Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics, pathobiology and therapeutic opportunities of polycystic liver disease

Abstract

Polycystic liver diseases (PLDs) are inherited genetic disorders characterized by progressive development of intrahepatic, fluid-filled biliary cysts (more than ten), which constitute the main cause of morbidity and markedly affect the quality of life. Liver cysts arise in patients with autosomal dominant PLD (ADPLD) or in co-occurrence with renal cysts in patients with autosomal dominant or autosomal recessive polycystic kidney disease (ADPKD and ARPKD, respectively). Hepatic cystogenesis is a heterogeneous process, with several risk factors increasing the odds of developing larger cysts. Depending on the causative gene, PLDs can arise exclusively in the liver or in parallel with renal cysts. Current therapeutic strategies, mainly based on surgical procedures and/or chronic administration of somatostatin analogues, show modest benefits, with liver transplantation as the only potentially curative option. Increasing research has shed light on the genetic landscape of PLDs and consequent cholangiocyte abnormalities, which can pave the way for discovering new targets for therapy and the design of novel potential treatments for patients. Herein, we provide a critical and comprehensive overview of the latest advances in the field of PLDs, mainly focusing on genetics, pathobiology, risk factors and next-generation therapeutic strategies, highlighting future directions in basic, translational and clinical research.

Key points

  • Mutations in 12 different genes have been linked to the development of polycystic liver disease (PLD) and might explain most of the cases.

  • Most of the affected genes code for proteins that are localized in the endoplasmic reticulum, primary cilium and/or plasma membrane of cholangiocytes.

  • Cystic cholangiocytes are characterized by aberrant proteostasis leading to endoplasmic reticulum stress, autophagy and primary cilium abnormalities, which result in adaptive hyperproliferative, hypersecretory, pro-angiogenic and pro-fibrotic phenotypes.

  • Female gender is considered an important risk factor for the development of symptomatic PLD as oestrogens promote hepatic cystic growth, thus representing a potential target for therapy.

  • The limited long-term benefits provided by the current clinical therapeutic approaches based on somatostatin analogues point out the necessity of developing novel therapeutic strategies to halt hepatic cystogenesis.

  • Future clinical trials should consider combinatory therapeutic regimens that target key dysregulated processes in PLD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mutated genes in polycystic liver disease.
Fig. 2: Proposed mechanisms related to hepatic cystogenesis.
Fig. 3: Signalling pathways responsible for hepatic cystogenesis development and progression.

Similar content being viewed by others

References

  1. van Aerts, R. M. M., van de Laarschot, L. F. M., Banales, J. M. & Drenth, J. P. H. Clinical management of polycystic liver disease. J. Hepatol. 68, 827–837 (2018).

    Article  PubMed  Google Scholar 

  2. Perugorria, M. et al. Polycystic liver diseases: advanced insights into the molecular mechanisms. Nat. Rev. Gastroenterol. Hepatol. 11, 750–761 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, Z., Wang, Z. & Huang, Y. Polycystic liver disease: classification, diagnosis, treatment process, and clinical management. World J. Hepatol. 12, 72–83 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arnold, H. & Harrison, S. New advances in evaluation and management of patients with polycystic liver disease. Am. J. Gastroenterol. 100, 2569–2582 (2005).

    Article  PubMed  Google Scholar 

  5. Van Keimpema, L. et al. Patients with isolated polycystic liver disease referred to liver centres: clinical characterization of 137 cases. Liver Int. 31, 92–98 (2011).

    Article  PubMed  Google Scholar 

  6. Barbier, L. et al. Polycystic liver disease: hepatic venous outflow obstruction lesions of the noncystic parenchyma have major consequences. Hepatology 68, 652–662 (2018).

    Article  PubMed  Google Scholar 

  7. Brandman, D. Jaundice in polycystic liver disease: more than meets the eye. Clin. Liver Dis. 17, 165–168 (2021).

    Article  Google Scholar 

  8. Neijenhuis, M. et al. Impact of liver volume on polycystic liver disease-related symptoms and quality of life. United European Gastroenterol. J. 6, 81–88 (2018).

    Article  PubMed  Google Scholar 

  9. Wong, M., McCaughan, G. & Strasser, S. An update on the pathophysiology and management of polycystic liver disease. Expert Rev. Gastroenterol. Hepatol. 11, 569–581 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Suwabe, T. et al. Epidemiology of autosomal-dominant polycystic liver disease in Olmsted county. JHEP Rep. 2, 100166 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Torres, V. & Harris, P. Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int. 76, 149–168 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ebner, K. et al. Rationale, design and objectives of ARegPKD, a European ARPKD registry study. BMC Nephrol. 16, 22 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. van Aerts, R. et al. Severity in polycystic liver disease is associated with aetiology and female gender: results of the International PLD Registry. Liver Int. 39, 575–582 (2019).

    Article  PubMed  CAS  Google Scholar 

  14. van Keimpema, L. et al. Excellent survival after liver transplantation for isolated polycystic liver disease: an European Liver Transplant Registry study. Transplant. Int. 24, 1239–1245 (2011).

    Article  Google Scholar 

  15. D’Agnolo, H. et al. Center is an important indicator for choice of invasive therapy in polycystic liver disease. Transplant. Int. 30, 76–82 (2017).

    Article  Google Scholar 

  16. Bae, K. et al. Magnetic resonance imaging evaluation of hepatic cysts in early autosomal-dominant polycystic kidney disease: the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease cohort. Clin. J. Am. Soc. Nephrol. 1, 64–69 (2006).

    Article  PubMed  Google Scholar 

  17. Aapkes, S. et al. Estrogens in polycystic liver disease: a target for future therapies? Liver Int. 41, 2009–2019 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. van Aerts, R. M. M. et al. Estrogen-containing oral contraceptives are associated with polycystic liver disease severity in premenopausal patients. Clin. Pharmacol. Ther. 106, 1338–1345 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. The European Polycystic Kidney Disease Consortium. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell 77, 881–894 (1994).

    Article  Google Scholar 

  20. Gabow, P. et al. Risk factors for the development of hepatic cysts in autosomal dominant polycystic kidney disease. Hepatology 11, 1033–1037 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Sherstha, R. et al. Postmenopausal estrogen therapy selectively stimulates hepatic enlargement in women with autosomal dominant polycystic kidney disease. Hepatology 26, 1282–1286 (1997).

    CAS  PubMed  Google Scholar 

  22. Mochizuki, T. et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272, 1339–1342 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Besse, W. et al. ALg9 mutation carriers develop kidney and liver cysts. J. Am. Soc. Nephrol. 30, 2091–2102 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cornec-Le Gall, E. et al. Monoallelic mutations to DNAJB11 cause atypical autosomal-dominant polycystic kidney disease. Am. J. Hum. Genet. 102, 832–844 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huynh, V. T. et al. Clinical spectrum, prognosis and estimated prevalence of DNAJB11-kidney disease. Kidney Int. 98, 476–487 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Porath, B. et al. Mutations in GANAB, encoding the glucosidase IIα subunit, cause autosomal-dominant polycystic kidney and liver disease. Am. J. Hum. Genet. 98, 1193–1207 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van de Laarschot, L. et al. Novel GANAB variants associated with polycystic liver disease. Orphanet J. Rare Dis. 15, 302 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cnossen, W. et al. LRP5 variants may contribute to ADPKD. Eur. J. Hum. Genet. 24, 237–242 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Ward, C. J. et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat. Genet. 30, 259–269 (2002).

    Article  PubMed  Google Scholar 

  30. Lu, H. et al. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease. Nat. Genet. 49, 1025–1034 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boerrigter, M. M., Bongers, E. M. H. F., Lugtenberg, D., Nevens, F. & Drenth, J. P. H. Polycystic liver disease genes: practical considerations for genetic testing. Eur. J. Med. Genet. 64, 104160 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Drenth, J. P. H., Te Morsche, R. H. M., Smink, R., Bonifacino, J. S. & Jansen, J. B. M. J. Germline mutations in PRKCSH are associated with autosomal dominant polycystic liver disease. Nat. Genet. 33, 345–347 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Davila, S. et al. Mutations in SEC63 cause autosomal dominant polycystic liver disease. Nat. Genet. 36, 575–577 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Besse, W. et al. Isolated polycystic liver disease genes define effectors of polycystin-1 function. J. Clin. Invest. 127, 1772–1785 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Besse, W. et al. A noncoding variant in GANAB explains isolated polycystic liver disease (PCLD) in a large family. Hum. Mutat. 39, 378–382 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cnossen, W. R. et al. Whole-exome sequencing reveals LRP5 mutations and canonical Wnt signaling associated with hepatic cystogenesis. Proc. Natl Acad. Sci. USA 111, 5343–5348 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, J., Yang, H., Guo, R., Sang, X. & Mao, Y. Association of a novel PKHD1 mutation in a family with autosomal dominant polycystic liver disease. Ann. Transl. Med. 9, 120–120 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gainullin, V. G., Hopp, K., Ward, C. J., Hommerding, C. J. & Harris, P. C. Polycystin-1 maturation requires polycystin-2 in a dose-dependent manner. J. Clin. Invest. 125, 607–620 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Huang, B. Q. et al. Isolation and characterization of cholangiocyte primary cilia. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G500–G509 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Koulen, P. et al. Polycystin-2 is an intracellular calcium release channel. Nat. Cell Biol. 4, 191–197 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Anyatonwu, G. I., Estrada, M., Tian, X., Somlo, S. & Ehrlich, B. E. Regulation of ryanodine receptor-dependent calcium signaling by polycystin-2. Proc. Natl Acad. Sci. USA 104, 6454–6459 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, Y., Wright, J. M., Qian, F., Germino, G. G. & Guggino, W. B. Polycystin 2 interacts with type I inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling. J. Biol. Chem. 280, 41298–41306 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Wu, Y. et al. Kinesin-2 mediates physical and functional interactions between polycystin-2 and fibrocystin. Hum. Mol. Genet. 15, 3280–3292 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. MacDonald, B. T., Tamai, K. & He, X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Perugorria, M. et al. Wnt-β-catenin signalling in liver development, health and disease. Nat. Rev. Gastroenterol. Hepatol. 16, 121–136 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Kim, S. et al. The polycystin complex mediates Wnt/Ca2+ signalling. Nat. Cell Biol. 18, 752–764 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Spirli, C. et al. Protein kinase A-dependent pSer(675)-β-catenin, a novel signaling defect in a mouse model of congenital hepatic fibrosis. Hepatology 58, 1713–1723 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Lang, S. et al. An update on Sec 61 channel functions, mechanisms, and related diseases. Front. Physiol. 8, 887 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Park, E. & Rapoport, T. A. Mechanisms of Sec61SecY-mediated protein translocation across membranes. Annu. Rev. Biophys. 41, 21–40 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Pobre, K. F. R., Poet, G. J. & Hendershot, L. M. The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: getting by with a little help from ERdj friends. J. Biol. Chem. 294, 2098–2108 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Aebi, M. N-linked protein glycosylation in the ER. Biochim. Biophys. Acta 1833, 2430–2437 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. D’Alessio, C. & Dahms, N. M. Glucosidase II and MRH-domain containing proteins in the secretory pathway. Curr. Protein Pept. Sci. 16, 31–48 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Tannous, A., Pisoni, G. B., Hebert, D. N. & Molinari, M. N-linked sugar-regulated protein folding and quality control in the ER. Semin. Cell Dev. Biol. 41, 79–89 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Fedeles, S. V. et al. A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation. Nat. Genet. 43, 639–647 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Newby, L. J. et al. Identification, characterization, and localization of a novel kidney polycystin-1-polycystin-2 complex. J. Biol. Chem. 277, 20763–20773 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Gevers, T. J. G. & Drenth, J. P. H. Diagnosis and management of polycystic liver disease. Nat. Rev. Gastroenterol. Hepatol. 10, 101–108 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Wills, E. S., Roepman, R. & Drenth, J. P. H. Polycystic liver disease: ductal plate malformation and the primary cilium. Trends Mol. Med. 20, 261–270 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Raynaud, P. et al. A classification of ductal plate malformations based on distinct pathogenic mechanisms of biliary dysmorphogenesis. Hepatology 53, 1959–1966 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Lemaigre, F. P. Development of the intrahepatic and extrahepatic biliary tract: a framework for understanding congenital diseases. Annu. Rev. Pathol. 15, 1–22 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Abu-Wasel, B., Walsh, C., Keough, V. & Molinari, M. Pathophysiology, epidemiology, classification and treatment options for polycystic liver diseases. World J. Gastroenterol. 19, 5775–5786 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Janssen, M. J. et al. Secondary, somatic mutations might promote cyst formation in patients with autosomal dominant polycystic liver disease. Gastroenterology 141, 2056–2063.e2 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Beaudry, J. B. et al. Proliferation-independent initiation of biliary cysts in polycystic liver diseases. PLoS ONE 10, e0132295 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Everson, G. T., Taylor, M. R. G. & Doctor, R. B. Polycystic disease of the liver. Hepatology 40, 774–782 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Sato, Y. et al. Cholangiocytes with mesenchymal features contribute to progressive hepatic fibrosis of the polycystic kidney rat. Am. J. Pathol. 171, 1859–1871 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hassane, S. et al. Elevated TGFβ-Smad signalling in experimental Pkd1 models and human patients with polycystic kidney disease. J. Pathol. 222, 21–31 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Yanai, M. et al. FGF signaling segregates biliary cell-lineage from chick hepatoblasts cooperatively with BMP4 and ECM components in vitro. Dev. Dyn. 237, 1268–1283 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Neugebauer, J. M., Amack, J. D., Peterson, A. G., Bisgrove, B. W. & Yost, H. J. FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature 458, 651–654 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pavik, I. et al. Patients with autosomal dominant polycystic kidney disease have elevated fibroblast growth factor 23 levels and a renal leak of phosphate. Kidney Int. 79, 234–240 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Ezratty, E. J. et al. A role for the primary cilium in notch signaling and epidermal differentiation during skin development. Cell 145, 1129–1141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lopes, S. S. et al. Notch signalling regulates left-right asymmetry through ciliary length control. Development 137, 3625–3632 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Shih, H. P. et al. A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation. Development 139, 2488–2499 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Decaens, T. et al. Stabilization of β-catenin affects mouse embryonic liver growth and hepatoblast fate. Hepatology 47, 247–258 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. May-Simera, H. L. & Kelley, M. W. Cilia, Wnt signaling, and the cytoskeleton. Cilia 1, 7 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Benzing, T., Simons, M. & Walz, G. Wnt signaling in polycystic kidney disease. J. Am. Soc. Nephrol. 18, 1389–1398 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Clotman, M. et al. The onecut transcription factor HNF6 is required for normal development of the biliary tract. Development 129, 1819–1828 (2007).

    Article  Google Scholar 

  76. Hunter, M. P. et al. The homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis. Dev. Biol. 308, 355–367 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pierreux, C. E. et al. The transcription factor hepatocyte nuclear factor-6 controls the development of pancreatic ducts in the mouse. Gastroenterology 130, 532–541 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Hou, X. et al. Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. J. Clin. Invest. 109, 533–540 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hiesberger, T. et al. Mutation of hepatocyte nuclear factor–1β inhibits Pkhd1 gene expression and produces renal cysts in mice. J. Clin. Invest. 113, 814–825 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gresh, L. et al. A transcriptional network in polycystic kidney disease. EMBO J. 23, 1657–1668 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yamasaki, H. et al. Suppression of C/EBPα expression in periportal hepatoblasts may stimulate biliary cell differentiation through increased Hnf6 and Hnf1b expression. Development 133, 4233–4243 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Hand, N. J. et al. The microRNA-30 family is required for vertebrate hepatobiliary development. Gastroenterology 136, 1081–1090 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Chandok, N. Polycystic liver disease: a clinical review. Ann. Hepatol. 11, 819–26 (2012).

    Article  PubMed  Google Scholar 

  84. Lee-Law, P. Y., Van De Laarschot, L. F. M., Banales, J. M. & Drenth, J. P. H. Genetics of polycystic liver diseases. Curr. Opin. Gastroenterol. 35, 65–72 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Wills, E. et al. Chromosomal abnormalities in hepatic cysts point to novel polycystic liver disease genes. Eur. J. Hum. Genet. 24, 1707–1714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Besse, W. et al. Adult inactivation of the recessive polycystic kidney disease gene causes polycystic liver disease. Kidney360 1, 1068–1076 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Janssen, M. J., Salomon, J., te Morsche, R. H. M. & Drenth, J. P. H. Loss of heterozygosity is present in sec63 germline carriers with polycystic liver disease. PLoS ONE 7, e50324 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Janssen, M. J. et al. Somatic loss of polycystic disease genes contributes to the formation of isolated and polycystic liver cysts. Gut 64, 688–690 (2015).

    Article  PubMed  Google Scholar 

  89. Banales, J. M., Munoz-Garrido, P. & Bujanda, L. Somatic second-hit mutations leads to polycystic liver diseases. World J. Gastroenterol. 19, 141–143 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pei, Y. et al. Somatic PKD2 mutations in individual kidney and liver cysts support a ‘two-hit’ model of cystogenesis in type 2 autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 10, 1524–1529 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Watnick, T. J. et al. Somatic mutation in individual liver cysts supports a two-hit model of cystogenesis in autosomal dominant polycystic kidney disease. Mol. Cell 2, 247–251 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Santos-Laso, A. et al. New advances in polycystic liver diseases. Semin. Liver Dis. 37, 45–55 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Masyuk, A. I. et al. Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology 131, 911–920 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Banales, J. M. et al. Hepatic cystogenesis is associated with abnormal expression and location of ion transporters and water channels in an animal model of autosomal recessive polycystic kidney disease. Am. J. Pathol. 173, 1637–1646 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Spirli, C. et al. Adenylyl cyclase 5 links changes in calcium homeostasis to cAMP-dependent cyst growth in polycystic liver disease. J. Hepatol. 66, 571–580 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Banales, J. M. et al. The cAMP effectors Epac and protein kinase A (PKA) are involved in the hepatic cystogenesis of an animal model of autosomal recessive polycystic kidney disease (ARPKD). Hepatology 49, 160–174 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Gradilone, S. et al. Activation of Trpv4 reduces the hyperproliferative phenotype of cystic cholangiocytes from an animal model of ARPKD. Gastroenterology 139, 304–314.e2 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Munoz-Garrido, P. et al. Ursodeoxycholic acid inhibits hepatic cystogenesis in experimental models of polycystic liver disease. J. Hepatol. 63, 952–961 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Masyuk, T., Masyuk, A., Torres, V., Harris, P. & Larusso, N. Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3′,5′-cyclic monophosphate. Gastroenterology 132, 1104–1116 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Masyuk, T. et al. Pasireotide is more effective than octreotide in reducing hepatorenal cystogenesis in rodents with polycystic kidney and liver diseases. Hepatology 58, 409–421 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Perugorria, M. et al. Bile acids in polycystic liver diseases: triggers of disease progression and potential solution for treatment. Dig. Dis. 35, 275–281 (2017).

    Article  PubMed  Google Scholar 

  102. Marin, J., Macias, R., Briz, O., Banales, J. & Monte, M. Bile acids in physiology, pathology and pharmacology. Curr. Drug Metab. 17, 4–29 (2015).

    Article  PubMed  CAS  Google Scholar 

  103. Masyuk, T. V. et al. TGR5 contributes to hepatic cystogenesis in rodents with polycystic liver diseases through cyclic adenosine monophosphate/Gαs signaling. Hepatology 66, 1197–1218 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Reich, M. et al. TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro. Gut 65, 487–501 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Sato, Y. et al. Activation of the MEK5/ERK5 cascade is responsible for biliary dysgenesis in a rat model of Caroli’s disease. Am. J. Pathol. 166, 49–60 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Torres, V. E. et al. Epidermal growth factor receptor tyrosine kinase inhibition is not protective in PCK rats. Kidney Int. 66, 1766–1773 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Fabris, L. et al. Effects of angiogenic factor overexpression by human and rodent cholangiocytes in polycystic liver diseases. Hepatology 43, 1001–1012 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Amura, C. R. et al. VEGF receptor inhibition blocks liver cyst growth in pkd2WS25/− mice. Am. J. Physiol. Cell Physiol. 293, C419–C428 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Spirli, C. et al. ERK1/2-dependent vascular endothelial growth factor signaling sustains cyst growth in polycystin-2 defective mice. Gastroenterology 138, 360–371.e7 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Spirli, C. et al. Mammalian target of rapamycin regulates vascular endothelial growth factor-dependent liver cyst growth in polycystin-2-defective mice. Hepatology 51, 1778–1788 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Alvaro, D. et al. Morphological and functional features of hepatic cyst epithelium in autosomal dominant polycystic kidney disease. Am. J. Pathol. 172, 321–332 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Renken, C., Fischer, D., Kundt, G., Gretz, N. & Haffner, D. Inhibition of mTOR with sirolimus does not attenuate progression of liver and kidney disease in PCK rats. Nephrol. Dial. Transplant. 26, 92–100 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Ren, X. S. et al. Activation of the PI3K/mTOR pathway is involved in cystic proliferation of cholangiocytes of the PCK rat. PLoS ONE 9, e87660 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Alvaro, D. et al. Intracellular pathways mediating estrogen-induced cholangiocyte proliferation in the rat. Hepatology 36, 297–304 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Isse, K. et al. Estrogen stimulates female biliary epithelial cell interleukin-6 expression in mice and humans. Hepatology 51, 869–880 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Fatima, L. A. et al. Estrogen receptor 1 (ESR1) regulates VEGFA in adipose tissue. Sci. Rep. 7, 16716 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Franchitto, A. et al. Recent advances on the mechanisms regulating cholangiocyte proliferation and the significance of the neuroendocrine regulation of cholangiocyte pathophysiology. Ann. Transl. Med. 1, 27 (2013).

    PubMed  PubMed Central  Google Scholar 

  118. Banales, J. M., Prieto, J. & Medina, J. F. Cholangiocyte anion exchange and biliary bicarbonate excretion. World J. Gastroenterol. 12, 3496–3511 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li, D. et al. Overexpression of aquaporin 1 on cysts of patients with polycystic liver disease. Rev. Esp. Enferm. Dig. 108, 71–78 (2016).

    PubMed  Google Scholar 

  120. Wang, X. et al. Insignificant effect of secretin in rodent models of polycystic kidney and liver disease. Am. J. Physiol. Ren. Physiol. 303, F1089–F1098 (2012).

    Article  CAS  Google Scholar 

  121. Ehrlich, L. et al. Biliary epithelium: a neuroendocrine compartment in cholestatic liver disease. Clin. Res. Hepatol. Gastroenterol. 42, 296–305 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bankir, L., Bichet, D. & Morgenthaler, N. Vasopressin: physiology, assessment and osmosensation. J. Intern. Med. 282, 284–297 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Gattone, V. H., Wang, X., Harris, P. C. & Torres, V. E. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat. Med. 9, 1323–1326 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Wang, X., Gattone, V., Harris, P. C. & Torres, V. E. Effectiveness of vasopressin V2 receptor antagonists OPC-31260 and OPC-41061 on polycystic kidney disease development in the PCK rat. J. Am. Soc. Nephrol. 16, 846–851 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Mancinelli, R. et al. Vasopressin regulates the growth of the biliary epithelium in polycystic liver disease. Lab. Invest. 96, 1147–1155 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mizuno, H. et al. Tolvaptan for the treatment of enlarged polycystic liver disease. Case Rep. Nephrol. Dial. 7, 108–111 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Banales, J. M. et al. Cholangiocyte pathobiology. Nat. Rev. Gastroenterol. Hepatol. 16, 269–281 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Masyuk, A. et al. Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G725–34 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gradilone, S. et al. Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc. Natl Acad. Sci. USA 104, 19138–19143 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kobayashi, T. & Dynlacht, B. Regulating the transition from centriole to basal body. J. Cell Biol. 193, 435–444 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Izawa, I., Goto, H., Kasahra, K. & Inagaki, M. Current topics of functional links between primary cilia and cell cycle. Cilia 4, 12 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Masyuk, T. et al. Defects in cholangiocyte fibrocystin expression and ciliary structure in the PCK rat. Gastroenterology 125, 1303–1310 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Masyuk, T. et al. Biliary dysgenesis in the PCK rat, an orthologous model of autosomal recessive polycystic kidney disease. Am. J. Pathol. 165, 1719–1730 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Stroope, A. et al. Hepato-renal pathology in Pkd2ws25/− mice, an animal model of autosomal dominant polycystic kidney disease. Am. J. Pathol. 176, 1282–1291 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Wang, W. et al. IFT-A deficiency in juvenile mice impairs biliary development and exacerbates ADPKD liver disease. J. Pathol. 254, 289–302 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ma, M., Tian, X., Igarashi, P., Pazour, G. J. & Somlo, S. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat. Genet. 45, 1004–1012 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Shao, L. et al. Genetic reduction of cilium length by targeting intraflagellar transport 88 protein impedes kidney and liver cyst formation in mouse models of autosomal polycystic kidney disease. Kidney Int. 98, 1225–1241 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Gallagher, A. R. & Somlo, S. Loss of cilia does not slow liver disease progression in mouse models of autosomal recessive polycystic kidney disease. Kidney360 1, 962–968 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Masyuk, T. V. et al. Centrosomal abnormalities characterize human and rodent cystic cholangiocytes and are associated with Cdc25A overexpression. Am. J. Pathol. 184, 110–121 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Szyk, A. et al. Molecular basis for age-dependent microtubule acetylation by tubulin acetyltransferase. Cell 157, 1405–1415 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Pugacheva, E. N., Jablonski, S. A., Hartman, T. R., Henske, E. P. & Golemis, E. A. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129, 1351–1363 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gradilone, S. et al. HDAC6 is overexpressed in cystic cholangiocytes and its inhibition reduces cystogenesis. Am. J. Pathol. 184, 600–608 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lorenzo Pisarello, M. et al. Combination of a histone deacetylase 6 inhibitor and a somatostatin receptor agonist synergistically reduces hepatorenal cystogenesis in an animal model of polycystic liver disease. Am. J. Pathol. 188, 981–994 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Caballero-Camino, F. J. et al. Synthetic conjugates of ursodeoxycholic acid inhibit cystogenesis in experimental models of polycystic liver disease. Hepatology 73, 186–203 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Li, X., Qi, N., Li, L., Wu, M. & Mei, C. Cytosolic HDAC6 is accumulated in cystic kidneys. Kidney Int. 90, 705 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Yanda, M. K., Liu, Q., Cebotaru, V., Guggino, W. B. & Cebotaru, L. Histone deacetylase 6 inhibition reduces cysts by decreasing cAMP and Ca2+ in knock-out mouse models of polycystic kidney disease. J. Biol. Chem. 292, 17897–17908 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yanda, M. K., Liu, Q. & Cebotaru, L. An inhibitor of histone deacetylase 6 activity, ACY-1215, reduces cAMP and cyst growth in polycystic kidney disease. Am. J. Physiol. Ren. Physiol. 313, F997–F1004 (2017).

    Article  Google Scholar 

  148. Li, A. et al. Mutations in PRKCSH cause isolated autosomal dominant polycystic liver disease. Am. J. Hum. Genet. 72, 691–703 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Santos-Laso, A. et al. Proteostasis disturbances and endoplasmic reticulum stress contribute to polycystic liver disease: new therapeutic targets. Liver Int. 40, 1670–1685 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Galluzzi, L., Yamazaki, T. & Kroemer, G. Linking cellular stress responses to systemic homeostasis. Nat. Rev. Mol. Cell Biol. 19, 731–745 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Müller, K. et al. JNK signaling prevents biliary cyst formation through a CASPASE-8–dependent function of RIPK1 during aging. Proc. Natl Acad. Sci. USA 118, e2007194118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Lee-Law, P. Y. et al. Targeting UBC9-mediated protein hyper-SUMOylation in cystic cholangiocytes halts polycystic liver disease in experimental models. J. Hepatol. 74, 394–406 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Lee-Law, P. Y. et al. Inhibition of NAE-dependent protein hyper-NEDDylation in cystic cholangiocytes halts cystogenesis in experimental models of polycystic liver disease. United European Gastroenterol. J. 9, 848–859 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Zubiete-Franco, I. et al. Deregulated neddylation in liver fibrosis. Hepatology 65, 694–709 (2017).

    Article  CAS  PubMed  Google Scholar 

  155. Masyuk, A. I. et al. Cholangiocyte autophagy contributes to hepatic cystogenesis in polycystic liver disease and represents a potential therapeutic target. Hepatology 67, 1088–1108 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Yang, J. et al. Deficiency of hepatocystin induces autophagy through an mTOR-dependent pathway. Autophagy 7, 748–759 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K. J. & Werb, Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun. 11, 5120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Herrera, J., Henke, C. A. & Bitterman, P. B. Extracellular matrix as a driver of progressive fibrosis. J. Clin. Invest. 128, 45–53 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Walma, D. A. C. & Yamada, K. M. The extracellular matrix in development. Development 147, dev175596 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Si-Tayeb, K., Lemaigre, F. P. & Duncan, S. A. Organogenesis and development of the liver. Dev. Cell 18, 175–189 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Ogawa, M. et al. Directed differentiation of cholangiocytes from human pluripotent stem cells. Nat. Biotechnol. 33, 853–861 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Takayama, K. et al. Laminin 411 and 511 promote the cholangiocyte differentiation of human induced pluripotent stem cells. Biochem. Biophys. Res. Commun. 474, 91–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Lewis, P. L. et al. Complex bile duct network formation within liver decellularized extracellular matrix hydrogels. Sci. Rep. 8, 12220 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Sampaziotis, F. et al. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nat. Biotechnol. 33, 845–852 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Urribarri, A. D. et al. Inhibition of metalloprotease hyperactivity in cystic cholangiocytes halts the development of polycystic liver diseases. Gut 63, 1658–1667 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Locatelli, L. et al. Macrophage recruitment by fibrocystin-defective biliary epithelial cells promotes portal fibrosis in congenital hepatic fibrosis. Hepatology 63, 965–982 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Kovats, S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell. Immunol. 294, 63–69 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Drenth, J., Chrispijn, M., Nagorney, D., Kamath, P. & Torres, V. Medical and surgical treatment options for polycystic liver disease. Hepatology 52, 2223–2230 (2010).

    Article  PubMed  Google Scholar 

  169. van Keimpema, L., de Koning, D., Strijk, S. & Drenth, J. Aspiration-sclerotherapy results in effective control of liver volume in patients with liver cysts. Dig. Dis. Sci. 53, 2251–2257 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Moorthy, K., Mihssin, N. & Houghton, P. W. J. The management of simple hepatic cysts: sclerotherapy or laparoscopic fenestration. Ann. R. Coll. Surg. Engl. 83, 409–414 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Yan, J. et al. Transarterial embolisation with bleomycin and N-butyl-2-cyanoacrylate–lipiodol mixture for symptomatic polycystic liver disease: preliminary experience. Clin. Radiol. 74, 975.e11–975.e16 (2019).

    Article  CAS  Google Scholar 

  172. Zhang, J. et al. Transarterial embolization for treatment of symptomatic polycystic liver disease: more than 2-year follow-up. Chin. Med. J. 130, 1938–1944 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Imagami, T., Takayama, S., Maeda, Y., Sakamoto, M. & Kani, H. Transcatheter arterial embolization for hemorrhagic rupture of a simple hepatic cyst: a case report. Radiol. Case Rep. 16, 1956–1960 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Van Keimpema, L., Ruurda, J. P., Ernst, M. F., Van Geffen, H. J. A. A. & Drenth, J. P. H. Laparoscopic fenestration of liver cysts in polycystic liver disease results in a median volume reduction of 12.5%. J. Gastrointest. Surg. 12, 477–482 (2008).

    Article  PubMed  Google Scholar 

  175. Yang, J. et al. Comparison of volume-reductive therapies for massive polycystic liver disease in autosomal dominant polycystic kidney disease. Hepatol. Res. 46, 183–191 (2016).

    Article  PubMed  Google Scholar 

  176. Kornasiewicz, O., Dudek, K., Bugajski, M., Najnigier, B. & Krawczyk, M. Choice of transplantation techniques and indications for liver transplantation in polycystic liver disease in patients with no signs of end-stage liver disease. Transplant. Proc. 40, 1536–1538 (2008).

    Article  CAS  PubMed  Google Scholar 

  177. Coquillard, C. et al. Combined liver–kidney transplantation for polycystic liver and kidney disease: analysis from the United Network for Organ Sharing dataset. Liver Int. 36, 1018–1025 (2016).

    Article  PubMed  Google Scholar 

  178. Hogan, M. et al. Efficacy of 4 years of octreotide long-acting release therapy in patients with severe polycystic liver disease. Mayo Clin. Proc. 90, 1030–1037 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. van Keimpema, L. et al. Lanreotide reduces the volume of polycystic liver: a randomized, double-blind, placebo-controlled trial. Gastroenterology 137, 1661-8.e1-2 (2009).

    PubMed  Google Scholar 

  180. Chrispijn, M. et al. The long-term outcome of patients with polycystic liver disease treated with lanreotide. Aliment. Pharmacol. Ther. 35, 266–274 (2012).

    Article  CAS  PubMed  Google Scholar 

  181. Gevers, T. et al. Effect of lanreotide on polycystic liver and kidneys in autosomal dominant polycystic kidney disease: an observational trial. Liver Int. 35, 1607–1614 (2015).

    Article  CAS  PubMed  Google Scholar 

  182. Pisani, A. et al. Long-term effects of octreotide on liver volume in patients with polycystic kidney and liver disease. Clin. Gastroenterol. Hepatol. 14, 1022–1030.e4 (2016).

    Article  CAS  PubMed  Google Scholar 

  183. Temmerman, F. et al. Lanreotide reduces liver volume, but might not improve muscle wasting or weight loss, in patients with symptomatic polycystic liver disease. Clin. Gastroenterol. Hepatol. 13, 2353–2359.e1 (2015).

    Article  CAS  PubMed  Google Scholar 

  184. van Aerts, R. et al. Lanreotide reduces liver growth in patients with autosomal dominant polycystic liver and kidney disease. Gastroenterology 157, 481–491.e7 (2019).

    Article  PubMed  CAS  Google Scholar 

  185. Gevers, T. et al. Young women with polycystic liver disease respond best to somatostatin analogues: a pooled analysis of individual patient data. Gastroenterology 145, 357–365.e1-2 (2013).

    Article  CAS  PubMed  Google Scholar 

  186. Griffiths, J., Mills, M. & Ong, A. Long-acting somatostatin analogue treatments in autosomal dominant polycystic kidney disease and polycystic liver disease: a systematic review and meta-analysis. BMJ Open 10, e032620 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Hogan, M. et al. Pansomatostatin agonist pasireotide long-acting release for patients with autosomal dominant polycystic kidney or liver disease with severe liver involvement: a randomized clinical trial. Clin. J. Am. Soc. Nephrol. 15, 1267–1278 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Wijnands, T. et al. Pasireotide does not improve efficacy of aspiration sclerotherapy in patients with large hepatic cysts, a randomized controlled trial. Eur. Radiol. 28, 2682–2689 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Neijenhuis, M. et al. Somatostatin analogues improve health-related quality of life in polycystic liver disease: a pooled analysis of two randomised, placebo-controlled trials. Aliment. Pharmacol. Ther. 42, 591–598 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. van Aerts, R. et al. Drug holiday in patients with polycystic liver disease treated with somatostatin analogues. Ther. Adv. Gastroenterol. 11, 1756284818804784 (2018).

    Google Scholar 

  191. Wagner, M. & Fickert, P. Drug therapies for chronic cholestatic liver diseases. Annu. Rev. Pharmacol. Toxicol. 60, 503–527 (2020).

    Article  CAS  PubMed  Google Scholar 

  192. D’Agnolo, H. et al. Ursodeoxycholic acid in advanced polycystic liver disease: a phase 2 multicenter randomized controlled trial. J. Hepatol. 65, 601–607 (2016).

    Article  PubMed  CAS  Google Scholar 

  193. Iijima, T. et al. Ursodeoxycholic acid for treatment of enlarged polycystic liver. Ther. Apher. Dial. 20, 73–78 (2016).

    Article  CAS  PubMed  Google Scholar 

  194. Tao, Y., Kim, J., Schrier, R. & Edelstein, C. Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J. Am. Soc. Nephrol. 16, 46–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  195. Wahl, P. et al. Inhibition of mTOR with sirolimus slows disease progression in Han:SPRD rats with autosomal dominant polycystic kidney disease (ADPKD). Nephrol. Dial. Transplant. 21, 598–604 (2006).

    Article  CAS  PubMed  Google Scholar 

  196. Shillingford, J. et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc. Natl Acad. Sci. USA 103, 5466–5471 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Temmerman, F. et al. Everolimus halts hepatic cystogenesis in a rodent model of polycystic-liver-disease. World J. Gastroenterol. 23, 5499–5507 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Serra, A. et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 820–829 (2010).

    Article  CAS  PubMed  Google Scholar 

  199. Walz, G. et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 830–840 (2010).

    Article  CAS  PubMed  Google Scholar 

  200. Qian, Q. et al. Sirolimus reduces polycystic liver volume in ADPKD patients. J. Am. Soc. Nephrol. 19, 631–638 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Chrispijn, M. et al. Everolimus does not further reduce polycystic liver volume when added to long acting octreotide: results from a randomized controlled trial. J. Hepatol. 59, 153–159 (2013).

    Article  CAS  PubMed  Google Scholar 

  202. Aapkes, S. E., Bernts, L. H. P., van den Berg, M., Gansevoort, R. T. & Drenth, J. P. H. Tamoxifen for the treatment of polycystic liver disease: a case report. Medicine 100, e26797 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Cornec-Le Gall, E. et al. Type of PKD1 mutation influences renal outcome in ADPKD. J. Am. Soc. Nephrol. 24, 1006–1013 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Fujimaru, T. et al. Kidney enlargement and multiple liver cyst formation implicate mutations in PKD1/2 in adult sporadic polycystic kidney disease. Clin. Genet. 94, 125–131 (2018).

    Article  CAS  PubMed  Google Scholar 

  205. Kataoka, H. et al. Predicting liver cyst severity by mutations in patients with autosomal-dominant polycystic kidney disease. Hepatol. Int. 15, 791–803 (2021).

    Article  PubMed  Google Scholar 

  206. Bergmann, C. Genetics of autosomal recessive polycystic kidney disease and its differential diagnoses. Front. Pediatr. 5, 221 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Lakhia, R. et al. PPARα agonist fenofibrate enhances fatty acid β-oxidation and attenuates polycystic kidney and liver disease in mice. Am. J. Physiol. Ren. Physiol. 314, F122–F131 (2018).

    Article  CAS  Google Scholar 

  208. Yoshihara, D. et al. Telmisartan ameliorates fibrocystic liver disease in an orthologous rat model of human autosomal recessive polycystic kidney disease. PLoS ONE 8, e81480 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Sato, Y. et al. Metformin slows liver cyst formation and fibrosis in experimental model of polycystic liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 320, G464–G473 (2021).

    Article  CAS  PubMed  Google Scholar 

  210. Sato, Y., Qiu, J., Miura, T., Kohzuki, M. & Ito, O. Effects of long-term exercise on liver cyst in polycystic liver disease model rats. Med. Sci. Sports Exerc. 52, 1272–1279 (2020).

    Article  CAS  PubMed  Google Scholar 

  211. Lee, S. et al. MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. J. Clin. Invest. 118, 3714–3724 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Masyuk, T. et al. Autophagy-mediated reduction of miR-345 contributes to hepatic cystogenesis in polycystic liver disease. JHEP Rep. Innov. Hepatol. 3, 100345 (2021).

    Article  Google Scholar 

  213. Cornec-Le Gall, E., Torres, V. E. & Harris, P. C. Genetic complexity of autosomal dominant polycystic kidney and liver diseases. J. Am. Soc. Nephrol. 29, 13–23 (2018).

    Article  PubMed  Google Scholar 

  214. Cornec-Le Gall, E., Alam, A. & Perrone, R. D. Autosomal dominant polycystic kidney disease. Lancet 393, 919–935 (2019).

    Article  PubMed  Google Scholar 

  215. Fabris, L. et al. Pathobiology of inherited biliary diseases: a roadmap to understand acquired liver diseases. Nat. Rev. Gastroenterol. Hepatol. 16, 497–511 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Bergmann, C. et al. Polycystic kidney disease. Nat. Rev. Dis. Primers 4, 50 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Glazer, A. M. et al. The Zn finger protein Iguana impacts Hedgehog signaling by promoting ciliogenesis. Dev. Biol. 337, 148–156 (2010).

    Article  CAS  PubMed  Google Scholar 

  218. Spirli, C. et al. Cyclic AMP/PKA-dependent paradoxical activation of Raf/MEK/ERK signaling in polycystin-2 defective mice treated with sorafenib. Hepatology 56, 2363–2374 (2012).

    Article  CAS  PubMed  Google Scholar 

  219. Masyuk, T. et al. Inhibition of Cdc25A suppresses hepato-renal cystogenesis in rodent models of polycystic kidney and liver disease. Gastroenterology 142, 622–633.e4 (2012).

    Article  CAS  PubMed  Google Scholar 

  220. Yoshihara, D. & et al. PPAR-gamma agonist ameliorates kidney and liver disease in an orthologous rat model of human autosomal recessive polycystic kidney disease. Am. J. Physiol. Renal Physiol. 300, F465–F474 (2011).

    Article  CAS  PubMed  Google Scholar 

  221. Ruggenenti, P. et al. Safety and efficacy of long-acting somatostatin treatment in autosomal-dominant polycystic kidney disease. Kidney Int. 68, 206–216 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the following for their grant support: Spanish Carlos III Health Institute (ISCIII) (J.M.B. (FIS PI18/01075, PI21/00922 and Miguel Servet Programme CPII19/00008), M.J.P. (FIS PI14/00399, FIS PI17/00022 and Ramon y Cajal Programme RYC-2015-17755), P.M.R. (Sara Borrell (CD19/00254))), cofinanced by ‘Fondo Europeo de Desarrollo Regional’ (FEDER); CIBERehd (ISCIII): J.M.B., L.B., P.A., P.M.R. and M.J.P.; ‘Diputación Foral de Gipuzkoa’ (2020-CIEN-000067-01 to P.M.R.), Department of Health of the Basque Country (2019111024 to M.J.P., 2017111010 to J.M.B. and 2020111077 to J.M.B. and P.A.), ‘Euskadi RIS3’ (2016222001, 2017222014, 2018222029, 2019222054, 2020333010 to J.M.B.), Department of Industry of the Basque Country (Elkartek KK-2020/00008 to J.M.B.); ‘Fundación Científica de la Asociación Española Contra el Cáncer’ (AECC Scientific Foundation to J.M.B.); La Caixa Scientific Foundation (HR17-00601 to J.M.B.); AMMF–The Cholangiocarcinoma Charity (EU/2019/AMMFt/001 to J.M.B. and P.M.R.); PSC Partners US (to J.M.B.) and PSC Supports UK (06119JB to J.M.B.); European Union Horizon 2020 Research and Innovation Program (825510, ESCALON, to J.M.B.); ‘Ayudas para apoyar grupos de investigación del sistema Universitario Vasco’ (IT971-16 to P.A.), MCIU/AEI/FEDER, UE (2018-095134-B-100 to P.A.) and by the University of Basque Country (COLAB20/01 to P.A. and MARSA21/17 to F.J.C.-C. funded by the Spanish Ministry of Universities and European Union-Next Generation EU).

Author information

Authors and Affiliations

Authors

Contributions

P.O., P.M.R., F.J.C.-C. and L.I.-S. researched data for the article. J.M.B., P.O., P.M.R., F.J.C.-C., L.I.-S., M.J.P. and J.P.H.D. contributed substantially to discussion of the content. P.O., P.M.R., F.J.C.C. and L.I.-S. wrote the article. J.M.B., P.O., P.M.R., P.A., L.B., N.F.L., M.J.P. and J.P.H.D. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Jesus M. Banales.

Ethics declarations

Competing interests

J.M.B. received grants and consultancy from Albireo. J.P.H.D. and J.M.B. are members of the European Reference Network for Rare Liver Diseases. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Carsten Bergmann, Luca Fabris and Marco Marzioni for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olaizola, P., Rodrigues, P.M., Caballero-Camino, F.J. et al. Genetics, pathobiology and therapeutic opportunities of polycystic liver disease. Nat Rev Gastroenterol Hepatol 19, 585–604 (2022). https://doi.org/10.1038/s41575-022-00617-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-022-00617-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing