelberg, E. Bacterial persisters: formation, eradication, and experimental systems. Trends Microbiol. 22, 417–424 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Liu, Y. et al. Immune activation of the host cell induces drug tolerance in Mycobacterium tuberculosis both in vitro and in vivo. J. Exp. Med. 213, 809–825 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Manina, G., Dhar, N. & McKinney, J. D. Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms. Cell Host Microbe 17, 32–46 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Stapels, D. A. C. et al. Salmonella persisters undermine host immune defenses during antibiotic treatment. Science 362, 1156–1160 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Perez-Morales, D. & Bustamante, V. H. The global regulatory system Csr senses glucose through the phosphoenolpyruvate: carbohydrate phosphotransferase system. Mol. Microbiol. 99, 623–626 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Aldridge, B. B. et al. Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science 335, 100–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Rego, E. H., Audette, R. E. & Rubin, E. J. Deletion of a mycobacterial divisome factor collapses single-cell phenotypic heterogeneity. Nature 546, 153–157 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cohen, S. B. et al. Alveolar macrophages provide an early Mycobacterium tuberculosis niche and initiate dissemination. Cell Host Microbe 24, 439–446 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Srivastava, S., Ernst, J. D. & Desvignes, L. Beyond macrophages: the diversity of mononuclear cells in tuberculosis. Immunol. Rev. 262, 179–192 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Srivastava, S., Grace, P. S. & Ernst, J. D. Antigen export reduces antigen presentation and limits T cell control of M. tuberculosis. Cell Host Microbe 19, 44–54 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bodnar, K. A., Serbina, N. V. & Flynn, J. L. Fate of Mycobacterium tuberculosis within murine dendritic cells. Infect. Immun. 69, 800–809 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mattila, J. T. et al. Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J. Immunol. 191, 773–784 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Marino, S. et al. Macrophage polarization drives granuloma outcome during Mycobacterium tuberculosis infection. Infect. Immun. 83, 324–338 (2015).

    Article  PubMed  CAS  Google Scholar 

  107. Huang, L., Nazarova, E. V., Tan, S., Liu, Y. & Russell, D. G. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J. Exp. Med. 215, 1135–1152 (2018). This is a recent study showing that macrophages of different developmental lineages differentially support the growth of M. tuberculosis in vivo and that alveolar macrophages are more permissive for bacterial growth than are interstitial macrophages through metabolism-dependent mechanisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rohde, K. H., Veiga, D. F., Caldwell, S., Balazsi, G. & Russell, D. G. Linking the transcriptional profiles and the physiological states of Mycobacterium tuberculosis during an extended intracellular infection. PLOS Pathog. 8, e1002769 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tan, S., Sukumar, N., Abramovitch, R. B., Parish, T. & Russell, D. G. Mycobacterium tuberculosis responds to chloride and pH as synergistic cues to the immune status of its host cell. PLOS Pathog. 9, e1003282 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dunlap, M. D. et al. A novel role for C-C motif chemokine receptor 2 during infection with hypervirulent Mycobacterium tuberculosis. Mucosal Immunol. 11, 1727–1742 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gleeson, L. E. et al. Cigarette smoking impairs the bioenergetic immune response to mycobacterium tuberculosis infection. Am. J. Respir. Cell. Mol. Biol. 59, 572–579 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Goletti, D., Petruccioli, E., Joosten, S. A. & Ottenhoff, T. H. Tuberculosis biomarkers: from diagnosis to protection. Infect. Dis. Rep. 8, 6568 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lee, S. H. et al. Mannose receptor high, M2 dermal macrophages mediate nonhealing Leishmania major infection in a Th1 immune environment. J. Exp. Med. 215, 357–375 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gibbings, S. L. et al. Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages. Blood 126, 1357–1366 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gibbings, S. L. et al. Three unique interstitial macrophages in the murine lung at steady state. Am. J. Respir. Cell. Mol. Biol. 57, 66–76 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mould, K. J. et al. Cell origin dictates programming of resident versus recruited macrophages during acute lung injury. Am. J. Respir. Cell. Mol. Biol. 57, 294–306 (2017). This study shows that resident and recruited macrophages respond differently to LPS challenge in the lung airways, which indicates that the developmental origin of macrophages, rather than their environment, is decisive in determining their response to the same immune stimulus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jenkins, S. J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jenkins, S. J. et al. IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. J. Exp. Med. 210, 2477–2491 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ruckerl, D. et al. Macrophage origin limits functional plasticity in helminth-bacterial co-infection. PLOS Pathog. 13, e1006233 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Devchand, P. R. et al. The PPARα-leukotriene B4 pathway to inflammation control. Nature 384, 39–43 (1996).

    Article  CAS  PubMed  Google Scholar 

  121. Nobs, S. P. & Kopf, M. PPAR-γ in innate and adaptive lung immunity. J. Leukoc. Biol. 104, 737–741 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Bedi, B. et al. Enhanced clearance of Pseudomonas aeruginosa by peroxisome proliferator-activated receptor gamma. Infect. Immun. 84, 1975–1985 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Almeida, P. E., Carneiro, A. B., Silva, A. R. & Bozza, P. T. PPARγ expression and function in mycobacterial infection: roles in lipid metabolism, immunity, and bacterial killing. PPAR Res. 2012, 383829 (2012).

    PubMed  PubMed Central  Google Scholar 

  124. Guirado, E. et al. Deletion of PPARγ in lung macrophages provides an immunoprotective response against M. tuberculosis infection in mice. Tuberculosis (Edinb.) 111, 170–177 (2018).

    Article  CAS  Google Scholar 

  125. Kim, Y. S. et al. PPAR-α activation mediates innate host defense through induction of TFEB and lipid catabolism. J. Immunol. 198, 3283–3295 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Salamon, H. et al. Cutting edge: vitamin D regulates lipid metabolism in Mycobacterium tuberculosis infection. J. Immunol. 193, 30–34 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Arts, R. J. W. et al. Immunometabolic pathways in BCG-induced trained immunity. Cell Rep. 17, 2562–2571 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bekkering, S. et al. Metabolic induction of trained immunity through the mevalonate pathway. Cell 172, 135–146 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Mitroulis, I. et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172, 147–161 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kaufmann, E. et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172, 176–190 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Roostalu, J., Joers, A., Luidalepp, H., Kaldalu, N. & Tenson, T. Cell division in Escherichia coli cultures monitored at single cell resolution. BMC Microbiol. 8, 68 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Terskikh, A. et al. “Fluorescent timer”: protein that changes color with time. Science 290, 1585–1588 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Reyes-Lamothe, R., Sherratt, D. J. & Leake, M. C. Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science 328, 498–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Abramovitch, R. B., Rohde, K. H., Hsu, F. F. & Russell, D. G. aprABC: a Mycobacterium tuberculosis complex-specific locus that modulates pH-driven adaptation to the macrophage phagosome. Mol. Microbiol. 80, 678–694 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Miesenbock, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. Vandal, O. H., Pierini, L. M., Schnappinger, D., Nathan, C. F. & Ehrt, S. A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis. Nat. Med. 14, 849–854 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gierahn, T. M. et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat. Methods 14, 395–398 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Shah-Simpson, S., Pereira, C. F., Dumoulin, P. C., Caradonna, K. L. & Burleigh, B. A. Bioenergetic profiling of Trypanosoma cruzi life stages using Seahorse extracellular flux technology. Mol. Biochem. Parasitol. 208, 91–95 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Kloehn, J. et al. Using metabolomics to dissect host-parasite interactions. Curr. Opin. Microbiol. 32, 59–65 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Saunders, E. C., Naderer, T., Chambers, J., Landfear, S. M. & McConville, M. J. Leishmania mexicana can utilize amino acids as major carbon sources in macrophages but not in animal models. Mol. Microbiol. 108, 143–158 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Goldman-Pinkovich, A. et al. An arginine deprivation response pathway is induced in leishmania during macrophage invasion. PLOS Pathog. 12, e1005494 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Li, Y. et al. Transcriptome remodeling in Trypanosoma cruzi and human cells during intracellular infection. PLOS Pathog. 12, e1005511 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Shah-Simpson, S., Lentini, G., Dumoulin, P. C. & Burleigh, B. A. Modulation of host central carbon metabolism and in situ glucose uptake by intracellular Trypanosoma cruzi amastigotes. PLOS Pathog. 13, e1006747 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Blume, M. et al. A Toxoplasma gondii gluconeogenic enzyme contributes to robust central carbon metabolism and is essential for replication and virulence. Cell Host Microbe 18, 210–220 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Jacot, D., Waller, R. F., Soldati-Favre, D., MacPherson, D. A. & MacRae, J. I. Apicomplexan energy metabolism: carbon source promiscuity and the quiescence hyperbole. Trends Parasitol. 32, 56–70 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Jensen, K. D. et al. Toxoplasma polymorphic effectors determine macrophage polarization and intestinal inflammation. Cell Host Microbe 9, 472–483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Leroux, L. P. et al. The protozoan parasite Toxoplasma gondii selectively reprograms the host cell translatome. Infect. Immun. 86, e00244 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Barelle, C. J. et al. Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell. Microbiol. 8, 961–971 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lorenz, M. C. & Fink, G. R. The glyoxylate cycle is required for fungal virulence. Nature 412, 83–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Osborne, S. E. et al. Type I interferon promotes cell-to-cell spread of Listeria monocytogenes. Cell. Microbiol. 19, e12660 (2017).

    Article  CAS  Google Scholar 

  151. Harouz, H. et al. Shigella flexneri targets the HP1gamma subcode through the phosphothreonine lyase OspF. EMBO J. 33, 2606–2622 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kentner, D. et al. Shigella reroutes host cell central metabolism to obtain high-flux nutrient supply for vigorous intracellular growth. Proc. Natl Acad. Sci. USA 111, 9929–9934 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Waligora, E. A. et al. Role of intracellular carbon metabolism pathways in Shigella flexneri virulence. Infect. Immun. 82, 2746–2755 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Calverley, M., Erickson, S., Read, A. J. & Harmsen, A. G. Resident alveolar macrophages are susceptible to and permissive of Coxiella burnetii infection. PLOS ONE 7, e51941 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Graham, J. G. et al. Virulent Coxiella burnetii pathotypes productively infect primary human alveolar macrophages. Cell. Microbiol. 15, 1012–1025 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hauslein, I. et al. Multiple substrate usage of Coxiella burnetii to feed a bipartite metabolic network. Front. Cell. Infect. Microbiol. 7, 285 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Mulye, M., Zapata, B. & Gilk, S. D. Altering lipid droplet homeostasis affects Coxiella burnetii intracellular growth. PLOS ONE 13, e0192215 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Hauslein, I., Manske, C., Goebel, W., Eisenreich, W. & Hilbi, H. Pathway analysis using 13C-glycerol and other carbon tracers reveals a bipartite metabolism of Legionella pneumophila. Mol. Microbiol. 100, 229–246 (2016).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

D.G.R., L.H. and B.C.V. acknowledge the support of the National Institutes of Health, USA, and the Bill and Melinda Gates Foundation.

Reviewer information

Nature Reviews Immunology thanks K. Fitzgerald, C. Sassetti and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

D.G.R. researched data for the article. All authors contributed to discussing content and writing and editing the manuscript.

Corresponding author

Correspondence to David G. Russell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Foamy macrophages

Macrophages with cytosolic lipid droplets containing cholesterol, cholesterol ester and triacylglycerol, which are frequently induced by chronic pro-inflammatory stimuli.

M1 and M2 macrophages

M1 and M2 are classifications historically used to define macrophages activated in vitro as pro-inflammatory (when classically activated with IFNγ and lipopolysaccharide) or as anti-inflammatory (when alternatively activated with IL-4 or IL-10), respectively. However, in vivo, macrophages are highly specialized, transcriptomically dynamic and extremely heterogeneous with regards to their phenotypes and functions, which are continuously shaped by their tissue microenvironment. Therefore, the M1 or M2 classification is too simplistic to explain the true nature of in vivo macrophages, although these terms are still often used to indicate whether the macrophages in question are more pro-inflammatory or anti-inflammatory.

Dual RNA sequencing

(Dual RNA-seq). A transcriptional profiling technique that enables simultaneous acquisition of the expression levels of mRNA transcripts in both the host cell and the pathogen.

Tricarboxylic acid cycle

(TCA cycle). Also known as the citric acid cycle or Krebs cycle. This is a series of enzymatic reactions used in aerobic metabolism to release energy through the oxidation of acetyl-CoA to yield ATP and carbon dioxide.

Succinate dehydrogenase complex

(SDH complex). An enzyme complex found in bacterial cells and in the inner mitochondrial membrane of eukaryotic mitochondria that is active in both the tricarboxylic acid cycle and the electron transport chain.

Bipartite metabolism

A metabolic programme whereby one carbon source is used exclusively as an energy supply while another carbon source, or sources, is used for anabolic processes.

Auxotrophic

Bacteria that are unable to synthesize all of the compounds required for growth are auxotrophic, meaning that they are dependent on their hosts to supply those compounds they cannot synthesize.

Oxygen consumption rate

(OCR). The total oxygen utilization capacity of a biological system under examination against time.

Spare respiratory capacity

(SRC). The difference in the amount of ATP generated by oxidative phosphorylation at basal rate and at maximal respiratory capacity.

Aerobic glycolysis

The conversion of glucose to lactate under conditions where oxygen is present at non-limiting concentrations.

Type IV secretion system

An ATP-dependent bacterial transporter complex that is frequently used to inject bacterial effector proteins or bacterial DNA into eukaryotic and prokaryotic target cells.

Mitochondrial fusion and fission

The fusion or fragmentation of mitochondria in a highly controlled manner, which can regulate the oxidative phosphorylation capacity of eukaryotic cells.

Fitness reporter organisms

Bacterial reporter strains, usually encoding a fluorescent protein-based readout, that are used to assess bacterial fitness with respect to responsiveness to noxious stimuli and replicative capacity.

Ribosomal RNA correlates

Sequences encoding a destabilized or short-lived green fluorescent protein are inserted into ribosomal RNA loci to provide a correlate of ribosomal RNA activity and bacterial replication.

pH-sensitive green fluorescent protein

A green fluorescent protein derivative that exhibits a shift in fluorescence emission wavelength in a pH-dependent manner.

Fluorescence dilution reporter strain

A bacterial strain that can be induced to transiently express a fluorescent protein, which can then be quantified as it becomes diluted when the bacteria divide to infer bacterial replication rates.

TIMER

A re-engineered red fluorescent protein that undergoes a conformational shift, and hence a change in fluorescence emission wavelength, as it ages, thus providing a correlate of replication rates.

‘Clock’ plasmid

An episomal plasmid encoding an antibiotic-resistance marker that is lost from a bacterial population at a fixed rate directly proportional to the rate of replication.

Chromosomal replication complex reporter

A single-stranded DNA-binding protein–green fluorescent protein fusion complex that persists for the duration of chromosomal replication and can be used to assess the replication status of a bacterial population.

Environmentally responsive promoter reporter

A dual-fluorescent bacterial reporter strain that expresses one fluorescent protein constitutively and the other fluorescent protein under the control of promoters that are responsive to specific environmental stimuli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russell, D.G., Huang, L. & VanderVen, B.C. Immunometabolism at the interface between macrophages and pathogens. Nat Rev Immunol 19, 291–304 (2019). https://doi.org/10.1038/s41577-019-0124-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-019-0124-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing