Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanisms of environmental exposures and human disease

Abstract

A substantial proportion of disease risk for common complex disorders is attributable to environmental exposures and pollutants. An appreciation of how environmental pollutants act on our cells to produce deleterious health effects has led to advances in our understanding of the molecular mechanisms underlying the pathogenesis of chronic diseases, including cancer and cardiovascular, neurodegenerative and respiratory diseases. Here, we discuss emerging research on the interplay of environmental pollutants with the human genome and epigenome. We review evidence showing the environmental impact on gene expression through epigenetic modifications, including DNA methylation, histone modification and non-coding RNAs. We also highlight recent studies that evaluate recently discovered molecular processes through which the environment can exert its effects, including extracellular vesicles, the epitranscriptome and the mitochondrial genome. Finally, we discuss current challenges when studying the exposome — the cumulative measure of environmental influences over the lifespan — and its integration into future environmental health research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The exposome and multi-omic responses.
Fig. 2: Gene–environment interactions have an impact on disease phenotypes.
Fig. 3: Air pollution alters DNA methylation in genes that regulate expression of inflammatory cytokines.
Fig. 4: Environmental stressors affect DNA methylation age.
Fig. 5: Illustrative example of how air pollution can trigger coordinated epigenetic and epitranscriptomic responses that affect human health.
Fig. 6: Inhaled environmental exposures trigger extracellular vesicle signalling that mediates systemic inflammation and disease.

Similar content being viewed by others

References

  1. Landrigan, P. J. et al. The Lancet Commission on pollution and health. Lancet 391, 462–512 (2018).

    Article  PubMed  Google Scholar 

  2. Peters, A., Nawrot, T. S. & Baccarelli, A. A. Hallmarks of environmental insults. Cell 184, 1455–1468 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fuller, R. et al. Pollution and health: a progress update. Lancet Planet. Health 6, e535–e547 (2022).

    Article  PubMed  Google Scholar 

  4. Prüss-Ustün, A. et al. Environmental risks and non-communicable diseases. BMJ 364, l265 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wild, C. P. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. Prev. 14, 1847–1850 (2005).

    Article  CAS  Google Scholar 

  6. Sen, P., Shah, P. P., Nativio, R. & Berger, S. L. Epigenetic mechanisms of longevity and aging. Cell 166, 822–839 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rutledge, J., Oh, H. & Wyss-Coray, T. Measuring biological age using omics data. Nat. Rev. Genet. https://doi.org/10.1038/s41576-022-00511-7 (2022). This review elucidates how epigenomic, transcriptomic and proteomic data can be used to build ageing clocks that measure rates of ageing at a molecular level.

    Article  PubMed  Google Scholar 

  8. Eckhardt, C. M. et al. Predicting risk of lung function impairment and all-cause mortality using a DNA methylation-based classifier of tobacco smoke exposure. Respir. Med. 200, 106896 (2022).

    Article  PubMed  Google Scholar 

  9. Alibhai, F. J. et al. Cellular senescence contributes to age-dependent changes in circulating extracellular vesicle cargo and function. Aging Cell 19, e13103 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cayir, A., Byun, H.-M. & Barrow, T. M. Environmental epitranscriptomics. Environ. Res. 189, 109885 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Teng, P.-C. et al. RNA modifications and epigenetics in modulation of lung cancer and pulmonary diseases. Int. J. Mol. Sci. 22, 10592 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brunst, K. J., Baccarelli, A. A. & Wright, R. J. Integrating mitochondriomics in children’s environmental health. J. Appl. Toxicol. 35, 976–991 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hunter, D. J. Gene-environment interactions in human diseases. Nat. Rev. Genet. 6, 287–298 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Hartiala, J. A., Hilser, J. R., Biswas, S., Lusis, A. J. & Allayee, H. Gene-environment interactions for cardiovascular disease. Curr. Atheroscler. Rep. 23, 75 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Almoguera, B. et al. Identification of four novel loci in asthma in European American and African American populations. Am. J. Respir. Crit. Care Med. 195, 456–463 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Minelli, C. et al. Glutathione-S-transferase genes and asthma phenotypes: a Human Genome Epidemiology (HuGE) systematic review and meta-analysis including unpublished data. Int. J. Epidemiol. 39, 539–562 (2010).

    Article  PubMed  Google Scholar 

  17. Lee, S.-Y. et al. Modification of additive effect between vitamins and ETS on childhood asthma risk according to GSTP1 polymorphism: a cross-sectional study. BMC Pulm. Med. 15, 125 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Muñoz, B. et al. The relationship among IL-13, GSTP1, and CYP1A1 polymorphisms and environmental tobacco smoke in a population of children with asthma in Northern Mexico. Environ. Toxicol. Pharmacol. 33, 226–232 (2012).

    Article  PubMed  Google Scholar 

  19. Dai, X. et al. Do glutathione S-transferase genes modify the link between indoor air pollution and asthma, allergies, and lung function? A systematic review. Curr. Allergy Asthma Rep. 18, 20 (2018).

    Article  PubMed  Google Scholar 

  20. Hoskins, A., Wu, P., Reiss, S. & Dworski, R. Glutathione S-transferase P1 Ile105Val polymorphism modulates allergen-induced airway inflammation in human atopic asthmatics in vivo. Clin. Exp. Allergy 43, 527–534 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Haley, R. W., Kramer, G., Xiao, J., Dever, J. A. & Teiber, J. F. Evaluation of a gene–environment interaction of PON1 and low-level nerve agent exposure with Gulf War illness: a prevalence case–control study drawn from the U.S. Military Health Survey’s national population sample. Environ. Health Perspect. 130, 57001 (2022). This study demonstrates how gene–environment interaction studies can strengthen causal inference in epidemiologic studies and improve our understanding of the pathogenesis of complex or rare diseases.

    Article  PubMed  Google Scholar 

  22. Weisskopf, M. G. Response to ‘Comment on “Evaluation of a gene–environment interaction of PON1 and low-level nerve agent exposure with Gulf War illness: a prevalence case-control study drawn from the U.S. Military Health Survey’s national population sample”. Environ. Health Perspect. 130, 68005 (2022).

    Article  PubMed  Google Scholar 

  23. Glass, D. C. & Sim, M. R. The challenges of exposure assessment in health studies of Gulf War veterans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 627–637 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Smith, P. G. & Day, N. E. The design of case-control studies: the influence of confounding and interaction effects. Int. J. Epidemiol. 13, 356–365 (1984).

    Article  CAS  PubMed  Google Scholar 

  25. Gauderman, W. J. et al. A unified model for the analysis of gene-environment interaction. Am. J. Epidemiol. 188, 760–767 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang, P., Lewinger, J. P., Conti, D., Morrison, J. L. & Gauderman, W. J. Detecting gene-environment interactions for a quantitative trait in a genome-wide association study. Genet. Epidemiol. 40, 394–403 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, H. et al. Genotype-by-environment interactions inferred from genetic effects on phenotypic variability in the UK Biobank. Sci. Adv. 5, eaaw3538 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Carlsten, C. et al. Genes, the environment and personalized medicine: we need to harness both environmental and genetic data to maximize personal and population health. EMBO Rep. 15, 736–739 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Bhutani, N., Burns, D. M. & Blau, H. M. DNA demethylation dynamics. Cell 146, 866–872 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weinberg, D. N. et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 573, 281–286 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, K. et al. Integrated analysis of tissue-specific promoter methylation and gene expression profile in complex diseases. Int. J. Mol. Sci. 21, E5056 (2020).

    Article  Google Scholar 

  34. Yang, X. et al. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 26, 577–590 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang, S. K. et al. Effect of concentration and duration of particulate matter exposure on the transcriptome and DNA methylome of bronchial epithelial cells. Environ. Epigenet 7, dvaa022 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Huff, R. D., Carlsten, C. & Hirota, J. A. An update on immunologic mechanisms in the respiratory mucosa in response to air pollutants. J. Allergy Clin. Immunol. 143, 1989–2001 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Cui, A. et al. VCAM-1-mediated neutrophil infiltration exacerbates ambient fine particle-induced lung injury. Toxicol. Lett. 302, 60–74 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Pope, C. A. et al. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circ. Res. 119, 1204–1214 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kohli, R. M. & Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leclercq, B. et al. Genetic and epigenetic alterations in normal and sensitive COPD-diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM2.5. Environ. Pollut. 230, 163–177 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Rider, C. F. & Carlsten, C. Air pollution and DNA methylation: effects of exposure in humans. Clin. Epigenetics 11, 131 (2019). This review elucidates how air pollution exposure modulates DNA methylation and describes how DNA methylation changes influence the ageing process and disease development.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Carmona, J. J. et al. Short-term airborne particulate matter exposure alters the epigenetic landscape of human genes associated with the mitogen-activated protein kinase network: a cross-sectional study. Environ. Health 13, 94 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liang, Y. et al. TET2 promotes IL-1β expression in J774.1 cell through TLR4/MAPK signaling pathway with demethylation of TAB2 promoter. Mol. Immunol. 126, 136–142 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Chen, R. et al. DNA hypomethylation and its mediation in the effects of fine particulate air pollution on cardiovascular biomarkers: a randomized crossover trial. Environ. Int. 94, 614–619 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Peng, C. et al. Particulate air pollution and fasting blood glucose in nondiabetic individuals: associations and epigenetic mediation in the normative aging study, 2000–2011. Environ. Health Perspect. 124, 1715–1721 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tantoh, D. M. et al. AHRR cg05575921 methylation in relation to smoking and PM2.5 exposure among Taiwanese men and women. Clin. Epigenetics 12, 117 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jhun, M. A. et al. Modeling the causal role of DNA methylation in the association between cigarette smoking and inflammation in African Americans: a 2-step epigenetic Mendelian randomization study. Am. J. Epidemiol. 186, 1149–1158 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Joehanes, R. et al. Epigenetic signatures of cigarette smoking. Circ. Cardiovasc. Genet. 9, 436–447 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fernández-Sanlés, A. et al. DNA methylation biomarkers of myocardial infarction and cardiovascular disease. Clin. Epigenetics 13, 86 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kodal, J. B., Kobylecki, C. J., Vedel-Krogh, S., Nordestgaard, B. G. & Bojesen, S. E. AHRR hypomethylation, lung function, lung function decline and respiratory symptoms. Eur. Respir. J. 51, 1701512 (2018).

    Article  PubMed  Google Scholar 

  51. Bollepalli, S., Korhonen, T., Kaprio, J., Anders, S. & Ollikainen, M. EpiSmokEr: a robust classifier to determine smoking status from DNA methylation data. Epigenomics 11, 1469–1486 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Park, S. K., Zhao, Z. & Mukherjee, B. Construction of environmental risk score beyond standard linear models using machine learning methods: application to metal mixtures, oxidative stress and cardiovascular disease in NHANES. Environ. Health 16, 102 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Benowitz, N. L. et al. Prevalence of smoking assessed biochemically in an urban public hospital: a rationale for routine cotinine screening. Am. J. Epidemiol. 170, 885–891 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hsieh, S. J. et al. Biomarkers increase detection of active smoking and secondhand smoke exposure in critically ill patients. Crit. Care Med. 39, 40–45 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018). This review enumerates epigenetic biomarkers of ageing and explains how epigenetic age acceleration predicts clinical health outcomes including age-related phenotypes.

    Article  CAS  PubMed  Google Scholar 

  57. Cardenas, A. et al. Epigenome-wide association study and epigenetic age acceleration associated with cigarette smoking among Costa Rican adults. Sci. Rep. 12, 4277 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nwanaji-Enwerem, J. C. et al. Long-term ambient particle exposures and blood DNA methylation age: findings from the VA normative aging study. Environ. Epigenet. 2, dvw006 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wu, X. et al. Effect of tobacco smoking on the epigenetic age of human respiratory organs. Clin. Epigenetics 11, 183 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lind, P. M., Salihovic, S. & Lind, L. High plasma organochlorine pesticide levels are related to increased biological age as calculated by DNA methylation analysis. Environ. Int. 113, 109–113 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Fiorito, G. et al. Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: a multi-cohort analysis. Aging 11, 2045–2070 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim, Y. et al. Higher diet quality relates to decelerated epigenetic aging. Am. J. Clin. Nutr. 115, 163–170 (2022).

    Article  PubMed  Google Scholar 

  63. Kim, K. et al. DNA methylation GrimAge and incident diabetes: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Diabetes 70, 1404–1413 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Roetker, N. S., Pankow, J. S., Bressler, J., Morrison, A. C. & Boerwinkle, E. Prospective study of epigenetic age acceleration and incidence of cardiovascular disease outcomes in the ARIC study (Atherosclerosis Risk in Communities). Circ. Genom. Precis. Med. 11, e001937 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chen, B. H. et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging 8, 1844–1865 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Martire, S. & Banaszynski, L. A. The roles of histone variants in fine-tuning chromatin organization and function. Nat. Rev. Mol. Cell Biol. 21, 522–541 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Greer, E. L. & Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13, 343–357 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lismer, A., Siklenka, K., Lafleur, C., Dumeaux, V. & Kimmins, S. Sperm histone H3 lysine 4 trimethylation is altered in a genetic mouse model of transgenerational epigenetic inheritance. Nucleic Acids Res. 48, 11380–11393 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lismer, A. et al. Histone H3 lysine 4 trimethylation in sperm is transmitted to the embryo and associated with diet-induced phenotypes in the offspring. Dev. Cell 56, 671–686.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Howe, C. G. & Gamble, M. V. Influence of arsenic on global levels of histone posttranslational modifications: a review of the literature and challenges in the field. Curr. Environ. Health Rep. 3, 225–237 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bhattacharjee, P., Paul, S. & Bhattacharjee, P. Understanding the mechanistic insight of arsenic exposure and decoding the histone cipher. Toxicology 430, 152340 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Zhang, X. et al. Arsenic silences hepatic PDK4 expression through activation of histone H3K9 methylatransferase G9a. Toxicol. Appl. Pharmacol. 304, 42–47 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Suzuki, T. & Nohara, K. Long-term arsenic exposure induces histone H3 Lys9 dimethylation without altering DNA methylation in the promoter region of p16INK4a and down-regulates its expression in the liver of mice. J. Appl. Toxicol. 33, 951–958 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Bernhart, S. H. et al. Changes of bivalent chromatin coincide with increased expression of developmental genes in cancer. Sci. Rep. 6, 37393 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brocato, J. et al. Arsenic induces polyadenylation of canonical histone mRNA by down-regulating stem-loop-binding protein gene expression. J. Biol. Chem. 289, 31751–31764 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Costa, M. Review of arsenic toxicity, speciation and polyadenylation of canonical histones. Toxicol. Appl. Pharmacol. 375, 1–4 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Wu, Y., Wang, R., Liu, R., Ba, Y. & Huang, H. The roles of histone modifications in metal-induced neurological disorders. Biol. Trace Elem. Res. https://doi.org/10.1007/s12011-022-03134-5 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ryu, Y. S. et al. Particulate matter-induced senescence of skin keratinocytes involves oxidative stress-dependent epigenetic modifications. Exp. Mol. Med. 51, 1–14 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Ji, X. et al. Histone modification in the lung injury and recovery of mice in response to PM2.5 exposure. Chemosphere 220, 127–136 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Li, Z. et al. The global DNA and RNA methylation and their reversal in lung under different concentration exposure of ambient air particulate matter in mice. Ecotoxicol. Environ. Saf. 172, 396–402 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Gu, L.-Z., Sun, H. & Chen, J.-H. Histone deacetylases 3 deletion restrains PM2.5-induced mice lung injury by regulating NF-κB and TGF-β/Smad2/3 signaling pathways. Biomed. Pharmacother. 85, 756–762 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Ding, R. et al. Dose- and time- effect responses of DNA methylation and histone H3K9 acetylation changes induced by traffic-related air pollution. Sci. Rep. 7, 43737 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ding, R. et al. H3K9 acetylation change patterns in rats after exposure to traffic-related air pollution. Environ. Toxicol. Pharmacol. 42, 170–175 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, Z. et al. Global H3K79 di-methylation mediates DNA damage response to PAH exposure in Chinese coke oven workers. Environ. Pollut. 268, 115956 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Chiu, K.-C. et al. Prenatal chlorpyrifos exposure in association with PPARγ H3K4me3 and DNA methylation levels and child development. Environ. Pollut. 274, 116511 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Fraz, S. et al. Paternal exposure to carbamazepine impacts zebrafish offspring reproduction over multiple generations. Environ. Sci. Technol. 53, 12734–12743 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Sánchez, O. F. et al. Profiling epigenetic changes in human cell line induced by atrazine exposure. Environ. Pollut. 258, 113712 (2020).

    Article  PubMed  Google Scholar 

  90. Yuan, X. et al. Histone acetylation is involved in TCDD-induced cleft palate formation in fetal mice. Mol. Med. Rep. 14, 1139–1145 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li, H. et al. Bisphenol A exposure disrupts enamel formation via EZH2-mediated H3K27me3. J. Dent. Res. 100, 847–857 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Escarda-Castro, E., Herráez, M. P. & Lombó, M. Effects of bisphenol A exposure during cardiac cell differentiation. Environ. Pollut. 286, 117567 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. O’Brien, J., Hayder, H., Zayed, Y. & Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 9, 402 (2018).

    Article  Google Scholar 

  94. Xiao, M. et al. MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol. 14, 1326–1334 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Liu, X. et al. Regulation of microRNAs by epigenetics and their interplay involved in cancer. J. Exp. Clin. Cancer Res. 32, 96 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hou, L., Wang, D. & Baccarelli, A. Environmental chemicals and microRNAs. Mutat. Res. 714, 105–112 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ji, X. et al. MicroRNA-338-5p modulates pulmonary hypertension-like injuries caused by SO2, NO2 and PM2.5 co-exposure through targeting the HIF-1α/Fhl-1 pathway. Toxicol. Res. 5, 1548–1560 (2016).

    Article  CAS  Google Scholar 

  98. Rider, C. F. et al. Controlled diesel exhaust and allergen coexposure modulates microRNA and gene expression in humans: Effects on inflammatory lung markers. J. Allergy Clin. Immunol. 138, 1690–1700 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Tsai, M.-H. et al. Urban particulate matter enhances ROS/IL-6/COX-II production by inhibiting microRNA-137 in synovial fibroblast of rheumatoid arthritis. Cells 9, E1378 (2020).

    Article  Google Scholar 

  100. Liu, G., Li, Y., Zhou, J., Xu, J. & Yang, B. PM2.5 deregulated microRNA and inflammatory microenvironment in lung injury. Environ. Toxicol. Pharmacol. 91, 103832 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Espín-Pérez, A. et al. Short-term transcriptome and microRNAs responses to exposure to different air pollutants in two population studies. Environ. Pollut. 242, 182–190 (2018).

    Article  PubMed  Google Scholar 

  102. Li, M. et al. Circular RNA circBbs9 promotes PM2.5-induced lung inflammation in mice via NLRP3 inflammasome activation. Environ. Int. 143, 105976 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Zhong, Y. et al. Identification of long non-coding RNA and circular RNA in mice after intra-tracheal instillation with fine particulate matter. Chemosphere 235, 519–526 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Li, Z. et al. Differentially expressed circular RNAs in air pollution-exposed rat embryos. Environ. Sci. Pollut. Res. Int. 26, 34421–34429 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Yamasaki, S., Ivanov, P., Hu, G. & Anderson, P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J. Cell Biol. 185, 35–42 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mishima, E. et al. Conformational change in transfer RNA is an early indicator of acute cellular damage. J. Am. Soc. Nephrol. 25, 2316–2326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dewe, J. M., Fuller, B. L., Lentini, J. M., Kellner, S. M. & Fu, D. TRMT1-catalyzed tRNA modifications are required for redox homeostasis to ensure proper cellular proliferation and oxidative stress survival. Mol. Cell. Biol. 37, e00214-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Thompson, D. M., Lu, C., Green, P. J. & Parker, R. tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 14, 2095–2103 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fu, Y., Lee, I., Lee, Y. S. & Bao, X. Small non-coding transfer RNA-derived RNA fragments (tRFs): their biogenesis, function and implication in human diseases. Genomics Inf. 13, 94–101 (2015).

    Article  Google Scholar 

  110. Anderson, P. & Ivanov, P. tRNA fragments in human health and disease. FEBS Lett. 588, 4297–4304 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Statello, L., Guo, C.-J., Chen, L.-L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Li, Z. et al. Aberrantly expressed long non-coding RNAs in air pollution-induced congenital defects. J. Cell Mol. Med. 23, 7717–7725 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hussey, M. R. et al. Placental lncRNA expression associated with placental cadmium concentrations and birth weight. Environ. Epigenet 6, dvaa003 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Dong, Z. et al. LncRNA PU.1 AS regulates arsenic-induced lipid metabolism through EZH2/Sirt6/SREBP-1c pathway. J. Environ. Sci. 85, 138–146 (2019).

    Article  CAS  Google Scholar 

  115. Zhang, H. et al. LINC00173 interacts with DNMT1 to regulate LINC00173 expression via promoter methylation in hydroquinone-induced malignantly transformed TK6 cells and benzene-exposed workers. Toxicol. Sci. 187, 311–324 (2022).

    Article  CAS  PubMed  Google Scholar 

  116. Shi, J., Deng, H. & Zhang, M. Whole transcriptome sequencing analysis revealed key RNA profiles and toxicity in mice after chronic exposure to microplastics. Chemosphere 304, 135321 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Fan, Z. et al. A study on the roles of long non-coding RNA and circular RNA in the pulmonary injuries induced by polystyrene microplastics. Environ. Int. 163, 107223 (2022).

    Article  PubMed  Google Scholar 

  118. Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-019-0168-5 (2019).

    Article  PubMed  Google Scholar 

  119. Liu, N. & Pan, T. N6-methyladenosine–encoded epitranscriptomics. Nat. Struct. Mol. Biol. 23, 98–102 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Jiang, X. et al. The role of m6A modification in the biological functions and diseases. Sig. Transduct. Target. Ther. 6, 74 (2021).

    Article  CAS  Google Scholar 

  121. Li, H.-B. et al. m6A mRNA methylation controls T cell homeostasis by targeting IL-7/STAT5/SOCS pathway. Nature 548, 338–342 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Furlan, M., Galeota, E., de Pretis, S., Caselle, M. & Pelizzola, M. m6A-dependent RNA dynamics in T cell differentiation. Genes 10, 28 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Wang, H. et al. Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation. Nat. Commun. 10, 1898 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Baldridge, K. C. & Contreras, L. M. Functional implications of ribosomal RNA methylation in response to environmental stress. Crit. Rev. Biochem. Mol. Biol. 49, 69–89 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Cayir, A., Barrow, T. M., Guo, L. & Byun, H.-M. Exposure to environmental toxicants reduces global N6-methyladenosine RNA methylation and alters expression of RNA methylation modulator genes. Environ. Res. 175, 228–234 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Yuan, Q. et al. METTL3 regulates PM2.5-induced cell injury by targeting OSGIN1 in human airway epithelial cells. J. Hazard. Mater. 415, 125573 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Xia, H. et al. The aberrant cross-talk of epithelium–macrophages via METTL3-regulated extracellular vesicle miR-93 in smoking-induced emphysema. Cell Biol. Toxicol. 38, 167–183 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Anders, M. et al. Dynamic m6A methylation facilitates mRNA triaging to stress granules. Life Sci. Alliance 1, e201800113 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Zhou, J., Wan, J., Gao, X., Zhang, X. & Qian, S.-B. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature 526, 591–594 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Liu, H. et al. Fine particulate matter induces METTL3-mediated m6A modification of BIRC5 mRNA in bladder cancer. J. Hazard. Mater. 437, 129310 (2022). This recent study demonstrates m6A modification machinery and abundance as targets for PM air pollution and their relevance for bladder cancer.

    Article  CAS  PubMed  Google Scholar 

  131. Liu, J. et al. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93–95 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Zhang, J. et al. Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat. Commun. 10, 1858 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Wu, S. et al. A novel micropeptide encoded by Y-linked LINC00278 links cigarette smoking and AR signaling in male esophageal squamous cell carcinoma. Cancer Res. 80, 2790–2803 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Ning, J. et al. N6-methyladenosine modification of CDH1 mRNA promotes PM2.5-induced pulmonary fibrosis via mediating epithelial mesenchymal transition. Toxicol. Sci. 185, 143–157 (2022). This recent mechanistic study shows that PM2.5 induces a series of epigenetic and epitranscriptomic changes, highlighting the need to assess multiple interconnecting omic layers to elucidate the mechanisms underlying environmentally induced diseases.

    Article  CAS  PubMed  Google Scholar 

  135. Kupsco, A. et al. Associations of smoking and air pollution with peripheral blood RNA N6-methyladenosine in the Beijing truck driver air pollution study. Environ. Int. 144, 106021 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhao, T. et al. N6-methyladenosine mediates arsenite-induced human keratinocyte transformation by suppressing p53 activation. Environ. Pollut. 259, 113908 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhao, T., Li, X., Sun, D. & Zhang, Z. Oxidative stress: one potential factor for arsenite-induced increase of N6-methyladenosine in human keratinocytes. Environ. Toxicol. Pharmacol. 69, 95–103 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Gu, S., Sun, D., Dai, H. & Zhang, Z. N6-methyladenosine mediates the cellular proliferation and apoptosis via microRNAs in arsenite-transformed cells. Toxicol. Lett. 292, 1–11 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Cui, Y.-H. et al. Autophagy of the m6A mRNA demethylase FTO is impaired by low-level arsenic exposure to promote tumorigenesis. Nat. Commun. 12, 2183 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bai, L. et al. m6A demethylase FTO regulates dopaminergic neurotransmission deficits caused by arsenite. Toxicol. Sci. 165, 431–446 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Tang, J. et al. Global N6-methyladenosine profiling of cobalt-exposed cortex and human neuroblastoma H4 cells presents epitranscriptomics alterations in neurodegenerative disease-associated genes. Environ. Pollut. 266, 115326 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Qi, Z. et al. Protective role of mRNA demethylase FTO on axon guidance molecules of nigro-striatal projection system in manganese-induced parkinsonism. J. Hazard. Mater. 426, 128099 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Wang, Z. et al. Chronic hexavalent chromium exposure upregulates the RNA methyltransferase METTL3 expression to promote cell transformation, cancer stem cell-like property, and tumorigenesis. Toxicol. Sci. 187, 51–61 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yue, Y. et al. N6-methyladenosine-mediated downregulation of miR-374c-5p promotes cadmium-induced cell proliferation and metastasis by targeting GRM3 in breast cancer cells. Ecotoxicol. Environ. Saf. 229, 113085 (2022).

    Article  CAS  PubMed  Google Scholar 

  145. Klinge, C. M. et al. Combined exposure to polychlorinated biphenyls and high-fat diet modifies the global epitranscriptomic landscape in mouse liver. Environ. Epigenet. 7, dvab008 (2021).

    PubMed  PubMed Central  Google Scholar 

  146. Aluru, N. & Karchner, S. I. PCB126 exposure revealed alterations in m6A RNA modifications in transcripts associated with AHR activation. Toxicol. Sci. 179, 84–94 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Yin, X. et al. The intergenerational toxic effects on offspring of medaka fish Oryzias melastigma from parental benzo[a]pyrene exposure via interference of the circadian rhythm. Environ. Pollut. 267, 115437 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Sun, L. et al. Triclosan-induced abnormal expression of miR-30b regulates fto-mediated m6A methylation level to cause lipid metabolism disorder in zebrafish. Sci. Total Environ. 770, 145285 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Qi, X. et al. Comprehensive analysis of differences of N6-methyladenosine of lncRNAs between atrazine-induced and normal Xenopus laevis testis. Genes Environ. 43, 49 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Su, Q. et al. Paraquat-induced oxidative stress regulates N6-methyladenosine (m6A) modification of long noncoding RNAs in Neuro-2a cells. Ecotoxicol. Environ. Saf. 237, 113503 (2022).

    Article  CAS  PubMed  Google Scholar 

  151. Rompala, G. R. et al. Heavy chronic intermittent ethanol exposure alters small noncoding RNAs in mouse sperm and epididymosomes. Front. Genet. 9, 32 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Wiener, D. & Schwartz, S. The epitranscriptome beyond m6A. Nat. Rev. Genet. 22, 119–131 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Eckhardt, C. M., Baccarelli, A. A. & Wu, H. Environmental exposures and extracellular vesicles: indicators of systemic effects and human disease. Curr. Environ. Health Rep. 9, 465–476 (2022).

    Article  CAS  PubMed  Google Scholar 

  154. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Bollati, V. et al. Microvesicle-associated microRNA expression is altered upon particulate matter exposure in healthy workers and in A549 cells. J. Appl. Toxicol. 35, 59–67 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Emmerechts, J. et al. Air pollution-associated procoagulant changes: the role of circulating microvesicles. J. Thromb. Haemost. 10, 96–106 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Zheng, R. et al. Fine particulate matter induces childhood asthma attacks via extracellular vesicle-packaged Let-7i-5p-mediated modulation of the MAPK signaling pathway. Adv. Sci. 9, e2102460 (2022).

    Article  Google Scholar 

  158. Neri, T. et al. Particulate matter induces prothrombotic microparticle shedding by human mononuclear and endothelial cells. Toxicol. Vitr. 32, 333–338 (2016).

    Article  CAS  Google Scholar 

  159. Chen, X. et al. Urban airborne PM2.5-activated microglia mediate neurotoxicity through glutaminase-containing extracellular vesicles in olfactory bulb. Environ. Pollut. 264, 114716 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ngalame, N. N. O., Luz, A. L., Makia, N. & Tokar, E. J. Arsenic alters exosome quantity and cargo to mediate stem cell recruitment into a cancer stem cell-like phenotype. Toxicol. Sci. 165, 40–49 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Chen, C. et al. NF-kB-regulated exosomal miR-155 promotes the inflammation associated with arsenite carcinogenesis. Cancer Lett. 388, 21–33 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Xu, Y. et al. Exosomal miR-21 derived from arsenite-transformed human bronchial epithelial cells promotes cell proliferation associated with arsenite carcinogenesis. Arch. Toxicol. 89, 1071–1082 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Ikezuki, Y., Tsutsumi, O., Takai, Y., Kamei, Y. & Taketani, Y. Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum. Reprod. 17, 2839–2841 (2002).

    Article  CAS  PubMed  Google Scholar 

  164. Rodosthenous, R. S. et al. Supraphysiological concentrations of bisphenol A alter the expression of extracellular vesicle-enriched miRNAs from human primary granulosa cells. Toxicol. Sci. 169, 5–13 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Martinez, R. M. et al. Urinary concentrations of phenols and phthalate metabolites reflect extracellular vesicle microRNA expression in follicular fluid. Environ. Int. 123, 20–28 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Barnett-Itzhaki, Z. et al. Association between follicular fluid phthalate concentrations and extracellular vesicle microRNAs expression. Hum. Reprod. 36, 1590–1599 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sheller-Miller, S. et al. Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta 89, 42–49 (2020).

    Article  CAS  PubMed  Google Scholar 

  168. Miliotis, S., Nicolalde, B., Ortega, M., Yepez, J. & Caicedo, A. Forms of extracellular mitochondria and their impact in health. Mitochondrion 48, 16–30 (2019).

    Article  CAS  PubMed  Google Scholar 

  169. Eckhardt, C. M. et al. Extracellular vesicle-encapsulated microRNAs as novel biomarkers of lung health. Am. J. Respir. Crit. Care Med. https://doi.org/10.1164/rccm.202109-2208OC (2022).

    Article  Google Scholar 

  170. Johannsen, D. L. & Ravussin, E. The role of mitochondria in health and disease. Curr. Opin. Pharmacol. 9, 780–786 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Reddam, A., McLarnan, S. & Kupsco, A. Environmental chemical exposures and mitochondrial dysfunction: a review of recent literature. Curr. Environ. Health Rep. https://doi.org/10.1007/s40572-022-00371-7 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Frye, R. E. et al. Prenatal air pollution influences neurodevelopment and behavior in autism spectrum disorder by modulating mitochondrial physiology. Mol. Psychiatry 26, 1561–1577 (2021). This study shows that long-term changes in mitochondrial function partially mediate the association between prenatal PM2.5 exposure and neurodevelopmental outcomes relevant for autism spectrum disorder.

    Article  CAS  PubMed  Google Scholar 

  173. Li, Z. et al. Air pollution and placental mitochondrial DNA copy number: mechanistic insights and epidemiological challenges. Environ. Pollut. 255, 113266 (2019).

    Article  CAS  PubMed  Google Scholar 

  174. Pardo, M., Qiu, X., Zimmermann, R. & Rudich, Y. Particulate matter toxicity is Nrf2 and mitochondria dependent: the roles of metals and polycyclic aromatic hydrocarbons. Chem. Res. Toxicol. 33, 1110–1120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Huffman, A. M. et al. Associations of urinary phthalate metabolites and lipid peroxidation with sperm mitochondrial DNA copy number and deletions. Environ. Res. 163, 10–15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Chen, X. et al. Prenatal exposure to benzotriazoles and benzothiazoles and cord blood mitochondrial DNA copy number: a prospective investigation. Environ. Int. 143, 105920 (2020).

    Article  CAS  PubMed  Google Scholar 

  177. Giordano, L. et al. Cigarette toxicity triggers Leber’s hereditary optic neuropathy by affecting mtDNA copy number, oxidative phosphorylation and ROS detoxification pathways. Cell Death Dis. 6, e2021 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wang, Y. et al. The association between polymorphisms in cell-cycle genes and mitochondrial DNA copy number in coke oven workers. Front. Public Health 10, 904856 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Ji, B. et al. Gene-environment interactions between environmental response genes polymorphisms and mitochondrial DNA copy numbers among benzene workers. J. Occup. Environ. Med. 63, e408–e415 (2021).

    CAS  PubMed  Google Scholar 

  180. Gaikwad, A. S., Mahmood, R., Beerappa, R., Karunamoorthy, P. & Venugopal, D. Mitochondrial DNA copy number and cytogenetic damage among fuel filling station attendants. Environ. Mol. Mutagen. 61, 820–829 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Sharma, J. et al. Emerging role of mitochondria in airborne particulate matter-induced immunotoxicity. Environ. Pollut. 270, 116242 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Sun, Q. et al. Heavy metals induced mitochondrial dysfunction in animals: molecular mechanism of toxicity. Toxicology 469, 153136 (2022).

    Article  CAS  PubMed  Google Scholar 

  183. Heinz, S. et al. Mechanistic investigations of the mitochondrial complex I inhibitor rotenone in the context of pharmacological and safety evaluation. Sci. Rep. 7, 45465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Won, J.-H., Park, S., Hong, S., Son, S. & Yu, J.-W. Rotenone-induced impairment of mitochondrial electron transport chain confers a selective priming signal for NLRP3 inflammasome activation. J. Biol. Chem. 290, 27425–27437 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Cochemé, H. M. & Murphy, M. P. Complex I is the major site of mitochondrial superoxide production by paraquat. J. Biol. Chem. 283, 1786–1798 (2008).

    Article  PubMed  Google Scholar 

  186. Rottenberg, H. & Hoek, J. B. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell 16, 943–955 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Guo, C., Sun, L., Chen, X. & Zhang, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res. 8, 2003–2014 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Hollensworth, S. B. et al. Glial cell type-specific responses to menadione-induced oxidative stress. Free Radic. Biol. Med. 28, 1161–1174 (2000).

    Article  CAS  PubMed  Google Scholar 

  189. Billiard, S. M. et al. Binding of polycyclic aromatic hydrocarbons (PAHs) to teleost aryl hydrocarbon receptors (AHRs). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 133, 55–68 (2002).

    Article  PubMed  Google Scholar 

  190. Hwang, H. J. et al. Mitochondrial-targeted aryl hydrocarbon receptor and the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cellular respiration and the mitochondrial proteome. Toxicol. Appl. Pharmacol. 304, 121–132 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Caito, S. W. & Aschner, M. Mitochondrial redox dysfunction and environmental exposures. Antioxid. Redox Signal. 23, 578–595 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Stewart, J. B. & Chinnery, P. F. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat. Rev. Genet. 16, 530–542 (2015).

    Article  CAS  PubMed  Google Scholar 

  193. Harari, S. et al. Fibrotic interstitial lung diseases and air pollution: a systematic literature review. Eur. Respir. Rev. 29, 200093 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Vaissière, T., Sawan, C. & Herceg, Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat. Res. 659, 40–48 (2008).

    Article  PubMed  Google Scholar 

  195. Aure, M. R. et al. Crosstalk between microRNA expression and DNA methylation drives the hormone-dependent phenotype of breast cancer. Genome Med. 13, 72 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Chen, J. & Nodzak, C. Statistical and machine learning methods for eQTL analysis. Methods Mol. Biol. 2082, 87–104 (2020).

    Article  CAS  PubMed  Google Scholar 

  197. Peng, C. et al. A latent unknown clustering integrating multi-omics data (LUCID) with phenotypic traits. Bioinformatics 36, 842–850 (2020).

    Article  CAS  PubMed  Google Scholar 

  198. Uppal, K., Ma, C., Go, Y.-M., Jones, D. P. & Wren, J. xMWAS: a data-driven integration and differential network analysis tool. Bioinformatics 34, 701–702 (2018).

    Article  CAS  PubMed  Google Scholar 

  199. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ashburner, M. et al. Gene Ontology: tool for the unification of biology.Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21, 630–644 (2020).

    Article  CAS  PubMed  Google Scholar 

  202. Haque, A., Engel, J., Teichmann, S. A. & Lönnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 9, 75 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Avila Cobos, F., Vandesompele, J., Mestdagh, P. & De Preter, K. Computational deconvolution of transcriptomics data from mixed cell populations. Bioinformatics 34, 1969–1979 (2018).

    Article  PubMed  Google Scholar 

  204. Mustapic, M. et al. Plasma extracellular vesicles enriched for neuronal origin: a potential window into brain pathologic processes. Front. Neurosci. 11, 278 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Kapogiannis, D. et al. Association of extracellular vesicle biomarkers with Alzheimer disease in the Baltimore Longitudinal Study of Aging. JAMA Neurol. 76, 1340–1351 (2019). This study demonstrates that the cargo of neuron-derived extracellular vesicles purified from blood plasma is associated with neurological disease status.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Zhang, P. et al. Defining the scope of exposome studies and research needs from a multidisciplinary perspective. Environ. Sci. Technol. Lett. 8, 839–852 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Vermeulen, R., Schymanski, E. L., Barabási, A.-L. & Miller, G. W. The exposome and health: where chemistry meets biology. Science 367, 392–396 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ work was supported by grants from the National Institute of Environmental Health Sciences (P30ES009089, R35ES031688) and the National Center for Advancing Translational Sciences (TL1TR001875). The funding sources did not have any role in the writing of the manuscript or decision to submit for publication.

Author information

Authors and Affiliations

Authors

Contributions

H. W. and C. E. researched the literature. All authors contributed substantially to discussions of the content, wrote the article and reviewed and/or edited the manuscript.

Corresponding author

Correspondence to Andrea A. Baccarelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Chris Carlsten, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

GO: http://geneontology.org/

KEGG: https://www.genome.jp/kegg/

Glossary

Biological age

The physiological and functional status of an individual. The biological age may be older or younger than the chronological age and serves as a reflection of health and ageing.

Circular RNAs

Single-stranded RNAs in a closed continuous loop that are most often derived from protein-coding regions.

Compositional epistasis

A central requirement to demonstrate that there is a mechanistic gene–environment interaction that requires a study to show that some individuals will have the disease of interest if both environmental and genetic exposures are present but will not have the disease of interest if just one exposure is present. 

Crossover trial

A longitudinal study where all participants receive two or more treatments, often in random order and separated by a washout period.

Epigenome-wide association study

A genome-wide study of epigenetic changes such as DNA methylation and their association with a health outcome of interest.

Liquid biopsy

A peripheral blood test that can detect cells derived from specific types of tissue in the body.

Particulate matter

Microscopic particles of solid or liquid matter that are suspended in the air; fine particles have a diameter of ≤2.5 μm and are designated PM2.5.

Polygenic risk score

An estimate calculated as a weighted sum of many trait-associated alleles to summarize a person’s genetic liability of developing a disease of interest based on their genotype.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Eckhardt, C.M. & Baccarelli, A.A. Molecular mechanisms of environmental exposures and human disease. Nat Rev Genet 24, 332–344 (2023). https://doi.org/10.1038/s41576-022-00569-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-022-00569-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing