Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The scientific basis of combination therapy for chronic hepatitis B functional cure

Subjects

Abstract

Functional cure of chronic hepatitis B (CHB) — or hepatitis B surface antigen (HBsAg) loss after 24 weeks off therapy — is now the goal of treatment, but is rarely achieved with current therapy. Understanding the hepatitis B virus (HBV) life cycle and immunological defects that lead to persistence can identify targets for novel therapy. Broadly, treatments fall into three categories: those that reduce viral replication, those that reduce antigen load and immunotherapies. Profound viral suppression alone does not achieve quantitative (q)HBsAg reduction or HBsAg loss. Combining nucleos(t)ide analogues and immunotherapy reduces qHBsAg levels and induces HBsAg loss in some patients, particularly those with low baseline qHBsAg levels. Even agents that are specifically designed to reduce viral antigen load might not be able to achieve sustained HBsAg loss when used alone. Thus, rationale exists for the use of combinations of all three therapy types. Monitoring during therapy is important not just to predict HBsAg loss but also to understand mechanisms of HBsAg loss using viral and immunological biomarkers, and in selected cases intrahepatic sampling. We consider various paths to functional cure of CHB and the need to individualize treatment of this heterogeneous infection until a therapeutic avenue for all patients with CHB is available.

Key points

  • Functional cure is defined as loss of hepatitis B surface antigen (HBsAg) and undetectable hepatitis B virus (HBV) DNA after 6 months off therapy; it is associated with improved clinical outcomes and is the optimal goal of therapy for chronic hepatitis B.

  • Novel agents fall into three categories: those that reduce viral replication, those that reduce viral antigen load and immunotherapies; combinations that lead to functional cure are being explored.

  • Profound viral suppression alone is unlikely to lead to functional cure or reduction in quantitative (q)HBsAg levels.

  • Combining replication inhibition with immunotherapy leads to some reduction in qHBsAg levels (<1 log) and HBsAg loss, usually in patients with low baseline qHBsAg levels.

  • Reducing viral antigen production reduces qHBsAg levels by up to 3 log, which might be sustained off therapy, and in combination with replication inhibitors or immunotherapy can achieve HBsAg loss in some instances, although not all are sustained.

  • More than one path to functional cure is likely to exist, and finding the optimal one for each patient is the challenge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram of HBV life cycle showing the two overlapping pathways (secretory and replicative) and potential strategies for antiviral therapy, including reducing viral replication and reducing antigen burden.
Fig. 2: Immune pathways in HBV and strategies to activate host immunity.

Similar content being viewed by others

References

  1. World Health Organization. Hepatitis B Fact Sheet, https://www.who.int/news-room/fact-sheets/detail/hepatitis-b (2021).

  2. Cornberg, M. et al. Guidance for design and endpoints of clinical trials in chronic hepatitis B - Report from the 2019 EASL-AASLD HBV Treatment Endpoints Conference. Hepatology https://doi.org/10.1002/hep.31030 (2019).

    Article  PubMed  Google Scholar 

  3. Fanning, G. C., Zoulim, F., Hou, J. & Bertoletti, A. Therapeutic strategies for hepatitis B virus infection: towards a cure. Nat. Rev. Drug Discov. 18, 827–844 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Anderson, R. T. et al. Association between seroclearance of hepatitis B surface antigen and long-term clinical outcomes of patients with chronic hepatitis B virus infection: systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 19, 463–472 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Lok, A. S. et al. Antiviral therapy for chronic hepatitis B viral infection in adults: a systematic review and meta-analysis. Hepatology 63, 284–306 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Pollicino, T. & Caminiti, G. HBV-integration studies in the clinic: role in the natural history of infection. Viruses 13, 368 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Revill, P. A. et al. A global scientific strategy to cure hepatitis B. Lancet Gastroenterol. Hepatol. 4, 545–558 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Testoni, B., Levrero, M. & Zoulim, F. Challenges to a cure for HBV infection. Semin. Liver Dis. 37, 231–242 (2017).

    Article  PubMed  Google Scholar 

  9. Beck, J. & Nassal, M. Hepatitis B virus replication. World J. Gastroenterol. 13, 48–64 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Colpitts, C. C., Verrier, E. R. & Baumert, T. F. Targeting viral entry for treatment of hepatitis B and C virus infections. ACS Infect. Dis. 1, 420–427 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Verrier, E. R., Colpitts, C. C., Sureau, C. & Baumert, T. F. Hepatitis B virus receptors and molecular drug targets. Hepatol. Int. 10, 567–573 (2016).

    Article  PubMed  Google Scholar 

  12. Verrier, E. R. et al. A targeted functional RNA interference screen uncovers glypican 5 as an entry factor for hepatitis B and D viruses. Hepatology 63, 35–48 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Ni, Y. et al. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology 146, 1070–1083 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Yan, H. et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 1, e00049 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Beck, J., Seitz, S., Lauber, C. & Nassal, M. Conservation of the HBV RNA element epsilon in nackednaviruses reveals ancient origin of protein-primed reverse transcription. Proc. Natl Acad. Sci. USA 118, e2022373118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nassal, M. Hepatitis B viruses: reverse transcription a different way. Virus Res. 134, 235–249 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Ligat, G., Verrier, E. R., Nassal, M. & Baumert, T. F. Hepatitis B virus-host interactions and novel targets for viral cure. Curr. Opin. Virol. 49, 41–51 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koniger, C. et al. Involvement of the host DNA-repair enzyme TDP2 in formation of the covalently closed circular DNA persistence reservoir of hepatitis B viruses. Proc. Natl Acad. Sci. USA 111, E4244–E4253 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Qi, Y. et al. DNA polymerase kappa is a key cellular factor for the formation of covalently closed circular DNA of hepatitis B virus. PLoS Pathog. 12, e1005893 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Long, Q. The role of host DNA ligases in hepadnavirus covalently closed circular DNA formation. PLoS Pathog. 13, e1006784 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wei, L. & Ploss, A. Core components of DNA lagging strand synthesis machinery are essential for hepatitis B virus cccDNA formation. Nat. Microbiol. 5, 715–726 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dandri, M. Epigenetic modulation in chronic hepatitis B virus infection. Semin. Immunopathol. 42, 173–185 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ligat, G., Goto, K., Verrier, E. & Baumert, T. F. Targeting viral cccDNA for cure of chronic hepatitis B. Curr. Hepatol. Rep. 19, 235–244 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zoulim, F. Inhibition of hepatitis B virus gene expression: a step towards functional cure. J. Hepatol. 68, 386–388 (2018).

    Article  PubMed  Google Scholar 

  25. Martinez, M. G., Boyd, A., Combe, E., Testoni, B. & Zoulim, F. Covalently closed circular DNA: the ultimate therapeutic target for curing HBV infections. J. Hepatol. 75, 706–717 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Lucifora, J. et al. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science 343, 1221–1228 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Riedl, T. et al. Hypoxia-inducible factor 1 alpha-mediated RelB/APOBEC3B down-regulation allows hepatitis B virus persistence. Hepatology 74, 1766–1781 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, S., Wang, H. & Ryu, W. S. Incorporation of eukaryotic translation initiation factor eIF4E into viral nucleocapsids via interaction with hepatitis B virus polymerase. J. Virol. 84, 52–58 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Nguyen, D. H. & Hu, J. Reverse transcriptase- and RNA packaging signal-dependent incorporation of APOBEC3G into hepatitis B virus nucleocapsids. J. Virol. 82, 6852–6861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, H., Kim, S. & Ryu, W. S. DDX3 DEAD-Box RNA helicase inhibits hepatitis B virus reverse transcription by incorporation into nucleocapsids. J. Virol. 83, 5815–5824 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tu, T., Zhang, H. & Urban, S. Hepatitis B virus DNA integration: in vitro models for investigating viral pathogenesis and persistence. Viruses 13, 180 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Flecken, T. et al. Mapping the heterogeneity of histone modifications on hepatitis B virus DNA using liver needle biopsies obtained from chronically infected patients. J. Virol. 93, e02036-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hsu, Y. C. et al. Inhibition of viral replication reduces transcriptionally active distinct hepatitis B virus Integrations with Implications on host gene dysregulation. Gastroenterology 162, 1160–1170.e1 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Bock, C. T. et al. Structural organization of the hepatitis B virus minichromosome. J. Mol. Biol. 307, 183–196 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Oropeza, C. E. et al. The regulation of HBV transcription and replication. Adv. Exp. Med. Biol. 1179, 39–69 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Quasdorff, M. & Protzer, U. Control of hepatitis B virus at the level of transcription. J. Viral Hepat. 17, 527–536 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Riviere, L. et al. HBx relieves chromatin-mediated transcriptional repression of hepatitis B viral cccDNA involving SETDB1 histone methyltransferase. J. Hepatol. 63, 1093–1102 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, Y. et al. HBV covalently closed circular DNA minichromosomes in distinct epigenetic transcriptional states differ in their vulnerability to damage. Hepatology 75, 1275–1288 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Floriot, O. et al. Identification of chromatin-accessible domains on the host genome and hepatitis B virus mini-chromosome in infected primary human hepatocytes. J. Hepatol. 70 (Suppl.), abstract SAT165 (2019).

  40. Testoni, B. et al. Circulating HBV RNA correlates with intrahepatic covalently closed circular DNA (cccDNA) transcriptional activity in untreated and NUC-treated chronic hepatitis B (CHB) patients. J. Hepatol. 75, S713–S714 (2021).

    Google Scholar 

  41. Murphy, C. M. et al. Hepatitis B virus X protein promotes degradation of SMC5/6 to enhance HBV replication. Cell Rep. 16, 2846–2854 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mouzannar, K. et al. Farnesoid X receptor-alpha is a proviral host factor for hepatitis B virus that is inhibited by ligands in vitro and in vivo. FASEB J. 33, 2472–2483 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Heger-Stevic, J., Zimmermann, P., Lecoq, L., Bottcher, B. & Nassal, M. Hepatitis B virus core protein phosphorylation: Identification of the SRPK1 target sites and impact of their occupancy on RNA binding and capsid structure. PLoS Pathog. 14, e1007488 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tu, T., Zehnder, B., Qu, B. & Urban, S. De novo synthesis of hepatitis B virus nucleocapsids is dispensable for the maintenance and transcriptional regulation of cccDNA. JHEP Rep. 3, 100195 (2021).

    Article  PubMed  Google Scholar 

  45. Schittl, B. & Bruss, V. Mutational profiling of the variability of individual amino acid positions in the hepatitis B virus matrix domain. Virology 458-459, 183–189 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Zeyen, L. & Prange, R. Host cell Rab GTPases in hepatitis B virus infection. Front. Cell Dev. Biol. 6, 154 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hu, J. & Liu, K. Complete and incomplete hepatitis B virus particles: formation, function, and application. Viruses 9, 56 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vaillant, A. Nucleic acid polymers: broad spectrum antiviral activity, antiviral mechanisms and optimization for the treatment of hepatitis B and hepatitis D infection. Antivir. Res. 133, 32–40 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Kao, C. C. et al. Mechanism of action of hepatitis B virus S antigen transport-inhibiting oligonucleotide polymer, STOPS, molecules. Mol. Ther. Nucleic Acids 27, 335–348 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Maini, M. K. & Burton, A. R. Restoring, releasing or replacing adaptive immunity in chronic hepatitis B. Nat. Rev. Gastroenterol. Hepatol. 16, 662–675 (2019).

    Article  PubMed  Google Scholar 

  51. Fisicaro, P. et al. Pathogenetic mechanisms of T cell dysfunction in chronic HBV infection and related therapeutic approaches. Front. Immunol. 11, 849 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Meng, Z., Chen, Y. & Lu, M. Advances in targeting the innate and adaptive immune systems to cure chronic hepatitis B virus infection. Front. Immunol. 10, 3127 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Lopes, A. R. et al. Bim-mediated deletion of antigen-specific CD8 T cells in patients unable to control HBV infection. J. Clin. Invest. 118, 1835–1845 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Boeijen, L. L., Hoogeveen, R. C., Boonstra, A. & Lauer, G. M. Hepatitis B virus infection and the immune response: the big questions. Best. Pract. Res. Clin. Gastroenterol. 31, 265–272 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Wieland, S., Thimme, R., Purcell, R. H. & Chisari, F. V. Genomic analysis of the host response to hepatitis B virus infection. Proc. Natl Acad. Sci. USA 101, 6669–6674 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Maini, M. K. & Gehring, A. J. The role of innate immunity in the immunopathology and treatment of HBV infection. J. Hepatol. 64, S60–S70 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Dandri, M., Bertoletti, A. & Lutgehetmann, M. Innate immunity in hepatitis B and D virus infection: consequences for viral persistence, inflammation, and T cell recognition. Semin. Immunopathol. 43, 535–548 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schmidt, N. M. et al. Targeting human Acyl-CoA:cholesterol acyltransferase as a dual viral and T cell metabolic checkpoint. Nat. Commun. 12, 2814 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lau, G. K. et al. Clearance of hepatitis B surface antigen after bone marrow transplantation: role of adoptive immunity transfer. Hepatology 25, 1497–1501 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Gill, U. S. et al. Interferon alpha induces sustained changes in NK cell responsiveness to hepatitis B viral load suppression in vivo. PLoS Pathog. 12, e1005788 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Micco, L. et al. Differential boosting of innate and adaptive antiviral responses during pegylated-interferon-alpha therapy of chronic hepatitis B. J. Hepatol. 58, 225–233 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Penna, A. et al. Peginterferon-alpha does not improve early peripheral blood HBV-specific T-cell responses in HBeAg-negative chronic hepatitis. J. Hepatol. 56, 1239–1246 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Fonseca, M. A. et al. The efficacy of hepatitis B treatments in achieving HBsAg seroclearance: a systematic review and meta-analysis. J. Viral Hepat. 27, 650–662 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Schurich, A. et al. Distinct metabolic requirements of exhausted and functional virus-specific CD8 T cells in the same host. Cell Rep. 16, 1243–1252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Amin, O. E. et al. Therapeutic potential of TLR8 agonist GS-9688 (Selgantolimod) in chronic hepatitis B: remodeling of antiviral and regulatory mediators. Hepatology 74, 55–71 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Huang, W. C. et al. T cells infiltrating diseased liver express ligands for the NKG2D stress surveillance system. J. Immunol. 198, 1172–1182 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Peppa, D. et al. Up-regulation of a death receptor renders antiviral T cells susceptible to NK cell-mediated deletion. J. Exp. Med. 210, 99–114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Provine, N. M. et al. MAIT cell activation augments adenovirus vector vaccine immunogenicity. Science 371, 521–526 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chinnakannan, S. K. et al. The design and development of a multi-HBV antigen encoded in chimpanzee adenoviral and modified vaccinia ankara viral vectors; a novel therapeutic vaccine strategy against HBV. Vaccines 8, 184 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Evans, T. et al. Phase 1b/2a study of heterologous ChAdOx1-HBV/MVA-HBV therapeutic vaccination (VTP-300) as monotherapy and combined with low-dose nivolumab in virally-suppressed patients with CHB on nucleos(t)ide analogues. J. Hepatol. 77, SAT428 (2022).

    Article  Google Scholar 

  71. Maini, M. K. & Pallett, L. J. Defective T-cell immunity in hepatitis B virus infection: why therapeutic vaccination needs a helping hand. Lancet Gastroenterol. Hepatol. 3, 192–202 (2018).

    Article  PubMed  Google Scholar 

  72. Benechet, A. P. et al. Dynamics and genomic landscape of CD8+ T cells undergoing hepatic priming. Nature 574, 200–205 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bertoletti, A. & Tan, A. T. HBV as a target for CAR or TCR-T cell therapy. Curr. Opin. Immunol. 66, 35–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Loomba, R. & Liang, T. J. Hepatitis B reactivation associated with immune suppressive and biological modifier therapies: current concepts, management strategies, and future directions. Gastroenterology 152, 1297–1309 (2017).

    Article  PubMed  Google Scholar 

  75. Burton, A. R. et al. Circulating and intrahepatic antiviral B cells are defective in hepatitis B. J. Clin. Invest. 128, 4588–4603 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Beretta, M. & Mouquet, H. Advances in human monoclonal antibody therapy for HBV infection. Curr. Opin. Virol. 53, 101205 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Quitt, O. et al. T cell engager antibodies enable T cells to control HBV infection and to target HBsAg-positive hepatoma in mice. J. Hepatol. 75, 1058–1071 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Bournazos, S. & Ravetch, J. V. Fcgamma receptor function and the design of vaccination strategies. Immunity 47, 224–233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sun, Y. et al. Persistent low level of hepatitis B virus promotes fibrosis progression during therapy. Clin. Gastroenterol. Hepatol. 18, 2582–2591 e2586 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Jang, J. W. et al. Effects of virologic response to treatment on short- and long-term outcomes of patients with chronic hepatitis B virus infection and decompensated cirrhosis. Clin. Gastroenterol. Hepatol. 16, 1954–1963 e1953 (2018).

    Article  PubMed  Google Scholar 

  81. Liu, Y. P. & Yao, C. Y. Rapid and quantitative detection of hepatitis B virus. World J. Gastroenterol. 21, 11954–11963 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen, J., Zhao, S. S., Liu, X. X., Huang, Z. B. & Huang, Y. Comparison of the efficacy of tenofovir versus tenofovir plus entecavir in the treatment of chronic hepatitis B in patients with poor efficacy of entecavir: a systematic review and meta-analysis. Clin. Ther. 39, 1870–1880 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Taverniti, V. et al. Capsid assembly modulators as antiviral agents against HBV: molecular mechanisms and clinical perspectives. J. Clin. Med. 11, 1349 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Janssen, H. L. A. et al. Efficacy and safety results of the phase 2 JNJ-56136379 JADE study in patients with chronic hepatitis B: interim week 24 data. J. Hepatol. 73, S129–S130 (2020).

    Article  Google Scholar 

  85. Yuen, M. F. et al. HBV pgRNA and DNA both rebound immediately following discontinuation of the core inhibitor vebicorvir despite continued NrtI treatment in patients with HBeAg positive chronic hepatitis B virus infection: findings from a phase 2 open-label study. Hepatology 74, 96 (2021).

    Google Scholar 

  86. Lebosse, F. et al. Quantification and epigenetic evaluation of the residual pool of hepatitis B covalently closed circular DNA in long-term nucleoside analogue-treated patients. Sci. Rep. 10, 21097 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gane, E. J. et al. Dose response with the RNA interference (RNAi) therapy JNJ-3989 combined with nucleos(t)ide analogue (NA) treatment in expanded cohorts of patients (pts) with chronic hepatitis B (CHB). Hepatology 70, 434A–435A (2019).

    Google Scholar 

  88. Gane, E. et al. Preliminary safety and antiviral activity of VIR-2218, an X-targeting RNAi therapeutic, in chronic hepatitis B patients. J. Hepatol. 73, S50–S51 (2020).

    Article  Google Scholar 

  89. Yuen, M. F. et al. HBV RNAi inhibitor RG6346 in phase 1b-2a trial was safe, well-tolerated, and resulted in substantial and durable reductions in serum HBsAg levels. Presented at The Liver Meeting (AASLD) (2020).

  90. Hui, R. W., Mak, L. Y., Seto, W. K. & Yuen, M. F. RNA interference as a novel treatment strategy for chronic hepatitis B infection. Clin. Mol. Hepatol. https://doi.org/10.3350/cmh.2022.0012 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Yuen, M. F. et al. Low HBsAg levels maintained following cessation of the GALNAC-siRNA, Ab-729, in chronic hepatitis B subjects on nucleos(t)ide analogue therapy. Presented at The Liver Meeting (AASLD) (2021).

  92. Gane, E. et al. Short-term treatment with RNA interference therapy, JNJ-3989, results in sustained hepatitisB surface antigen suppression in patients with chronic hepatitis B receiving nucleos(t)ideanalogue treatment. J. Hepatol. 73, S20 (2020).

    Article  Google Scholar 

  93. Yuen, M. F. et al. Safety, tolerability and antiviral activity of the antisense oligonucleotide bepirovirsen in patients with chronic hepatitis B: a phase 2 randomized controlled trial. Nat. Med. 27, 1725–1734 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yuen, M. F. et al. Efficacy and safety of bepirovirsen in chronic hepatitis B infection. N. Engl. J. Med. 387, 1957–1968 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Lim, S. G. et al. Switching to or add-on peginterferon in patients on nucleos(t)ide analogues for chronic hepatitis B: the SWAP RCT. Clin. Gastroenterol. Hepatol. 20, e228–e250 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Kang, C. & Syed, Y. Y. Bulevirtide: first approval. Drugs 80, 1601–1605 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Wedemeyer, H. et al. Final results of a multicenter, open-label phase 2 clinical trial (MYR203) to assess safety and efficacy of myrcludex B in cwith PEG-interferon alpha 2a in patients with chronic HBV/HDV co-infection. J. Hepatol. 68, S3 (2018).

    Article  Google Scholar 

  98. Suslov, A., Wieland, S. & Menne, S. Modulators of innate immunity as novel therapeutics for treatment of chronic hepatitis B. Curr. Opin. Virol. 30, 9–17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Boni, C. et al. TLR7 Agonist increases responses of hepatitis B virus-specific T cells and natural killer cells in patients with chronic hepatitis B treated with nucleos(t)ide analogues. Gastroenterology 154, 1764–1777.e1767 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Balabanska, R. et al. Targeting TLR7 with RO7020531: phase 1 study of the safety, PK, PD and antiviral activity in patients with chronic hepatitis B not receiving antiviral therapy. Hepatology 74, 1399A–1400A (2021).

    Google Scholar 

  101. Gane, E. J. et al. The oral toll-like receptor-7 agonist GS-9620 in patients with chronic hepatitis B virus infection. J. Hepatol. 63, 320–328 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Gane, E. et al. Efficacy and safety of 24 weeks treatment with oral TLR8 agonist selgantolimod (GS-9688, SLGN) in virally suppressed adult patients with chronic hepatitis B: a phase 2 study. J. Hepatol. 73, S52 (2020).

    Article  Google Scholar 

  103. Gane, E. J. et al. Safety, pharmacokinetics, and pharmacodynamics of the oral TLR8 agonist selgantolimod in chronic hepatitis B. Hepatology 74, 1737–1749 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Bengsch, B., Martin, B. & Thimme, R. Restoration of HBV-specific CD8+T cell function by PD-1 blockade in inactive carrier patients is linked to T cell differentiation. J. Hepatol. 61, 1212–1219 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Boni, C. et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J. Virol. 81, 4215–4225 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fisicaro, P. et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. Gastroenterology 138, 682–693 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Fisicaro, P. et al. Combined blockade of programmed death-1 and activation of CD137 increase responses of human liver T cells against HBV, but not HCV. Gastroenterology 143, 1576–1585.e1574 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Nebbia, G. et al. Upregulation of the Tim-3/galectin-9 pathway of T cell exhaustion in chronic hepatitis B virus infection. PLoS ONE 7, e47648 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Raziorrouh, B. et al. The immunoregulatory role of CD244 in chronic hepatitis B infection and its inhibitory potential on virus-specific CD8+T-cell function. Hepatology 52, 1934–1947 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Schurich, A. et al. Role of the coinhibitory receptor cytotoxic T lymphocyte antigen-4 on apoptosis-Prone CD8 T cells in persistent hepatitis B virus infection. Hepatology 53, 1494–1503 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Gane, E. et al. Anti-PD-1 blockade with nivolumab with and without therapeutic vaccination for virally suppressed chronic hepatitis B: a pilot study. J. Hepatol. 71, 900–907 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Wang, G. et al. HBsAg loss in chronic hepatitis B patients with subcutaneous PD-L1 antibody ASC22 (envafolimab) plus nucleos(t)ide analogs treatment: interim results from a phase IIb clinical trial. Presented at The Liver Meeting (AASLD) (2021).

  113. Wang, G. et al. Abstr. OS091: ALT flares were linked to HBsAg reduction, seroclearance and seroconversion: interim results from a phase IIb study in chronic hepatitis B patients with 24-week treatment of subcutaneous PDL1 Ab ASC22 (envafolimab) plus nucleos (t)ide analogs. J. Hepatol. 77, S70 (2022).

    Article  Google Scholar 

  114. Boni, C. et al. Combined GS-4774 and tenofovir therapy can improve HBV-specific T-cell responses in patients with chronic hepatitis. Gastroenterology 157, 227–241.e227 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Lok, A. S. et al. Randomized phase II study of GS-4774 as a therapeutic vaccine in virally suppressed patients with chronic hepatitis B. J. Hepatol. 65, 509–516 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Zoulim, F. et al. Safety and immunogenicity of the therapeutic vaccine TG1050 in chronic hepatitis B patients: a phase 1b placebo-controlled trial. Hum. Vaccin. Immunother. 16, 388–399 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Yoshida, O. et al. Long term HBsAg reduction by a nasal administrative therapeutic vaccine containing HBsAg and HBcAg mixed with mucoadhesive CVP (CVP-NASVAC) in patients with chronic HBV infection: the results of 30 months follow up. Hepatology 74 (S1), abstract 94 (2021).

  118. Hensel, N. et al. Memory-like HCV-specific CD8+ T cells retain a molecular scar after cure of chronic HCV infection. Nat. Immunol. 22, 229–239 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Michler, T. et al. Knockdown of virus antigen expression increases therapeutic vaccine efficacy in high-titer hepatitis B virus carrier mice. Gastroenterology 158, 1762–1775 e1769 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Kuipery, A. et al. Immunomodulation and RNA interference alter hepatitis B virus-specific CD8 T-cell recognition of infected HepG2-NTCP. Hepatology 75, 1539–1550 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Fumagalli, V. et al. Serum HBsAg clearance has minimal impact on CD8+T cell responses in mouse models of HBV infection. J. Exp. Med. 217, e20200298 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Salimzadeh, L. et al. PD-1 blockade partially recovers dysfunctional virus-specific B cells in chronic hepatitis B infection. J. Clin. Invest. 128, 4573–4587 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Scalfaro, P. et al. A phase 2 study testing FXR agonist Vonafexor in treatment naïve patients with chronic hepatitis B (CHB): preliminary week 16 results. J. Hepatol. 75 (S2), abstract PO-2844 (2021).

  124. Bazinet, M. et al. Safety and efficacy of 48 weeks REP 2139 or REP 2165, tenofovir disoproxil, and pegylated interferon Alfa-2a in patients with chronic HBV infection naive to nucleos(t)ide therapy. Gastroenterology 158, 2180–2194 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Yuen, M. F. et al. Preliminary results from a phase 2 study evaluating VIR-2218 alone and in combination with pegylated interferon alfa-2a in participants with chronic hepatitis B infection. Hepatology 74 (S1), abstract 93 (2021).

  126. Yuen, M. et al. Preliminary 48-week safety and efficacy data of Vir-2218 alone and in combination with pegylated interferon alfa in participants with chronic HBV infection. Presented at The Liver Meeting (AASLD) (2022).

  127. Yuen, M. F. et al. Efficacy and safety of the siRNA JNJ-3989 and/or the capsid assembly modulator JNJ-6379 for the treatment of chronic hepatitis B virus infection: results from the phase 2b REEF-1 study. Presented at The Liver Meeting (AASLD) (2021).

  128. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Cheng, Y. et al. Multifactorial heterogeneity of virus-specific T cells and association with the progression of human chronic hepatitis B infection. Sci. Immunol. 4, eaau6905 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Heim, K. et al. TOX defines the degree of CD8+ T cell dysfunction in distinct phases of chronic HBV infection. Gut 70, 1550–1560 (2020).

    Article  PubMed  Google Scholar 

  131. Hoogeveen, R. C. et al. Phenotype and function of HBV-specific T cells is determined by the targeted epitope in addition to the stage of infection. Gut 68, 893–904 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Schuch, A. et al. Phenotypic and functional differences of HBV core-specific versus HBV polymerase-specific CD8+ T cells in chronically HBV-infected patients with low viral load. Gut 68, 905–915 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Acerbi, G. et al. Functional reconstitution of HBV-specific CD8 T cells by in vitro polyphenol treatment in chronic hepatitis B. J. Hepatol. 74, 783–793 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. Fisicaro, P. et al. Targeting mitochondrial dysfunction can restore antiviral activity of exhausted HBV-specific CD8 T cells in chronic hepatitis B. Nat. Med. 23, 327–336 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Ghoneim, H. E. et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170, 142–157 e119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sen, D. R. et al. The epigenetic landscape of T cell exhaustion. Science 354, 1165–1169 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kennedy, P. T. F. et al. Preserved T-cell function in children and young adults with immune-tolerant chronic hepatitis B. Gastroenterology 143, 637–645 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Le Bert, N. et al. Effects of hepatitis B surface antigen on virus-specific and global T cells in patients with chronic hepatitis B virus infection. Gastroenterology 159, 652–664 (2020).

    Article  PubMed  Google Scholar 

  140. Mieli-Vergani, G. et al. Peginterferon Alfa-2a (40KD) plus lamivudine or entecavir in children with immune-tolerant chronic hepatitis B. J. Pediatr. Gastroenterol. Nutr. 73, 156–160 (2021).

    CAS  PubMed  Google Scholar 

  141. Rosenthal, P. et al. Combination of entecavir/peginterferon Alfa-2a in children with hepatitis B e antigen-positive immune tolerant chronic hepatitis B virus infection. Hepatology 69, 2326–2337 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Feld, J. J. et al. Entecavir and peginterferon Alfa-2a in adults with hepatitis B e antigen-positive immune-tolerant chronic hepatitis B virus infection. Hepatology 69, 2338–2348 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Papatheodoridi, M. & Papatheodoridis, G. Can we stop nucleoside analogues before HBsAg loss? J. Viral Hepat. 26, 936–941 (2019).

    CAS  PubMed  Google Scholar 

  144. Hirode, G. et al. Off-therapy response after nucleos(t)ide analogue withdrawal in patients with chronic hepatitis B: an international, multicenter, multiethnic cohort (RETRACT-B Study). Gastroenterology 162, 757–771 (2022).

    Article  CAS  PubMed  Google Scholar 

  145. Sonneveld, M. J. et al. Probability of HBsAg loss after nucleo(s)tide analogue withdrawal depends on HBV genotype and viral antigen levels. J. Hepatol. https://doi.org/10.1016/j.jhep.2022.01.007 (2022).

    Article  PubMed  Google Scholar 

  146. Zimmer, C. L. et al. Increased NK cell function after cessation of long-term nucleos(t)ide analogue treatment in chronic hepatitis B is associated with liver damage and HBsAg loss. J. Infect. Dis. 217, 1656–1666 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Rinker, F. et al. Hepatitis B virus-specific T cell responses after stopping nucleos(t)ide analogue therapy in HBeAg-negative chronic hepatitis B. J. Hepatol. 69, 584–593 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Rivino, L. et al. Hepatitis B virus-specific T cells associate with viral control upon nucleos(t)ide-analogue therapy discontinuation. J. Clin. Invest. 128, 668–681 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Anderson, R. T. et al. Challenges, considerations, and principles to guide trials of combination therapies for chronic hepatitis B virus. Gastroenterology 156, e524 (2019).

    Article  Google Scholar 

  150. Liu, J. et al. Effect of combination treatment based on interferon and nucleos(t)ide analogues on functional cure of chronic hepatitis B: a systematic review and meta-analysis. Hepatol. Int. 14, 958–972 (2020).

    Article  PubMed  Google Scholar 

  151. Buyse, M., Sargent, D. J., Grothey, A., Matheson, A. & de Gramont, A. Biomarkers and surrogate end points–the challenge of statistical validation. Nat. Rev. Clin. Oncol. 7, 309–331 (2010).

    Article  PubMed  Google Scholar 

  152. Buti, M., Riveiro-Barciela, M., Rodriguez-Frias, F., Tabernero, D. & Esteban, R. Role of biomarkers in guiding cure of viral hepatitis B. Semin. Liver Dis. 40, 49–60 (2020).

    Article  PubMed  Google Scholar 

  153. Vachon, A. & Osiowy, C. Novel biomarkers of hepatitis B virus and their use in chronic hepatitis B patient management. Viruses 13, 951 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Martinot-Peignoux, M. et al. Baseline HBsAg and HBcrAg titres allow peginterferon-based ‘precision medicine’ in HBeAg-negative chronic hepatitis B patients. J. Viral Hepat. 23, 905–911 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Lim, S. G. et al. Comparative biomarkers for HBsAg loss with antiviral therapy shows dominant influence of quantitative HBsAg (qHBsAg). Aliment. Pharmacol. Ther. 53, 172–182 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Zhang, M. et al. Rapidly decreased HBV RNA predicts responses of pegylated interferons in HBeAg-positive patients: a longitudinal cohort study. Hepatol. Int. 14, 212–224 (2020).

    Article  PubMed  Google Scholar 

  157. Fan, R. et al. Combining hepatitis B virus RNA and hepatitis B core-related antigen: guidance for safely stopping nucleos(t)ide analogues in hepatitis B e antigen-positive patients with chronic hepatitis B. J. Infect. Dis. 222, 611–618 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. van Halewijn, G. J. et al. Diagnostic and analytical performance of the hepatitis B core related antigen immunoassay in hepatitis B patients. J. Clin. Virol. 114, 1–5 (2019).

    Article  PubMed  Google Scholar 

  159. Liu, J., Li, T., Zhang, L. & Xu, A. The role of hepatitis B surface antigen in nucleos(t)ide analogues cessation among Asian patients with chronic hepatitis B: a systematic review. Hepatology 70, 1045–1055 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Gehring, A. J. et al. Immunological biomarker discovery in cure regimens for chronic hepatitis B virus infection. J. Hepatol. 77, 525–538 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. Boyd, A., Dezanet, L. N. C. & Lacombe, K. Functional cure of hepatitis B virus infection in individuals with HIV-coinfection: a literature review. Viruses 13, 1341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Yoshikawa, S. et al. Impact of immune reconstitution-induced hepatic flare on hepatitis B surface antigen loss in hepatitis B virus/human immunodeficiency virus-1 coinfected patients. J. Infect. Dis. 223, 2080–2089 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Boni, C. et al. Natural killer cell phenotype modulation and natural killer/T-cell interplay in nucleos(t)ide analogue-treated hepatitis e antigen-negative patients with chronic hepatitis B. Hepatology 62, 1697–1709 (2015).

    Article  CAS  PubMed  Google Scholar 

  164. Stegmann, K. A. et al. CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver. Sci. Rep. 6, 26157 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Pallett, L. J. et al. Longevity and replenishment of human liver-resident memory T cells and mononuclear phagocytes. J. Exp. Med. 217, e20200050 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Pallett, L. J. et al. IL-2(high) tissue-resident T cells in the human liver: sentinels for hepatotropic infection. J. Exp. Med. 214, 1567–1580 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Gill, U. S., Pallett, L. J., Kennedy, P. T. F. & Maini, M. K. Liver sampling: a vital window into HBV pathogenesis on the path to functional cure. Gut 67, 767–775 (2018).

    CAS  PubMed  Google Scholar 

  168. Gill, U. S. et al. Fine needle aspirates comprehensively sample intrahepatic immunity. Gut 68, 1493–1503 (2019).

    Article  CAS  PubMed  Google Scholar 

  169. Zhang, C. et al. Single-cell RNA sequencing reveals intrahepatic and peripheral immune characteristics related to disease phases in HBV-infected patients. Gut https://doi.org/10.1136/gutjnl-2021-325915 (2022).

    Article  PubMed  Google Scholar 

  170. Caviglia, G. P. et al. Quantitation of HBV cccDNA in anti-HBc-positive liver donors by droplet digital PCR: a new tool to detect occult infection. J. Hepatol. 69, 301–307 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Charre, C., Levrero, M., Zoulim, F. & Scholtes, C. Non-invasive biomarkers for chronic hepatitis B virus infection management. Antivir. Res. 169, 104553 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Testoni, B. et al. Serum hepatitis B core-related antigen (HBcrAg) correlates with covalently closed circular DNA transcriptional activity in chronic hepatitis B patients. J. Hepatol. 70, 615–625 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Pollicino, T. et al. Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones. Gastroenterology 130, 823–837 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Chow, N. et al. Long term nucleos(t)ide analogue therapy reduced the extent of HBV DNA integration in chronic hepatitis B patients. Hepatology 72, 22 (2020).

    Google Scholar 

  175. Tropberger, P. et al. Mapping of histone modifications in episomal HBV cccDNA uncovers an unusual chromatin organization amenable to epigenetic manipulation. Proc. Natl Acad. Sci. USA 112, E5715–E5724 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Yuen, M. F. et al. Long-term serological, virological and histological responses to RNA inhibition by ARC-520 in Chinese chronic hepatitis B patients on entecavir treatment. Gut 71, 789–797 (2022).

    Article  CAS  PubMed  Google Scholar 

  177. Allweiss, L. et al. Therapeutic shutdown of HBV transcripts promotes reappearance of the SMC5/6 complex and silencing of the viral genome in vivo. Gut 71, 372–381 (2022).

    Article  CAS  PubMed  Google Scholar 

  178. Woodcock, J. & LaVange, L. M. Master protocols to study multiple therapies, multiple diseases, or both. N. Engl. J. Med. 377, 62–70 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. Adaptive Platform Trials, Coalition. Adaptive platform trials: definition, design, conduct and reporting considerations. Nat. Rev. Drug Discov. 18, 797–807 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Y. C. Tan for his assistance in retrieving references and creating tables of the therapeutic agents and G. Ligat for assistance in drafting the figures. S.G.L. acknowledges the following grant support: NMRC grant NMRC/TCR/014-NUHS/2015, NMRC/CIRG/1351/2013, NMRC/CSA-SI/0016/2017, NMRC/CIRG/1479/2017 and NMRC/OFLCG19May-0038. T.F.B. acknowledges the following grant support: European Union (EU H2020-HEPCAR #667273, ERC-AdG-2020-FIBCAN #101021417), the French Cancer Agency (TheraHCC2.0 IHU201901299), the ANRS (ECTZ103701, 131760, 104017, ECTZ75178), Inserm Plan Cancer 2019–2023, IdEx Unistra (ANR-10-IDEX-0002), SFRI-STRAT’US (ANR 20-SFRI-0012) and EUR IMCBio (ANR-17-EURE-0023) under the framework of the French ‘Investments for the Future’ programme. F.Z. and M.L. acknowledge the support of French National Research Agency (ANR) Program Investissements d’Avenir (cirB-RNA project – ANR-17-RHUS-0003); the European Union H2020 grant EU H2020-847939-IP-cure-B.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, discussion of content, writing, and reviewing and editing the manuscript.

Corresponding author

Correspondence to Seng Gee Lim.

Ethics declarations

Competing interests

S.G.L. is on the advisory board for Gilead Sciences, Abbott, Roche, Janssen, GlaxoSmithKline (GSK), Grifols, Arbutus, Assembly. He is on the speakers’ bureau for Gilead Sciences, Abbott GSK, Roche and Janssen, and receives educational/research funding from Abbott, Merck Sharpe and Dohme (MSD), Gilead Sciences. T.F.B. is a founder, shareholder and adviser for Alentis Therapeutics. He receives Institutional grant support from Aligos, Janssen, Alentis, Roche. C.B. is a consultant and on the advisory board for Gilead Sciences. E.G. is on the advisory board for AbbVie, Aligos Therapeutics, Arbutus Biopharma, Arrowhead Pharmaceuticals, Assembly Biosciences, Avalia Immunotherapies, BlueJay Therapeutics, Brii Biosciences, Clear B Therapeutics, Dicerna Pharmaceuticals, Enanta Pharmaceuticals, Finch Therapeutics, Gilead Sciences, GSK, Immunocore, Janssen, Roche, Silverback, Vaccitech, Benatorx, Virion Therapeutics and Vir Biotechnology. He is on the speakers’ bureau for Gilead Sciences, AbbVie, Abbott Diagnostics, Intellia and Roche. M.L. receives educational/research funding from AbbVie, Gilead, MSD, Roche, Bayer, Ipsen. A.L. receives research grants from Gilead, Target. M.K.M. is on the advisory board for Gilead Sciences, Roche, GSK, Vir Biotechnology and receives research funding from Gilead Sciences. N.T. is on the consulting/advisory boards for Moderna; she receives Institutional grant support from Gilead Sciences, GSK, Roche–Genentech and Helio Health. F.Z. acts as a consultant for Aligos, Antios, Arbutus, Assembly, Enanta, Gilead, GSK, Roche, Viravaxx, Zhimeng; he receives research grants from Assembly, Beam, Janssen, Viravaxx.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Thomas Berg, Maria Buti and the other, anonymous, reviewer(s) for their contribution to the peer-review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, S.G., Baumert, T.F., Boni, C. et al. The scientific basis of combination therapy for chronic hepatitis B functional cure. Nat Rev Gastroenterol Hepatol 20, 238–253 (2023). https://doi.org/10.1038/s41575-022-00724-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00724-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing