Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multikinase inhibitors in thyroid cancer: timing of targeted therapy

Abstract

In the 9 years since the publication of our 2011 review of targeted treatment of thyroid cancer with multikinase inhibitors, much has changed in the landscape of this heterogeneous disease. New multikinase and selective inhibitor treatments for medullary thyroid cancer, radioiodine-refractory thyroid cancer and anaplastic thyroid cancer have completed trials and improved progression-free survival. Many physicians are concerned by dose-limiting adverse effects of these drugs and are wary to begin treatment in patients who are systemically well but have marked disease burden, which makes the timing of treatment initiation challenging. Published mechanistic data on tyrosine kinase inhibitors (TKIs) have helped guide our understanding of how to dose effectively with these drugs. A major goal in TKI therapy is to optimize inhibition of oncogenic kinase drivers while maintaining patient quality of life. Real-world data have now been published on how TKIs have fared outside the clinical trial environment. In this Review, we provide a summary of published data on the efficacy of TKIs in clinical practice, to provide clinicians with a more realistic view of how their patients will manage and respond to TKI therapy. Furthermore, we review the data on mechanisms of inhibition, outcomes and adverse effects of TKIs and provide an update on targeted treatment of thyroid cancer, focusing on optimizing the timing of treatment initiation.

Key points

  • Pivotal phase III trials of multikinase inhibitors in the past decade have provided new options for treatment of radioiodine-refractory differentiated thyroid cancer and metastatic medullary thyroid cancer.

  • Once metastatic disease develops, the driver mutation and the pathology of the tumour inform treatment options.

  • Multikinase inhibitors exist on a scale of specificity that often reflects their ability to inhibit VEGF. VEGF inhibition is largely responsible for the effects of tyrosine kinase inhibitors in the management of metastatic thyroid cancer.

  • Both static and dynamic predictors can assist in determining which patients will benefit most from tyrosine kinase inhibitor therapy.

  • Adverse effects should be managed aggressively to maximize the duration of oncogenic kinase driver inhibition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Signalling pathways in thyroid cancer tumorigenesis and TKI targets.

Similar content being viewed by others

References

  1. Australian Institute of Health and Welfare. Cancer Incidence Projections: Australia, 2011–2020. Cancer Series no. 66 https://www.aihw.gov.au/getmedia/a79de4a1-49f5-4c93-bc59-4d181430aa69/14096.pdf.aspx?inline=true (2012).

  2. UK Cancer Research. Thyroid Cancer Incidence. http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/thyroid-cancer#heading-Zero (2015).

  3. Pandeya, N. et al. Increasing thyroid cancer incidence in Queensland, Australia 1982–2008 – true increase or overdiagnosis? Clin. Endocrinol. 84, 257–264 (2015).

    Google Scholar 

  4. Gild, M. L. et al. Multikinase inhibitors: a new option for the treatment of thyroid cancer. Nat. Rev. Endocrinol. 7, 617–24 (2011).

    CAS  PubMed  Google Scholar 

  5. Haugen, B. R. et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 26, 1–133 (2016).

    PubMed  PubMed Central  Google Scholar 

  6. Mazzaferri, E. L. Management of low-risk differentiated thyroid cancer. Endocr. Pract. 13, 498–512 (2007).

    PubMed  Google Scholar 

  7. Schlumberger, M. et al. Definition and management of radioactive iodine-refractory differentiated thyroid cancer. Lancet Diabetes Endocrinol. 2, 356–358 (2014).

    PubMed  Google Scholar 

  8. Accardo, G. et al. Genetics of medullary thyroid cancer: an overview. Int. J. Surg. 41, S2–S6 (2017).

    PubMed  Google Scholar 

  9. Ricarte-Filho, J. C. et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 69, 4885–4893 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chakravarty, D. et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J. Clin. Invest. 121, 4700–4711 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gild, M. L. et al. Targeting mTOR in RET mutant medullary and differentiated thyroid cancer cells. Endocr. Relat. Cancer 20, 659–667 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 159, 676–690 (2014).

    Google Scholar 

  13. Kelly, L. M. et al. Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc Natl Acad. Sci. USA 111, 4233–4238 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ritterhouse, L. L. et al. ROS1 rearrangement in thyroid cancer. Thyroid 26, 794–797 (2016).

    CAS  PubMed  Google Scholar 

  15. Landa, I. et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J. Clin. Invest. 126, 1052–1066 (2016).

    PubMed  PubMed Central  Google Scholar 

  16. Bullock, M. et al. TERT promoter mutations are a major indicator of recurrence and death due to papillary thyroid carcinomas. Clin. Endocrinol. 85, 283–290 (2016).

    CAS  Google Scholar 

  17. Weinstein, I. B. Cancer. Addiction to oncogenes–the Achilles heal of cancer. Science 297, 63–64 (2002).

    CAS  PubMed  Google Scholar 

  18. Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    CAS  PubMed  Google Scholar 

  19. O’Neill, C. J. et al. BRAF(V600E) mutation is associated with an increased risk of nodal recurrence requiring reoperative surgery in patients with papillary thyroid cancer. Surgery 148, 1139–1145 (2010); discussion 1145–1146 (2010).

    PubMed  Google Scholar 

  20. Xing, M. et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 309, 1493–1501 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Molinaro, E. et al. Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies. Nat. Rev. Endocrinol. 13, 644–660 (2017).

    CAS  PubMed  Google Scholar 

  22. Tiedje, V. F. J. Therapeutic breakthroughs in metastatic thyroid cancer. Nat. Rev. Endocrinol. 2, 77–78 (2020).

    Google Scholar 

  23. Brose, M. S. et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 384, 319–328 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Schlumberger, M. et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N. Engl. J. Med. 372, 621–630 (2015).

    PubMed  Google Scholar 

  25. Gianoukakis, A. G. et al. Prolonged duration of response in lenvatinib responders with thyroid cancer. Endocr. Related Cancer 25, 699–704 (2018).

    CAS  Google Scholar 

  26. Pitoia, F. & Jerkovich, F. Selective use of sorafenib in the treatment of thyroid cancer. Drug Design Dev. Therapy 10, 1119–1131 (2016).

    CAS  Google Scholar 

  27. Brose, M. S. et al. A phase II trial of cabozantinib (CABO) for the treatment of radioiodine (RAI)-refractory differentiated thyroid carcinoma (DTC) in the first-line setting [abstract]. J. Clin. Oncol. 36 (Suppl. 15), 6088 (2018).

    Google Scholar 

  28. Brose, M. S. et al. A phase 3, randomized, double-blind, placebocontrolled study of cabozantinib in patients with radioiodine (RAI)-refractory differentiated thyroid cancer (DTC) who have progressed after prior VEGFR-targeted therapy [abstract]. Thyroid 28, A195 (2018).

    Google Scholar 

  29. Brose, M. S. et al. Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol. 17, 1272–1282 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ho, A. L. et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. New Engl. J. Med. 368, 623–632 (2013).

    CAS  PubMed  Google Scholar 

  31. Dunn, L. A. et al. Vemurafenib redifferentiation of BRAF mutant, RAI-refractory thyroid cancers. J. Clin. Endocrinol. Metab. 104, 1417–1428 (2019).

    PubMed  Google Scholar 

  32. Rothenberg, S. M. et al. Redifferentiation of iodine-refractory BRAF V600e-mutant metastatic papillary thyroid cancer with dabrafenib. Clin. Cancer Res. 21, 1028–1035 (2015).

    CAS  PubMed  Google Scholar 

  33. Subbiah, V. et al. Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600-mutant anaplastic thyroid cancer. J. Clin. Oncol. 36, 7–13 (2018).

    CAS  PubMed  Google Scholar 

  34. Ferrari, S. M. et al. Novel treatments for anaplastic thyroid carcinoma. Gland Surg. 9, S28–S42 (2020).

    PubMed  PubMed Central  Google Scholar 

  35. de Groot, J. W. et al. RET as a diagnostic and therapeutic target in sporadic and hereditary endocrine tumors. Endocr. Rev. 27, 535–560 (2006).

    PubMed  Google Scholar 

  36. Wells, S. A. Jr. et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 25, 567–610 (2015).

    PubMed  PubMed Central  Google Scholar 

  37. Wells, S. A. et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J. Clin. Oncol. 30, 134–141 (2012).

    CAS  PubMed  Google Scholar 

  38. Elisei, R. et al. Cabozantinib in progressive medullary thyroid cancer. J. Clin. Oncol. 31, 3639–3646 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Drilon, A. E. et al. A phase 1 study of LOXO-292, a potent and highly selective RET inhibitor, in patients with RET-altered cancers [abstract]. J. Clin. Oncol. 36 (Suppl. 15), 102 (2018).

    Google Scholar 

  40. Hu, M. et al. Clinical activity of selective RET inhibitor, BLU-667, in advanced RET-altered thyroid cancers: updated results from the phase 1 ARROW study [abstract]. Thyroid 28 (Suppl. 1), A170 (2018).

    Google Scholar 

  41. Taylor, M. H. et al. Activity and tolerability of BLU-667, a highly potent and selective RET inhibitor, in patients with advanced RET-altered thyroid cancers [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 6018 (2019).

    Google Scholar 

  42. Wirth, L. et al. Registrational results of LOXO-292 in patients with RET-altered thyroid cancers [abstract LBA93]. Ann. Oncol. 30, v933 (2019).

    Google Scholar 

  43. Wirth, L. J. et al. Efficacy of selpercatinib in RET-altered thyroid cancers. N. Engl. J. Med. 383, 825–835 (2020).

    CAS  PubMed  Google Scholar 

  44. Oh, H. S. et al. Extended real-world observation of patients treated with sorafenib for radioactive iodine-refractory differentiated thyroid carcinoma and impact of lenvatinib salvage treatment: a Korean multicenter study. Thyroid 29, 1804–1810 (2019).

    CAS  PubMed  Google Scholar 

  45. Berdelou, A. et al. Lenvatinib for the treatment of radioiodine-refractory thyroid cancer in real-life practice. Thyroid 28, 72–78 (2018).

    CAS  PubMed  Google Scholar 

  46. Locati, L. D. et al. Real-world efficacy and safety of lenvatinib: data from a compassionate use in the treatment of radioactive iodine-refractory differentiated thyroid cancer patients in Italy. Eur. J. Cancer 118, 35–40 (2019).

    CAS  PubMed  Google Scholar 

  47. Nervo, A. et al. Lenvatinib in advanced radioiodine-refractory thyroid cancer: a snapshot of real-life clinical practice. Anticancer Res. 38, 1643–1649 (2018).

    CAS  PubMed  Google Scholar 

  48. Matrone, A. et al. Protein kinase inhibitors for the treatment of advanced and progressive radiorefractory thyroid tumors: from the clinical trials to the real life. Best Pract. Res. Clin. Endocrinol. Metab. 31, 319–334 (2017).

    CAS  PubMed  Google Scholar 

  49. Teo, Y. K. & Ishak, W. Lenvatinib, in treating advanced malignant thyroid tumours, real life experience from University Malaya Medical Centre [abstract P2-151]. Ann. Oncol. 30 (Suppl. 6), vi133 (2019).

    Google Scholar 

  50. Denaro, N. et al. Lenvatinib long-term responses in refractory thyroid cancer: our mono-institutional real-life experience with the multidisciplinary approach and review of literature. Oncology 97, 206–210 (2019).

    CAS  PubMed  Google Scholar 

  51. Tsang, V. H. M. Management of treatment-related toxicities in advanced medullary thyroid cancer. Curr. Opin. Oncol. 31, 236–242 (2019).

    PubMed  Google Scholar 

  52. Chougnet, C. N. et al. Vandetanib for the treatment of advanced medullary thyroid cancer outside a clinical trial: results from a French cohort. Thyroid 25, 386–391 (2015).

    CAS  PubMed  Google Scholar 

  53. Valerio, L. et al. Predictors of vandetanib response in the locally advanced or metastatic medullary thyroid cancer: a single center experience [abstract]. Eur. Thyroid J. 5 (Suppl. 1), 77 (2016).

    Google Scholar 

  54. Dadu, R. et al. Efficacy and tolerability of vemurafenib in patients with BRAF(V600E) -positive papillary thyroid cancer: MD anderson cancer center off label experience. J. Clin. Endocrinol. Metab. 100, E77–E81 (2015).

    CAS  PubMed  Google Scholar 

  55. Iyer, C. et al. Real-world experience with targeted therapy for the treatment of anaplastic thyroid carcinoma. Thyroid 28, 79–87 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dacosta Byfield, S. A. et al. Real-world treatment patterns among patients initiating small molecule kinase inhibitor therapies for thyroid cancer in the United States. Adv. Ther. 36, 896–915 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bible, K. C. et al. Efficacy of pazopanib in progressive, radioiodine-refractory, metastatic differentiated thyroid cancers: results of a phase 2 consortium study. Lancet Oncol. 11, 962–972 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Carr, L. L. et al. Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin. Cancer Res. 16, 5260–5268 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Cohen, E. E. W. et al. A phase II trial of axitinib in patients with various histologic subtypes of advanced thyroid cancer: long-term outcomes and pharmacokinetic/pharmacodynamic analyses. Cancer Chemother. Pharmacol. 74, 1261–1270 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Dadu, R. et al. Role of salvage targeted therapy in differentiated thyroid cancer patients who failed first-line sorafenib. J. Clin. Endocrinol. Metab. 99, 2086–2094 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim, S. Y. et al. SoLAT (sorafenib lenvatinib alternating treatment): a new treatment protocol with alternating sorafenib and lenvatinib for refractory thyroid cancer. BMC Cancer 18, 956 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Capdevila, J. et al. Axitinib treatment in advanced RAI-resistant differentiated thyroid cancer (DTC) and refractory medullary thyroid cancer (MTC). Eur. J. Endocrinol. 177, 309–317 (2017).

    CAS  PubMed  Google Scholar 

  63. Robinson, B. G. et al. Vandetanib (100 mg) in patients with locally advanced or metastatic hereditary medullary thyroid cancer. J. Clin. Endocrinol. Metab. 95, 2664–2671 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Krajewska, J. et al. A noninferiority trial of cabozantinib (C) comparing 60mg vs 140mg orally per day to evaluate the efficacy and safety in patients (pts) with progressive, metastatic medullary thyroid cancer (MTC) [abstract 1829TiP]. Ann. Oncol. 29 (Suppl. 8), viii647–viii648 (2018).

    Google Scholar 

  65. Hesselink, E. N. K. et al. Response and toxicity of small-molecule tyrosine kinase inhibitors in patients with thyroid carcinoma: a systematic review and meta-analysis. Eur. J. Endocrinol. 172, R215–R225 (2015).

    Google Scholar 

  66. Tappenden, P. et al. Cabozantinib and vandetanib for unresectable locally advanced or metastatic medullary thyroid cancer: a systematic review and economic model. Health Technol. Assess. 23, 1–144 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. Wirth, L. J. et al. Clinical activity of LOXO-292, a highly selective RET inhibitor, in patients with retaltered thyroid cancers [abstract]. Thyroid 28 (Suppl. 1), A171 (2018).

    Google Scholar 

  68. Schlumberger, M. et al. A phase II trial of the multitargeted tyrosine kinase inhibitor lenvatinib (E7080) in advanced medullary thyroid cancer. Clin. Cancer Res. 22, 44–53 (2016).

    CAS  PubMed  Google Scholar 

  69. Paschke, L. et al. Anti VEGF-TKI treatment and new renal adverse events not reported in phase III trials. Eur. Thyroid J. 7, 308–312 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rao, S. N. & Cabanillas, M. E. Navigating systemic therapy in advanced thyroid carcinoma: from standard of care to personalized therapy and beyond. J. Endocr. Soc. 2, 1109–1130 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Cabanillas, M. E. & Takahashi, S. Managing the adverse events associated with lenvatinib therapy in radioiodine-refractory differentiated thyroid cancer. Semin. Oncol. 46, 57–64 (2019).

    CAS  PubMed  Google Scholar 

  72. Bai, Y. et al. Risk of venous and arterial thromboembolic events associated with tyrosine kinase inhibitors in advanced thyroid cancer: a meta-analysis and systematic review. Oncotarget 10, 4205–4212 (2019).

    PubMed  Google Scholar 

  73. Chae, Y. K. et al. Posterior reversible encephalopathy syndrome and takotsubo cardiomyopathy associated with lenvatinib therapy for thyroid cancer: A case report and review. Oncotarget 9, 28281–28289 (2018).

    PubMed  PubMed Central  Google Scholar 

  74. Blevins, D. P. et al. Aerodigestive fistula formation as a rare side effect of antiangiogenic tyrosine kinase inhibitor therapy for thyroid cancer. Thyroid 24, 918–922 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Haddad, R. I. et al. Incidence and timing of common adverse events in Lenvatinib-treated patients from the SELECT trial and their association with survival outcomes. Endocrine 56, 121–128 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tahara, M. et al. Impact of dose interruption on the efficacy of lenvatinib in a phase 3 study in patients with radioiodine-refractory differentiated thyroid cancer. Eur. J. Cancer 106, 61–68 (2019).

    CAS  PubMed  Google Scholar 

  77. Hay, I. D. et al. Long-term outcome of ultrasound-guided percutaneous ethanol ablation of selected “recurrent” neck nodal metastases in 25 patients with TNM stages III or IVA papillary thyroid carcinoma previously treated by surgery and 131I therapy. Surgery 154, 1448–1454 (2013); discussion 1454–1455 (2013).

    PubMed  Google Scholar 

  78. Brose, M. S. et al. Timing of multikinase inhibitor initiation in differentiated thyroid cancer. Endocr. Relat. Cancer 24, 237–242 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Smit, J. W. A. et al. Second interim analysis of RIFTOS MKI, a global, non-interventional study assessing the use of multikinase inhibitors (MKIs) in the treatment of patients with asymptomatic radioactive iodine-refractory differentiated thyroid cancer (RAI-R DTC): a subgroup analysis of European patients [abstract P2-07-135]. Eur. Thyroid J. 7 (Suppl. 1), 85 (2018).

    Google Scholar 

  80. Smit, J. et al. Baseline patient characteristics from RIFTOS: A global noninterventional study evaluating the use of multikinase inhibitors for treatment of asymptomatic differentiated thyroid cancer refractory to radioactive iodine (RIFTOS MKI) [abstract P3-06-07]. Eur. Thyroid J. 5 (Suppl. 1), 163 (2016).

    Google Scholar 

  81. Dadu, R. & Cabanillas, M. E. Optimizing therapy for radioactive iodine-refractory differentiated thyroid cancer: current state of the art and future directions. Minerva Endocrinol. 37, 335–356 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Banugo, P. & Amoako, D. Prehabilitation. BJA Educ. 17, 401–405 (2017).

    Google Scholar 

  83. Silver, J. K. & Baima, J. Cancer prehabilitation: an opportunity to decrease treatment-related morbidity, increase cancer treatment options, and improve physical and psychological health outcomes. Am. J. Phys. Med. Rehabil. 92, 715–727 (2013).

    PubMed  Google Scholar 

  84. Jacobson, M. C. The experience of head and neck cancer survivorship (including laryngectomy): an integrated biopsychosocial model. Curr. Opin. Support Palliat. Care 12, 65–73 (2018).

    PubMed  Google Scholar 

  85. Villasenor, A. et al. Prevalence and prognostic effect of sarcopenia in breast cancer survivors: the HEAL study. J. Cancer Surviv. 6, 398–406 (2012).

    PubMed  PubMed Central  Google Scholar 

  86. Robinson, B. et al. Characterization of tumor size changes over time from the phase 3 study of lenvatinib in thyroid cancer. J. Clin. Endocrinol. Metab. 101, 4103–4109 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Gild, M. L. et al. Clinical guidance for radioiodine refractory differentiated thyroid cancer. Clin. Endocrinol. 88, 529–537 (2018).

    Google Scholar 

  88. National Comprehensive Cancer Network NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines). Thyroid Carcinoma 2015 http://www.nccn.org/professionals/physician_gls/pdf/thyroid.pdf (2015).

  89. Brose, M. S., Worden, F. P., Newbold, K. L., Guo, M. & Hurria, A. Effect of age on the efficacy and safety of lenvatinib in radioiodine-refractory differentiated thyroid cancer in the phase III SELECT trial. J. Clin. Oncol. 35, 2692–2699 (2017).

    CAS  PubMed  Google Scholar 

  90. Montero-Conde, C. et al. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF mutant thyroid carcinomas. Cancer Res. 73, 1 (2013).

    Google Scholar 

  91. Wirth, L. J. et al. Influence of tumor size and Eastern Cooperative Oncology Group performance status (ECOG PS) at baseline on patient (pt) outcomes in lenvatinib-treated radioiodine-refractory differentiated thyroid cancer (RR-DTC) [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 6081 (2019).

    Google Scholar 

  92. Sugino, K. et al. Clinical factors related to the efficacy of tyrosine kinase inhibitor therapy in radioactive iodine refractory recurrent differentiated thyroid cancer patients. Endocrine J. 65, 299–306 (2018).

    CAS  Google Scholar 

  93. Wirth, L. J. et al. Treatment-emergent hypertension and efficacy in the phase 3 study of (E7080) lenvatinib in differentiated cancer of the thyroid (SELECT). Cancer 124, 2365–2372 (2018).

    CAS  PubMed  Google Scholar 

  94. Suzuki, C. et al. Exploratory analysis of prognostic factors for lenvatinib in radioiodine-refractory differentiated thyroid cancer. Head Neck 41, 3023–3032 (2019).

    PubMed  Google Scholar 

  95. Lee, E. K. et al. Lesion-based evaluation predicts treatment response to lenvatinib for radioactive iodine-refractory differentiated thyroid cancer: a Korean multicenter retrospective study. Thyroid 29, 1811–1819 (2019).

    CAS  PubMed  Google Scholar 

  96. Tahara, M. et al. Impact of lung metastasis on overall survival (OS) in the phase III SELECT study with lenvatinib (LEN) in patients (pts) with radioiodine refractory differentiated thyroid cancer (RR-DTC) [abstract 1862PD]. Ann. Oncol. 30 (Suppl. 5), v756 (2019).

    Google Scholar 

  97. Takeuchi, S. et al. Early prediction of lenvatinib treatment efficacy by using 18F-FDG PET/CT in patients with unresectable or advanced thyroid carcinoma that is refractory to radioiodine treatment: a protocol for a non-randomized single-arm multicenter observational study. BMJ Open 8, e021001 (2018).

    PubMed  PubMed Central  Google Scholar 

  98. Paschke, R. et al. Prognostic and predictive factors correlated with treatment outcomes for radioactive iodine-refractory differentiated thyroid cancer (RAI-rDTC) patients receiving sorafenib or placebo on the phase III decision trial [abstract]. Exp. Clin. Endocrinol. Diabetes https://doi.org/10.1055/s-0035-1547604 (2015).

    Article  Google Scholar 

  99. Yarchoan, M. et al. Molecular predictors of response to sorafenib in patients with radioactive iodine-resistant advanced thyroid cancer [abstract]. J. Clin. Oncol. 32 (Suppl. 15), 6088 (2014).

    Google Scholar 

  100. Sherman, S. I. et al. Correlative analyses of RET and RAS mutations in a phase 3 trial of cabozantinib in patients with progressive, metastatic medullary thyroid cancer. Cancer 122, 3856–3864 (2016).

    CAS  PubMed  Google Scholar 

  101. Lassalle, S. et al. MicroRNA-375/SEC23A as biomarkers of the in vitro efficacy of vandetanib. Oncotarget 7, 30461–30478 (2016).

    PubMed  PubMed Central  Google Scholar 

  102. Marusyk, A., Almendro, V. & Polyak, K. Intra-tumour heterogeneity: a looking glass for cancer? Nat. Rev. Cancer 12, 323–334 (2012).

    CAS  PubMed  Google Scholar 

  103. Chmielik, E. et al. Heterogeneity of thyroid cancer. Pathobiology 85, 117–129 (2018).

    PubMed  Google Scholar 

  104. Ryder, M. et al. Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer. Endocr. Relat. Cancer 15, 1069–1074 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ferrari, S. M. et al. Immune and inflammatory cells in thyroid cancer microenvironment. Int. J. Mol. Sci. 20, 4413 (2019).

    CAS  PubMed Central  Google Scholar 

  106. Antonelli, A., Ferrari, S. M. & Fallahi, P. Current and future immunotherapies for thyroid cancer. Expert Rev. Anticancer Ther. 18, 149–159 (2018).

    CAS  PubMed  Google Scholar 

  107. Joo, L. J. S. et al. RET kinase-regulated microrna-153-3p improves therapeutic efficacy in medullary thyroid carcinoma. Thyroid 29, 830–844 (2019).

    CAS  PubMed  Google Scholar 

  108. Cabanillas, M. E. et al. Neoadjuvant BRAF- and immune-directed therapy for anaplastic thyroid carcinoma. Thyroid 28, 945–951 (2018).

    PubMed  PubMed Central  Google Scholar 

  109. Wang, J. R. et al. Complete surgical resection following neoadjuvant dabrafenib plus trametinib in BRAF(V600E)-mutated anaplastic thyroid carcinoma. Thyroid 29, 1036–1043 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Chan, T. A. et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann. Oncol. 30, 44–56 (2019).

    CAS  PubMed  Google Scholar 

  111. Kunstman, J. W. et al. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum. Mol. Genet 24, 2318–2329 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Khan, S. A. et al. Unique mutation patterns in anaplastic thyroid cancer identified by comprehensive genomic profiling. Head Neck 41, 1928–1934 (2019).

    PubMed  PubMed Central  Google Scholar 

  113. Schlumberger, M. et al. Overall survival analysis of EXAM, a phase III trial of cabozantinib in patients with radiographically progressive medullary thyroid carcinoma. Ann. Oncol. 28, 2813–2819 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.L.G. acknowledges funding from the Royal Australian College of Physicians and a research scholarship from the AVANT Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.L.G. researched data for the article and wrote the article. All authors made substantial contributions to the discussion of the content and carried out reviewing/editing of the manuscript before submission.

Corresponding author

Correspondence to Matti L. Gild.

Ethics declarations

Competing interests

B.G.R. has received an honorarium from Loxo Oncology, outside the period of the written review. B.G.R., R.C.-B. and V.T. report personal fees from Eisai, outside the submitted work. M.L.G. declares no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks M. Schlumberger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gild, M.L., Tsang, V.H.M., Clifton-Bligh, R.J. et al. Multikinase inhibitors in thyroid cancer: timing of targeted therapy. Nat Rev Endocrinol 17, 225–234 (2021). https://doi.org/10.1038/s41574-020-00465-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-020-00465-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing