Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Timeline

An early history of T cell-mediated cytotoxicity

Abstract

After 60 years of intense fundamental research into T cell-mediated cytotoxicity, we have gained a detailed knowledge of the cells involved, specific recognition mechanisms and post-recognition perforin–granzyme-based and FAS-based molecular mechanisms. What could not be anticipated at the outset was how discovery of the mechanisms regulating the activation and function of cytotoxic T cells would lead to new developments in cancer immunotherapy. Given the profound recent interest in therapeutic manipulation of cytotoxic T cell responses, it is an opportune time to look back on the early history of the field. This Timeline describes how the early findings occurred and eventually led to current therapeutic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of the history of research on CTLs.
Fig. 2: Chronological scheme of research on the mechanisms of CTL-mediated cytotoxicity.

Similar content being viewed by others

References

  1. Govaerts, A. Cellular antibodies in kidney homotransplantation. J. Immunol. 85, 516–522 (1960).

    PubMed  CAS  Google Scholar 

  2. Rosenau, W. & Moon, H. D. Lysis of homologous cells by sensitized lymphocytes in tissue culture. J. Natl Cancer Inst. 27, 471–483 (1961).

    PubMed  CAS  Google Scholar 

  3. Amos, D. B. The use of simplified systems as an aid to the interpretation of mechanisms of graft rejection. Prog. Allergy 6, 468–538 (1962).

    PubMed  CAS  Google Scholar 

  4. Wilson, D. B. The reaction of immunologically activated lymphoid cells against homologous lymphoid cells against homologous target tissue cells in vitro. J. Cell. Comp. Physiol. 62, 273–286 (1963).

    Article  PubMed  CAS  Google Scholar 

  5. Brunner, K. T., Mauel, J. & Schindler, R. In vitro studies of cell-bound immunity; cloning assay of the cytotoxic action of sensitized lymphoid cells on allogeneic target cells. Immunology 11, 499–506 (1966).

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Friedman, H. Inhibition of antibody plaque formation by sensitized lymphoid cells: rapid indicator of transplantation immunity. Science 145, 607–609 (1964).

    Article  PubMed  CAS  Google Scholar 

  7. Granger, G. A. & Weiser, R. S. Homograft target cells: specific destruction in vitro by contact interaction with immune macrophages. Science 145, 1427–1429 (1964).

    Article  PubMed  CAS  Google Scholar 

  8. Möller, E. Antagonistic effects of humoral isoantibodies on the in vitro cytotoxicity of immune lymphoid cells. J. Exp. Med. 122, 11–23 (1965).

    Article  PubMed Central  Google Scholar 

  9. Stuart, A. E. The cytotoxic effect of heterologous lymphoid cells. Lancet 2, 180–182 (1962).

    Article  PubMed  CAS  Google Scholar 

  10. Granger, G. A. & Williams, T. W. Lymphocyte cytotoxicity in vitro: activation and release of a cytotoxic factor. Nature 218, 1253–1254 (1968).

    Article  PubMed  CAS  Google Scholar 

  11. Ruddle, N. H. & Waksman, B. H. Cytotoxicity mediated by soluble antigen and lymphocytes in delayed hypersensitivity. III. Analysis of mechanism. J. Exp. Med. 128, 1267–1279 (1968).

    Article  PubMed  CAS  Google Scholar 

  12. Koprowski, H. & Fernandes, M. V. Autosensitization reaction in vitro. Contactual agglutination of sensitized lymph node cells in brain tissue culture accompanied by destruction of glial elements. J. Exp. Med. 116, 467–476 (1962).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Berg, O. & Kallen, B. White blood cells from animals with experimental allergic encephalomyelitis tested on glia cells in tissue culture. Acta Pathol. Microbiol. Scand. 58, 33–42 (1963).

    Article  PubMed  CAS  Google Scholar 

  14. Perlmann, P. & Broberger, O. In vitro studies of ulcerative colitis. II. Cytotoxic action of white blood cells from patients on human fetal colon cells. J. Exp. Med. 117, 717–733 (1963).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Vainio, T., Koskimies, O., Perlmann, P., Perlmann, H. & Klein, G. In vitro cytotoxic effect of lymphoid cells from mice immunized with allogeneic tissue. Nature 204, 453–455 (1964).

    Article  PubMed  CAS  Google Scholar 

  16. Sanderson, A. R. Cytotoxic reactions of mouse iso-antisera: preliminary considerations. Br. J. Exp. Pathol. 45, 398–408 (1964).

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Sanderson, A. R. Applications of iso-immune cytolysis using radiolabelled target cells. Nature 204, 250–253 (1964).

    Article  PubMed  CAS  Google Scholar 

  18. Wigzell, H. Quantitative titrations of mouse H-2 antibodies using Cr-51-labelled target cells. Transplantation 3, 423–431 (1965).

    Article  PubMed  CAS  Google Scholar 

  19. Holm, G. & Perlmann, P. Quantitative studies on phytohaemagglutinin-induced cytotoxicity by human lymphocytes against homologous cells in tissue culture. Immunology 12, 525–536 (1967).

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Brunner, K. T., Mauel, J., Cerottini, J.-C. & Chapuis, B. Quantitative assay of the lytic action of immune lymphoid cells on 51Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology 14, 181–196 (1968).

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Henry, C. M., Hollville, E. & Martin, S. J. Measuring apoptosis by microscopy and flow cytometry. Methods 61, 90–97 (2013).

    Article  PubMed  CAS  Google Scholar 

  22. Frick, M. et al. Distinct patterns of cytolytic T cell activation by different tumour cells revealed by Ca2+ signalling and granule mobilization. Immunology 150, 199–212 (2017).

    Article  PubMed  CAS  Google Scholar 

  23. Vanden Berghe, T. et al. Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods 61, 117–129 (2013).

    Article  PubMed  CAS  Google Scholar 

  24. Perlmann, P. & Holm, G. Cytotoxic effects of lymphoid cells in vitro. Adv. Immunol. 11, 117–193 (1969).

    Article  PubMed  CAS  Google Scholar 

  25. Cerottini, J.-C., Nordin, A. A. & Brunner, K. T. Specific in vitro cytotoxicity of thymus-derived lymphocytes sensitized to alloantigens. Nature 228, 1308–1309 (1970).

    Article  PubMed  CAS  Google Scholar 

  26. Lonai, P., Clark, W. R. & Feldman, M. Participation of theta-bearing cell in an in vitro assay of transplantation immunity. Nature 229, 566–567 (1971).

    Article  PubMed  CAS  Google Scholar 

  27. Golstein, P. & Blomgren, H. Further evidence for autonomy of T cells mediating specific in vitro cytotoxicity: efficiency of very small amounts of highly purified T cells. Cell. Immunol. 9, 127–141 (1973).

    Article  PubMed  CAS  Google Scholar 

  28. Golstein, P., Wigzell, H., Blomgren, H. & Svedmyr, E. A. Cells mediating specific in vitro cytotoxicity. II. Probable autonomy of thymus-processed lymphocytes (T cells) for the killing of allogeneic target cells. J. Exp. Med. 135, 890–906 (1972).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Cantor, H. & Boyse, E. A. Functional subclasses of T-lymphocytes bearing different Ly antigens. I. The generation of functionally distinct T cell subclasses is a differentiative process independent of antigen. J. Exp. Med. 141, 1376–1389 (1975).

    Article  PubMed  CAS  Google Scholar 

  30. Golstein, P., Wigzell, H., Blomgren, H. & Svedmyr, E. A. J. Autonomy of thymus-processed lymphocytes (T cells) for their education into cytotoxic T cells. Eur. J. Immunol. 2, 498–501 (1972).

    Article  PubMed  CAS  Google Scholar 

  31. Sprent, J. & Miller, J. F. Activation of thymus cells by histocompatibility antigens. Nat. New Biol. 234, 195–198 (1971).

    Article  PubMed  CAS  Google Scholar 

  32. Blomgren, H. & Svedmyr, E. In vitro stimulation of mouse thymus cells by PHA and allogeneic cells. Cell. Immunol. 2, 285–299 (1971).

    Article  PubMed  CAS  Google Scholar 

  33. Lohmann-Matthes, M. L. & Fischer, H. Specific cytotoxicity of a mouse thymocyte population sensitized in vitro against H-2 alloantigens. Eur. J. Immunol. 2, 290–292 (1972).

    Article  PubMed  CAS  Google Scholar 

  34. Crone, M., Koch, C. & Simonsen, M. The elusive T cell receptor. Transplant. Rev. 10, 36–56 (1972).

    PubMed  CAS  Google Scholar 

  35. Wigzell, H. & Andersson, B. Cell separation on antigen-coated columns. Elimination of high rate antibody-forming cells and immunological memory cells. J. Exp. Med. 129, 23–36 (1969).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wigzell, H. Specific fractionation of immunocompetent cells. Transplant. Rev. 5, 76–104 (1970).

    PubMed  CAS  Google Scholar 

  37. Kindred, B. & Shreffler, D. C. H-2 dependence of co-operation between T and B cells in vivo. J. Immunol. 109, 940–943 (1972).

    PubMed  CAS  Google Scholar 

  38. Katz, D. H., Hamaoka, T., Dorf, M. E. & Benacerraf, B. Cell interactions between histoincompatible T and B lymphocytes. The H-2 gene complex determines successful physiologic lymphocyte interactions. Proc. Natl Acad. Sci. USA 70, 2624–2628 (1973).

    Article  PubMed  CAS  Google Scholar 

  39. Shearer, G. M. Cell-mediated cytotoxicity to trinitrophenyl-modified syngeneic lymphocytes. Eur. J. Immunol. 4, 527–533 (1974).

    Article  PubMed  CAS  Google Scholar 

  40. Zinkernagel, R. M. & Doherty, P. C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248, 701–702 (1974).

    Article  PubMed  CAS  Google Scholar 

  41. Brondz, B. D. Interaction of immune lymphocytes in vitro with normal and neoplastic tissue cells. Folia Biol. 10, 164–175 (1964).

    CAS  Google Scholar 

  42. Brondz, B. D. Complex specificity of immune lymphocytes in allogeneic cell cultures. Folia Biol. 14, 115–131 (1968).

    CAS  Google Scholar 

  43. Brondz, B. D. & Snegirova, A. E. Interaction of immune lymphocytes with the mixtures of target cells possessing selected specificities of the H-2 immunizing allele. Immunology 20, 457–468 (1971).

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Brondz, B. D. Lymphocyte receptors and mechanisms of in vitro cell-mediated immune reactions. Transplant. Rev. 10, 112–151 (1972).

    PubMed  CAS  Google Scholar 

  45. Golstein, P., Svedmyr, E. A. J. & Wigzell, H. Cells mediating specific in vitro cytotoxicity. I. Detection of receptor-bearing lymphocytes. J. Exp. Med. 134, 1385–1402 (1971).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Berke, G. & Levey, R. H. Cellular immunoabsorbents in transplantation immunity. Specific in vitro deletion and recovery of mouse lymphoid cells sensitized against allogeneic tumors. J. Exp. Med. 135, 972–984 (1972).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Altman, A., Cohen, I. R. & Feldman, M. Normal T cell receptors for alloantigens. Cell. Immunol. 7, 134–142 (1973).

    Article  PubMed  CAS  Google Scholar 

  48. Zagury, D., Bernard, J., Thiernesse, N., Feldman, M. & Berke, G. Isolation and characterization of individual functionally reactive cytotoxic T lymphocytes: conjugation, killing and recycling at the single cell level. Eur. J. Immunol. 5, 818–822 (1975).

    Article  Google Scholar 

  49. Berke, G., Sullivan, K. A. & Amos, B. Rejection of ascites tumor allografts. I. Isolation, characterization, and in vitro reactivity of peritoneal lymphoid effector cells from BALB/c mice immune to EL4 leukosis. J. Exp. Med. 135, 1334–1350 (1972).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ax, W., Malchow, H., Zeiss, I. & Fischer, H. The behaviour of lymphocytes in the process of target cell destruction in vitro. Exp. Cell Res. 53, 108–116 (1968).

    Article  PubMed  CAS  Google Scholar 

  51. Koren, H. S., Ax, W. & Freund-Moelbert, E. Morphological observations on the contact-induced lysis of target cells. Eur. J. Immunol. 3, 32–37 (1973).

    Article  PubMed  CAS  Google Scholar 

  52. Sanderson, C. J. The mechanism of T cell mediated cytotoxicity. II. Morphological studies of cell death by time-lapse microcinematography. Proc. R. Soc. Lond. B. Biol. Sci. 192, 241–255 (1976).

    Article  PubMed  CAS  Google Scholar 

  53. Kerr, J. F. R., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Golstein, P. Sensitivity of cytotoxic T cells to T cell-mediated cytotoxicity. Nature 252, 81–83 (1974).

    Article  PubMed  CAS  Google Scholar 

  55. Wagner, H. & Röllinghoff, M. T cell-mediated cytotoxicity: discrimination between antigen recognition, lethal hit and cytolysis phase. Eur. J. Immunol. 4, 745–750 (1974).

    Article  PubMed  CAS  Google Scholar 

  56. Gately, M. K. & Martz, E. Early steps in specific tumor cell lysis by sensitized mouse T lymphocytes. III. Resolution of two distinct roles for calcium in the cytolytic process. J. Immunol. 122, 482–489 (1979).

    PubMed  CAS  Google Scholar 

  57. Cerottini, J.-C. & Brunner, K. T. Cell-mediated cytotoxicity, allograft rejection, and tumor immunity. Adv. Immunol. 18, 67–132 (1974).

    Article  PubMed  CAS  Google Scholar 

  58. Henney, C. S. T cell-mediated cytolysis: an overview of some current issues. Contemp. Top. Immunobiol. 7, 245–272 (1977).

    Article  PubMed  CAS  Google Scholar 

  59. Martz, E. Mechanism of specific tumor-cell lysis by alloimmune T lymphocytes: resolution and characterization of discrete steps in the cellular interaction. Contemp. Top. Immunobiol. 7, 301–361 (1977).

    Article  PubMed  CAS  Google Scholar 

  60. Golstein, P. & Smith, E. T. Mechanism of T cell-mediated cytolysis: the lethal hit stage. Contemp. Top. Immunobiol. 7, 273–300 (1977).

    Article  PubMed  CAS  Google Scholar 

  61. Sanderson, C. J. The mechanism of lymphocyte-mediated cytotoxicity. Biol. Rev. Camb. Philos. Soc. 56, 153–197 (1981).

    Article  PubMed  CAS  Google Scholar 

  62. Bonavida, B. et al. Molecular interactions in T cell-mediated cytotoxicity. Immunol. Rev. 72, 119–141 (1983).

    Article  PubMed  CAS  Google Scholar 

  63. Russell, J. H. Internal disintegration model of cytotoxic lymphocyte-induced target damage. Immunol. Rev. 72, 97–118 (1983).

    Article  PubMed  CAS  Google Scholar 

  64. Martz, E., Heagy, W. & Gromkowski, S. H. The mechanism of CTL-mediated killing: monoclonal antibody analysis of the roles of killer and target-cell membrane proteins. Immunol. Rev. 72, 73–96 (1983).

    Article  PubMed  CAS  Google Scholar 

  65. Berke, G. Cytotoxic T-lymphocytes. How do they function? Immunol. Rev. 72, 5–42 (1983).

    Article  PubMed  CAS  Google Scholar 

  66. Baker, P. E., Gillis, S. & Smith, K. A. Monoclonal cytolytic T cell lines. J. Exp. Med. 149, 273–278 (1979).

    Article  PubMed  CAS  Google Scholar 

  67. Nabholz, M. et al. Established murine cytolytic T cell lines as tools for a somatic cell genetic analysis of T cell functions. Immunol. Rev. 51, 125–156 (1980).

    Article  PubMed  CAS  Google Scholar 

  68. Albert, F., Buferne, M., Boyer, C. & Schmitt-Verhulst, A.-M. Interactions between MHC-encoded products and cloned T cells. I. Fine specificity for induction of proliferation and lysis. Immunogenetics 16, 533–549 (1982).

    Article  PubMed  CAS  Google Scholar 

  69. Dourmashkin, R. R., Deteix, P., Simone, C. B. & Henkart, P. Electron microscopic demonstration of lesions in target cell membranes associated with antibody-dependent cellular cytotoxicity. Clin. Exp. Immunol. 42, 554–560 (1980).

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Dennert, G. & Podack, E. R. Cytolysis by H-2-specific T killer cells. Assembly of tubular complexes on target membranes. J. Exp. Med. 157, 1483–1495 (1983).

    Article  PubMed  CAS  Google Scholar 

  71. Criado, M., Lindstrom, J. M., Anderson, C. G. & Dennert, G. Cytotoxic granules from killer cells: specificity of granules and insertion of channels of defined size into target membranes. J. Immunol. 135, 4245–4251 (1985).

    PubMed  CAS  Google Scholar 

  72. Podack, E. R. & Konigsberg, P. J. Cytolytic T cell granules. Isolation, structural, biochemical, and functional characterization. J. Exp. Med. 160, 695–710 (1984).

    Article  PubMed  CAS  Google Scholar 

  73. Henkart, P. A., Millard, P. J., Reynolds, C. W. & Henkart, M. P. Cytolytic activity of purified cytoplasmic granules from cytotoxic rat large granular lymphocyte tumors. J. Exp. Med. 160, 75–93 (1984).

    Article  PubMed  CAS  Google Scholar 

  74. Podack, E. R., Young, J. D.-E. & Cohn, Z. A. Isolation and biochemical and functional characterization of perforin 1 from cytolytic T cell granules. Proc. Natl Acad. Sci. USA 82, 8629–8633 (1985).

    Article  PubMed  CAS  Google Scholar 

  75. Henkart, P. A. Mechanism of lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol. 3, 31–58 (1985).

    Article  PubMed  CAS  Google Scholar 

  76. Masson, D. & Tschopp, J. Isolation of a lytic, pore-forming protein (perforin) from cytolytic T lymphocytes. J. Biol. Chem. 260, 9069–9072 (1985).

    PubMed  CAS  Google Scholar 

  77. Young, J. D.-E., Hengartner, H., Podack, E. R. & Cohn, Z. A. Purification and characterization of a cytolytic pore-forming protein from granules of cloned lymphocytes with natural killer activity. Cell 44, 849–859 (1986).

    Article  PubMed  CAS  Google Scholar 

  78. Shinkai, Y., Takio, K. & Okumura, K. Homology of perforin to the ninth component of complement (C9). Nature 334, 525–527 (1988).

    Article  PubMed  CAS  Google Scholar 

  79. Acha-Orbea, H., Scarpellino, L., Hertig, S., Dupuis, M. & Tschopp, J. Inhibition of lymphocyte mediated cytotoxicity by perforin antisense oligonucleotides. EMBO J. 9, 3815–3819 (1990).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kägi, D. et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37 (1994).

    Article  PubMed  Google Scholar 

  81. Lowin, B., Beermann, F., Schmidt, A. & Tschopp, J. A null mutation in the perforin gene impairs cytolytic T lymphocyte- and natural killer cell-mediated cytotoxicity. Proc. Natl Acad. Sci. USA 91, 11571–11575 (1994).

    Article  PubMed  CAS  Google Scholar 

  82. Chang, T. W. & Eisen, H. N. Effects of N α-tosyl-L-lysyl-chloromethylketone on the activity of cytotoxic T lymphocytes. J. Immunol. 124, 1028–1033 (1980).

    PubMed  CAS  Google Scholar 

  83. Redelman, D. & Hudig, D. The mechanism of cell-mediated cytotoxicity. I. Killing by murine cytotoxic T lymphocytes requires cell surface thiols and activated proteases. J. Immunol. 124, 870–878 (1980).

    PubMed  CAS  Google Scholar 

  84. Pasternack, M. S. & Eisen, H. N. A novel serine esterase expressed by cytotoxic T lymphocytes. Nature 314, 743–745 (1985).

    Article  PubMed  CAS  Google Scholar 

  85. Pasternack, M. S., Verret, C. R., Liu, M. A. & Eisen, H. N. Serine esterase in cytolytic T lymphocytes. Nature 322, 740–743 (1986).

    Article  PubMed  CAS  Google Scholar 

  86. Kramer, M. D. et al. Characterization and isolation of a trypsin-like serine protease from a long-term culture cytolytic T cell line and its expression by functionally distinct T cells. J. Immunol. 136, 4644–4651 (1986).

    PubMed  CAS  Google Scholar 

  87. Simon, M. M., Hoschützky, H., Fruth, U., Simon, H.-G. & Kramer, M. D. Purification and characterization of a T cell specific serine proteinase (TSP-1) from cloned cytolytic T lymphocytes. EMBO J. 5, 3267–3274 (1986).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Young, J. D.-E. et al. Isolation and characterization of a serine esterase from cytolytic T cell granules. Cell 47, 183–194 (1986).

    Article  PubMed  CAS  Google Scholar 

  89. Masson, D., Nabholz, M., Estrade, C. & Tschopp, J. Granules of cytolytic T-lymphocytes contain two serine esterases. EMBO J. 5, 1595–1600 (1986).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Masson, D. & Tschopp, J. A family of serine esterases in lytic granules of cytolytic T lymphocytes. Cell 49, 679–685 (1987).

    Article  PubMed  CAS  Google Scholar 

  91. Brunet, J.-F., Denizot, F. & Golstein, P. A differential molecular biology search for genes preferentially expressed in functional T lymphocytes: the CTLA genes. Immunol. Rev. 103, 21–36 (1988).

    Article  PubMed  CAS  Google Scholar 

  92. Brunet, J.-F. et al. The inducible cytotoxic-T-lymphocyte-associated gene transcript CTLA-1 sequence and gene localization to mouse chromosome 14. Nature 322, 268–271 (1986).

    Article  PubMed  CAS  Google Scholar 

  93. Brunet, J.-F. et al. CTLA-1 and CTLA-3 serine-esterase transcripts are detected mostly in cytotoxic cells, but not only and not always. J. Immunol. 138, 4102–4105 (1987).

    PubMed  CAS  Google Scholar 

  94. Gershenfeld, H. K. & Weissman, I. L. Cloning of a cDNA for a T cell-specific serine protease from a cytotoxic T lymphocyte. Science 232, 854–858 (1986).

    Article  PubMed  CAS  Google Scholar 

  95. Lobe, C. G., Finlay, B. B., Paranchych, W., Paetkau, V. H. & Bleackley, R. C. Novel serine proteases encoded by two cytotoxic T lymphocyte-specific genes. Science 232, 858–861 (1986).

    Article  PubMed  CAS  Google Scholar 

  96. Shiver, J. W., Su, L. & Henkart, P. A. Cytotoxicity with target DNA breakdown by rat basophilic leukemia cells expressing both cytolysin and granzyme A. Cell 71, 315–322 (1992).

    Article  PubMed  CAS  Google Scholar 

  97. Shi, L., Kam, C.-M., Powers, J. C., Aebersold, R. & Greenberg, A. H. Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J. Exp. Med. 176, 1521–1529 (1992).

    Article  PubMed  CAS  Google Scholar 

  98. Shi, L., Kraut, R. P., Aebersold, R. & Greenberg, A. H. A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J. Exp. Med. 175, 553–566 (1992).

    Article  PubMed  CAS  Google Scholar 

  99. Chowdhury, D. & Lieberman, J. Death by a thousand cuts: granzyme pathways of programmed cell death. Annu. Rev. Immunol. 26, 389–420 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Ewen, C. L., Kane, K. P. & Bleackley, R. C. A quarter century of granzymes. Cell Death Differ. 19, 28–35 (2012).

    Article  PubMed  CAS  Google Scholar 

  101. Voskoboinik, I., Whisstock, J. C. & Trapani, J. A. Perforin and granzymes: function, dysfunction and human pathology. Nat. Rev. Immunol. 15, 388–400 (2015).

    Article  PubMed  CAS  Google Scholar 

  102. Dotiwala, F. et al. Killer lymphocytes use granulysin, perforin and granzymes to kill intracellular parasites. Nat. Med. 22, 210–216 (2016).

    Article  PubMed  CAS  Google Scholar 

  103. Chiusolo, V. et al. Granzyme B enters the mitochondria in a Sam50-, Tim22- and mtHsp70-dependent manner to induce apoptosis. Cell Death Differ. 24, 747–758 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Berke, G. The cytolytic T lymphocyte and its mode of action. Immunol. Lett. 20, 169–178 (1989).

    Article  PubMed  CAS  Google Scholar 

  105. Berke, G. T cell-mediated cytotoxicity. Curr. Opin. Immunol. 3, 320–325 (1991).

    Article  PubMed  CAS  Google Scholar 

  106. MacLennan, I. C. M., Gotch, F. M. & Golstein, P. Limited specific T cell mediated cytolysis in the absence of extracellular Ca2+. Immunology 39, 109–117 (1980).

    PubMed  PubMed Central  CAS  Google Scholar 

  107. Tirosh, R. & Berke, G. T lymphocyte-mediated cytolysis as an excitatory process of the target. I. Evidence that the target may be the site of Ca2+ action. Cell. Immunol. 95, 113–123 (1985).

    Article  PubMed  CAS  Google Scholar 

  108. Trenn, G., Takayama, H. & Sitkovsky, M. V. Exocytosis of cytolytic granules may not be required for target cell lysis by cytotoxic T-lymphocytes. Nature 330, 72–74 (1987).

    Article  PubMed  CAS  Google Scholar 

  109. Ostergaard, H. L., Kane, K. P., Mescher, M. F. & Clark, W. R. Cytotoxic T lymphocyte mediated lysis without release of serine esterase. Nature 330, 71–72 (1987).

    Article  PubMed  CAS  Google Scholar 

  110. Young, J. D.-E., Clark, W. R., Liu, C.-C. & Cohn, Z. A. A calcium- and perforin-independent pathway of killing mediated by murine cytolytic lymphocytes. J. Exp. Med. 166, 1894–1899 (1987).

    Article  PubMed  CAS  Google Scholar 

  111. Golstein, P. Cytotoxic-T cell melodrama. Nature 327, 12 (1987).

    Article  PubMed  CAS  Google Scholar 

  112. Conzelmann, A., Corthésy, P., Cianfriglia, M., Silva, A. & Nabholz, M. Hybrids between rat lymphoma and mouse T cells with inducible cytolytic activity. Nature 298, 170–172 (1982).

    Article  PubMed  CAS  Google Scholar 

  113. Golstein, P., Mattéi, M.-G., Foa, C. & Luciani, M.-F. in Apoptosis and the Immune Response (ed. Gregory, C. D.) 143–168 (John Wiley and Sons, New York, 1995).

  114. Rouvier, E., Luciani, M.-F. & Golstein, P. Fas involvement in Ca2+-independent T cell-mediated cytotoxicity. J. Exp. Med. 177, 195–200 (1993).

    Article  PubMed  CAS  Google Scholar 

  115. Watanabe-Fukunaga, R., Brannan, C. I., Copeland, N. G., Jenkins, N. A. & Nagata, S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314–317 (1992).

    Article  PubMed  CAS  Google Scholar 

  116. Yonehara, S., Ishii, A. & Yonehara, M. A cell-killing monoclonal antibody (Anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. Exp. Med. 169, 1747–1756 (1989).

    Article  PubMed  CAS  Google Scholar 

  117. Trauth, B. C. et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245, 301–305 (1989).

    Article  PubMed  CAS  Google Scholar 

  118. Kägi, D. et al. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 265, 528–530 (1994).

    Article  PubMed  Google Scholar 

  119. Lowin, B., Hahne, M., Mattmann, C. & Tschopp, J. Cytolytic T cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 370, 650–652 (1994).

    Article  PubMed  CAS  Google Scholar 

  120. Walsh, C. M. et al. Immune function in mice lacking the perforin gene. Proc. Natl Acad. Sci. USA 91, 10854–10858 (1994).

    Article  PubMed  CAS  Google Scholar 

  121. Kojima, H. et al. Two distinct pathways of specific killing revealed by perforin mutant cytotoxic T lymphocytes. Immunity 1, 357–364 (1994).

    Article  PubMed  CAS  Google Scholar 

  122. Suda, T., Takahashi, T., Golstein, P. & Nagata, S. Molecular cloning and expression of the Fas ligand: a novel member of the tumor necrosis factor family. Cell 75, 1169–1178 (1993).

    Article  PubMed  CAS  Google Scholar 

  123. Nagata, S. & Golstein, P. The Fas death factor. Science 267, 1449–1456 (1995).

    Article  PubMed  CAS  Google Scholar 

  124. Krammer, P. H. CD95’s deadly mission in the immune system. Nature 407, 789–795 (2000).

    Article  PubMed  CAS  Google Scholar 

  125. Glimcher, L. H., Townsend, M. J., Sullivan, B. M. & Lord, G. M. Recent developments in the transcriptional regulation of cytolytic effector cells. Nat. Rev. Immunol. 4, 900–911 (2004).

    Article  PubMed  CAS  Google Scholar 

  126. Man, K. & Kallies, A. Synchronizing transcriptional control of T cell metabolism and function. Nat. Rev. Immunol. 15, 574–584 (2015).

    Article  PubMed  CAS  Google Scholar 

  127. Xin, A. et al. A molecular threshold for effector CD8( + ) T cell differentiation controlled by transcription factors Blimp-1 and T-bet. Nat. Immunol. 17, 422–432 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Ahrends, T. et al. CD4 + T cell help confers a cytotoxic T cell effector program including coinhibitory receptor downregulation and increased tissue invasiveness. Immunity 47, 848–861 (2017).

    Article  PubMed  CAS  Google Scholar 

  129. Burkhardt, J. K., Hester, S., Lapham, C. K. & Argon, Y. The lytic granules of natural killer cells are dual-function organelles combining secretory and pre-lysosomal compartments. J. Cell Biol. 111, 2327–2340 (1990).

    Article  PubMed  CAS  Google Scholar 

  130. Peters, P. J. et al. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J. Exp. Med. 173, 1099–1109 (1991).

    Article  PubMed  CAS  Google Scholar 

  131. Stepp, S. E. et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis. Science 286, 1957–1959 (1999).

    Article  PubMed  CAS  Google Scholar 

  132. Pachlopnik Schmid, J. et al. Inherited defects in lymphocyte cytotoxic activity. Immunol. Rev. 235, 10–23 (2010).

    Article  PubMed  CAS  Google Scholar 

  133. Poenie, M., Tsien, R. Y. & Schmitt-Verhulst, A.-M. Sequential activation and lethal hit measured by (Ca2+)i in individual cytolytic T cells and targets. EMBO J. 6, 2223–2232 (1987).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Bykovskaya, S. N., Rytenko, A. N., Rauschenbach, M. O. & Bykovsky, A. F. Ultrastructural alteration of cytolytic T lymphocytes following their interaction with target cells. I. Hypertrophy and change of orientation of the golgi apparatus. Cell. Immunol. 40, 164–174 (1978).

    Article  Google Scholar 

  135. Geiger, B., Rosen, D. & Berke, G. Spatial relationships of microtubule-organizing centers and the contact area of cytotoxic T lymphocytes and target cells. J. Cell Biol. 95, 137–143 (1982).

    Article  PubMed  CAS  Google Scholar 

  136. Kupfer, A., Dennert, G. & Singer, S. J. Polarization of the Golgi apparatus and the microtubule-organizing center within cloned natural killer cells bound to their targets. Proc. Natl Acad. Sci. USA 80, 7224–7228 (1983).

    Article  PubMed  CAS  Google Scholar 

  137. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  PubMed  CAS  Google Scholar 

  138. Stinchcombe, J. C., Bossi, G., Booth, S. & Griffiths, G. M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001).

    Article  PubMed  CAS  Google Scholar 

  139. Stinchcombe, J. C., Majorovits, E., Bossi, G., Fuller, S. & Griffiths, G. M. Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443, 462–465 (2006).

    Article  PubMed  CAS  Google Scholar 

  140. Lopez, J. A. et al. Perforin forms transient pores on the target cell plasma membrane to facilitate rapid access of granzymes during killer cell attack. Blood 121, 2659–2668 (2013).

    Article  PubMed  CAS  Google Scholar 

  141. Stenger, S. et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282, 121–125 (1998).

    Article  PubMed  CAS  Google Scholar 

  142. Ochoa, M. T. et al. T cell release of granulysin contributes to host defense in leprosy. Nat. Med. 7, 174–179 (2001).

    Article  PubMed  CAS  Google Scholar 

  143. Stegelmann, F. et al. Coordinate expression of CC chemokine ligand 5, granulysin, and perforin in CD8+ T cells provides a host defense mechanism against Mycobacterium tuberculosis. J. Immunol. 175, 7474–7483 (2005).

    Article  PubMed  CAS  Google Scholar 

  144. Dotiwala, F. et al. Granzyme B disrupts central metabolism and protein synthesis in bacteria to promote an immune cell death program. Cell 171, 1125–1137 (2017).

    Article  PubMed  CAS  Google Scholar 

  145. Tanaka, M., Itai, T., Adachi, M. & Nagata, S. Downregulation of Fas ligand by shedding. Nat. Med. 4, 31–36 (1998).

    Article  PubMed  CAS  Google Scholar 

  146. Bossi, G. & Griffiths, G. M. Degranulation plays an essential part in regulating cell surface expression of Fas ligand in T cells and natural killer cells. Nat. Med. 5, 90–96 (1999).

    Article  PubMed  CAS  Google Scholar 

  147. Zuccato, E. et al. Sorting of Fas ligand to secretory lysosomes is regulated by mono-ubiquitylation and phosphorylation. J. Cell Sci. 120, 191–199 (2007).

    Article  PubMed  CAS  Google Scholar 

  148. Martinez-Lorenzo, M. J. et al. Activated human T cells release bioactive Fas ligand and APO2 ligand in microvesicles. J. Immunol. 163, 1274–1281 (1999).

    PubMed  CAS  Google Scholar 

  149. Lee, J., Dieckmann, N. M., Edgar, J., Griffiths, G. M. & Siegel, R. M. Fas Ligand localizes to intraluminal vesicles within NK cell cytolytic granules, delivering membrane-bound FasL to the immune synapse. Immun. Inflamm. Dis. https://doi.org/10.1002/iid3.219 (2018).

  150. Schneider, P. et al. Characterization of Fas (Apo-1, CD95)-Fas ligand interaction. J. Biol. Chem. 272, 18827–18833 (1997).

    Article  PubMed  CAS  Google Scholar 

  151. Boldin, M. P. et al. A novel protein that interacts with the death domains of Fas/APO1 contains a sequence motif related to the death domain. J. Biol. Chem. 270, 7795–7798 (1995).

    Article  PubMed  CAS  Google Scholar 

  152. Muzio, M. et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817–827 (1996).

    Article  PubMed  CAS  Google Scholar 

  153. Hueber, A. O., Bernard, A. M., Herincs, Z., Couzinet, A. & He, H. T. An essential role for membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes. EMBO Rep. 3, 190–196 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Rossin, A. et al. Fas palmitoylation by the palmitoyl acyltransferase DHHC7 regulates Fas stability. Cell Death Differ. 22, 643–653 (2015).

    Article  PubMed  CAS  Google Scholar 

  155. Desbarats, J. & Newell, M. K. Fas engagement accelerates liver regeneration after partial hepatectomy. Nat. Med. 6, 920–923 (2000).

    Article  PubMed  CAS  Google Scholar 

  156. Peter, M. E. et al. The CD95 receptor: apoptosis revisited. Cell 129, 447–450 (2007).

    Article  PubMed  CAS  Google Scholar 

  157. Yamada, A., Arakaki, R., Saito, M., Kudo, Y. & Ishimaru, N. Dual role of Fas/FasL-mediated signal in peripheral immune tolerance. Front. Immunol. 8, 403 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Le Gallo, M., Poissonnier, A., Blanco, P. & Legembre, P. CD95/Fas, non-apoptotic signaling pathways, and kinases. Front. Immunol. 8, 1216 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Rieux-Laucat, F. et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268, 1347–1349 (1995).

    Article  PubMed  CAS  Google Scholar 

  160. Balomenos, D., Shokri, R., Daszkiewicz, L., Vazquez-Mateo, C. & Martinez, A. C. On how Fas apoptosis-independent pathways drive T cell hyperproliferation and lymphadenopathy in lpr mice. Front. Immunol. 8, 237 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Van den Broek, M. F. et al. Decreased tumor surveillance in perforin-deficient mice. J. Exp. Med. 184, 1781–1790 (1996).

    Article  PubMed  Google Scholar 

  162. Smyth, M. J. et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med. 192, 755–760 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Rosenberg, S. A. & Lotze, M. T. Cancer immunotherapy using interleukin-2 and interleukin-2-activated lymphocytes. Annu. Rev. Immunol. 4, 681–709 (1986).

    Article  PubMed  CAS  Google Scholar 

  164. Brunet, J.-F. et al. A new member of the immunoglobulin superfamily - CTLA-4. Nature 328, 267–270 (1987).

    Article  PubMed  CAS  Google Scholar 

  165. Ishida, Y., Agata, Y., Shibahara, K. & Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11, 3887–3895 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995).

    Article  PubMed  CAS  Google Scholar 

  167. Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    Article  PubMed  CAS  Google Scholar 

  168. Kuehn, H. S. et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345, 1623–1627 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Schubert, D. et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat. Med. 20, 1410–1416 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Nishimura, H., Minato, N., Nakano, T. & Honjo, T. Immunological studies on PD-1 deficient mice: implication of PD-1 as a negative regulator for B cell responses. Int. Immunol. 10, 1563–1572 (1998).

    Article  PubMed  CAS  Google Scholar 

  171. Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151 (1999).

    Article  PubMed  CAS  Google Scholar 

  172. Nishimura, H. & Honjo, T. PD-1: an inhibitory immunoreceptor involved in peripheral tolerance. Trends Immunol. 22, 265–268 (2001).

    Article  PubMed  CAS  Google Scholar 

  173. Wei, S. C. et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170, 1120–1133 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  174. Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  PubMed  CAS  Google Scholar 

  176. Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA 99, 12293–12297 (2002).

    Article  PubMed  CAS  Google Scholar 

  177. Blank, C. et al. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res. 64, 1140–1145 (2004).

    Article  PubMed  CAS  Google Scholar 

  178. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Hamid, O. et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369, 134–144 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Sharpe, A. H. Introduction to checkpoint inhibitors and cancer immunotherapy. Immunol. Rev. 276, 5–8 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Wykes, M. N. & Lewin, S. R. Immune checkpoint blockade in infectious diseases. Nat. Rev. Immunol. 18, 91–104 (2018).

    Article  PubMed  CAS  Google Scholar 

  183. Dyck, L. & Mills, K. H. G. Immune checkpoints and their inhibition in cancer and infectious diseases. Eur. J. Immunol. 47, 765–779 (2017).

    Article  PubMed  CAS  Google Scholar 

  184. Linsley, P. S. et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 174, 561–569 (1991).

    Article  PubMed  CAS  Google Scholar 

  185. Adams, A. B., Ford, M. L. & Larsen, C. P. Costimulation blockade in autoimmunity and transplantation: The CD28 pathway. J. Immunol. 197, 2045–2050 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Ceeraz, S., Nowak, E. C., Burns, C. M. & Noelle, R. J. Immune checkpoint receptors in regulating immune reactivity in rheumatic disease. Arthritis Res. Ther. 16, 469 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Lin, H. et al. Review of CTLA4Ig use for allograft immunosuppression. Transplant. Proc. 26, 3200–3201 (1994).

    PubMed  CAS  Google Scholar 

  188. Huber, M., Kemmner, S., Renders, L. & Heemann, U. Should belatacept be the centrepiece of renal transplantation? Nephrol. Dial. Transplant. 31, 1995–2002 (2016).

    Article  PubMed  CAS  Google Scholar 

  189. Sandigursky, S., Silverman, G. J. & Mor, A. Targeting the programmed cell death-1 pathway in rheumatoid arthritis. Autoimmun. Rev. 16, 767–773 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  190. June, C. H. Adoptive T cell therapy for cancer in the clinic. J. Clin. Invest. 117, 1466–1476 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Gross, G., Waks, T. & Eshhar, Z. Expression of immunoglobulin-T cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl Acad. Sci. USA 86, 10024–10028 (1989).

    Article  PubMed  CAS  Google Scholar 

  192. Eshhar, Z., Waks, T., Gross, G. & Schindler, D. G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T cell receptors. Proc. Natl Acad. Sci. USA 90, 720–724 (1993).

    Article  PubMed  CAS  Google Scholar 

  193. Gross, G. & Eshhar, Z. Therapeutic potential of T cell chimeric antigen receptors (CARs) in cancer treatment: counteracting off-tumor toxicities for safe CAR T cell therapy. Annu. Rev. Pharmacol. Toxicol. 56, 59–83 (2016).

    Article  PubMed  CAS  Google Scholar 

  194. Schmidt, H. et al. Effector granules in human T lymphocytes: proteomic evidence for two distinct species of cytotoxic effector vesicles. J. Proteome Res. 10, 1603–1620 (2011).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

P.G. thanks Association pour la Recherche sur le Cancer for support and Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique and Aix Marseille University for institutional support to the Centre d’Immunologie de Marseille-Luminy (CIML). G.M.G. thanks the Wellcome Trust for research funding (grants 103930 and 100140). The authors thank all past and present members of their laboratories for their contributions to this research.

Reviewer information

Nature Reviews Immunology thanks J. Lieberman, J. Sprent and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its content and wrote, reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Pierre Golstein or Gillian M. Griffiths.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

51Cr release assay

An assay that evaluates the percentage of target cells that are lysed by cytotoxic T cells by measuring the proportion of radioactivity released from pre-labelled target cells.

Allogeneic

A term that describes tissues or cells that are of the same species but are not genetically identical.

Antibody plaque formation

The ability of haemolytic antibody-forming lymphocytes to form plaques of lysed red blood cells in agar after being subjected to, for example, cytotoxic T cells.

Clonogenic assays

Assays used to determine the percentage of cells that are able to form colonies in vitro after being subjected to, for example, cytotoxic T cells.

Congenic

A term that describes tissues or cells that genetically differ by only one chromosomal region.

Haemophagocytic lymphohistiocytosis

(HLH). A human autosomal recessive disorder that results from mutation of one of five genes, including the gene encoding perforin, and that leads to T cell hyperproliferation.

Homograft

A graft from a donor of the same species as the recipient.

lpr mice

Mice bearing the lpr mutation of the Fas gene, which leads to a lymphoproliferative phenotype.

Syngeneic

A term that describes tissues or cells that are genetically identical.

Xenogeneic

A term that describes tissues or cells that are of different species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golstein, P., Griffiths, G.M. An early history of T cell-mediated cytotoxicity. Nat Rev Immunol 18, 527–535 (2018). https://doi.org/10.1038/s41577-018-0009-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-018-0009-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing