Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The circadian regulation of food intake

Abstract

Feeding, which is essential for all animals, is regulated by homeostatic mechanisms. In addition, food consumption is temporally coordinated by the brain over the circadian (~24 h) cycle. A network of circadian clocks set daily windows during which food consumption can occur. These daily windows mostly overlap with the active phase. Brain clocks that ensure the circadian control of food intake include a master light-entrainable clock in the suprachiasmatic nuclei of the hypothalamus and secondary clocks in hypothalamic and brainstem regions. Metabolic hormones, circulating nutrients and visceral neural inputs transmit rhythmic cues that permit (via close and reciprocal molecular interactions that link metabolic processes and circadian clockwork) brain and peripheral organs to be synchronized to feeding time. As a consequence of these complex interactions, growing evidence shows that chronodisruption and mistimed eating have deleterious effects on metabolic health. Conversely, eating, even eating an unbalanced diet, during the normal active phase reduces metabolic disturbances. Therefore, in addition to energy intake and dietary composition, appropriately timed meal patterns are critical to prevent circadian desynchronization and limit metabolic risks. This Review provides insight into the dual modulation of food intake by homeostatic and circadian processes, describes the mechanisms regulating feeding time and highlights the beneficial effects of correctly timed eating, as opposed to the negative metabolic consequences of mistimed eating.

Key points

  • Short-term food consumption is regulated by a balance between orexigenic and anorexigenic factors.

  • Daily pattern of eating is controlled by circadian clocks, including the master clock in the suprachiasmatic nuclei reset by ambient light and other brain clocks reset by feeding time, via hormonal, nutrient and visceral cues.

  • Circadian desynchronization — owing to mistimed eating or chronodisruption — has deleterious consequences on metabolic health.

  • Timed dietary patterns may help to prevent circadian desynchronization and reduce metabolic disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Circadian control of the daily feeding–fasting cycle by brain clocks.
Fig. 2: Reciprocal interactions between the circadian clocks and metabolism at cellular and systemic levels.
Fig. 3: Synchronization of food-entrainable clocks by metabolic hormones.

Similar content being viewed by others

References

  1. Takahashi, J. S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18, 164–179 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Gamble, K. L., Berry, R., Frank, S. J. & Young, M. E. Circadian clock control of endocrine factors. Nat. Rev. Endocrinol. 10, 466–475 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Armstrong, S. A chronometric approach to the study of feeding behavior. Neurosci. Biobehav. Rev. 4, 27–53 (1980).

    Article  CAS  PubMed  Google Scholar 

  4. Bechtold, D. A. & Loudon, A. S. Hypothalamic clocks and rhythms in feeding behaviour. Trends Neurosci. 36, 74–82 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Serviere, J. & Lavialle, M. Astrocytes in the mammalian circadian clock: putative roles. Prog. Brain Res. 111, 57–73 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Brancaccio, M., Patton, A. P., Chesham, J. E., Maywood, E. S. & Hastings, M. H. Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron 93, 1420–1435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tso, C. F. et al. Astrocytes regulate daily rhythms in the suprachiasmatic nucleus and behavior. Curr. Biol. 27, 1055–1061 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Golombek, D. A. & Rosenstein, R. E. Physiology of circadian entrainment. Physiol. Rev. 90, 1063–1102 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Mistlberger, R. E. Neurobiology of food anticipatory circadian rhythms. Physiol. Behav. 104, 535–545 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950–2961 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stokkan, K. A., Yamazaki, S., Tei, H., Sakaki, Y. & Menaker, M. Entrainment of the circadian clock in the liver by feeding. Science 291, 490–493 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Feillet, C. A., Mendoza, J., Albrecht, U., Pevet, P. & Challet, E. Forebrain oscillators ticking with different clock hands. Mol. Cell. Neurosci. 37, 209–221 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. McHill, A. W. et al. Later circadian timing of food intake is associated with increased body fat. Am. J. Clin. Nutr. 106, 1213–1219 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bray, M. S. et al. Quantitative analysis of light-phase restricted feeding reveals metabolic dyssynchrony in mice. Int. J. Obes. 37, 843–852 (2013).

    Article  CAS  Google Scholar 

  15. Mayer, J. Glucostatic mechanism of regulation of food intake. N. Engl. J. Med. 249, 13–16 (1953).

    Article  CAS  PubMed  Google Scholar 

  16. Kennedy, G. C. The role of depot fat in the hypothalamic control of food intake in the rat. Proc. R. Soc. Lond. B 140, 578–596 (1953).

    Article  CAS  PubMed  Google Scholar 

  17. Strubbe, J. H. & van Dijk, G. The temporal organization of ingestive behaviour and its interaction with regulation of energy balance. Neurosci. Biobehav. Rev. 26, 485–498 (2002).

    Article  PubMed  Google Scholar 

  18. Rivera-Estrada, D., Aguilar-Roblero, R., Alva-Sanchez, C. & Villanueva, I. The homeostatic feeding response to fasting is under chronostatic control. Chronobiol. Int. 35, 1680–1688 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Kraly, F. S., Cushin, B. J. & Smith, G. P. Nocturnal hyperphagia in the rat is characterized by decreased postprandial satiety. J. Comp. Physiol. Psychol. 94, 375–387 (1980).

    Article  CAS  PubMed  Google Scholar 

  20. Leibowitz, S. F. Hypothalamic paraventricular nucleus: interaction between alpha 2-noradrenergic system and circulating hormones and nutrients in relation to energy balance. Neurosci. Biobehav. Rev. 12, 101–109 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Aschoff, J., von Goetz, C., Wildgruber, C. & Wever, R. A. Meal timing in humans during isolation without time cues. J. Biol. Rhythms 1, 151–162 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Scheer, F. A., Morris, C. J. & Shea, S. A. The internal circadian clock increases hunger and appetite in the evening independent of food intake and other behaviors. Obesity 21, 421–423 (2013).

    Article  PubMed  Google Scholar 

  23. Sargent, C., Zhou, X., Matthews, R. W., Darwent, D. & Roach, G. D. Daily rhythms of hunger and satiety in healthy men during one week of sleep restriction and circadian misalignment. Int. J. Environ. Res. Public Health 13, 170 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Borbely, A. A., Daan, S., Wirz-Justice, A. & Deboer, T. The two-process model of sleep regulation: a reappraisal. J. Sleep Res. 25, 131–143 (2016).

    Article  PubMed  Google Scholar 

  25. Nakazato, M. et al. A role for ghrelin in the central regulation of feeding. Nature 409, 194–198 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Joly-Amado, A. et al. The hypothalamic arcuate nucleus and the control of peripheral substrates. Best Pract. Res. Clin. Endocrinol. Metab. 28, 725–737 (2014).

    Article  PubMed  Google Scholar 

  27. Cowley, M. A. et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37, 649–661 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Atasoy, D., Betley, J. N., Su, H. H. & Sternson, S. M. Deconstruction of a neural circuit for hunger. Nature 488, 172–177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gonzalez, J. A. et al. Inhibitory interplay between orexin neurons and eating. Curr. Biol. 26, 2486–2491 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goforth, P. B. & Myers, M. G. Roles for orexin/hypocretin in the control of energy balance and metabolism. Curr. Top. Behav. Neurosci. 33, 137–156 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Krashes, M. J. et al. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 507, 238–242 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Faulconbridge, L. F., Cummings, D. E., Kaplan, J. M. & Grill, H. J. Hyperphagic effects of brainstem ghrelin administration. Diabetes 52, 2260–2265 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Cowley, M. A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Rother, E. et al. Acute selective ablation of rat insulin promoter-expressing (RIPHER) neurons defines their orexigenic nature. Proc. Natl Acad. Sci. USA 109, 18132–18137 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Riediger, T., Eisele, N., Scheel, C. & Lutz, T. A. Effects of glucagon-like peptide 1 and oxyntomodulin on neuronal activity of ghrelin-sensitive neurons in the hypothalamic arcuate nucleus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R1061–R1067 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Cone, R. D. Anatomy and regulation of the central melanocortin system. Nat. Neurosci. 8, 571–578 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Zhan, C. et al. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J. Neurosci. 33, 3624–3632 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Richard, C. D., Tolle, V. & Low, M. J. Meal pattern analysis in neural-specific proopiomelanocortin-deficient mice. Eur. J. Pharmacol. 660, 131–138 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Haas, H. L., Sergeeva, O. A. & Selbach, O. Histamine in the nervous system. Physiol. Rev. 88, 1183–1241 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Garfield, A. S. et al. Neurochemical characterization of body weight-regulating leptin receptor neurons in the nucleus of the solitary tract. Endocrinology 153, 4600–4607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sartor, D. M. & Verberne, A. J. Abdominal vagal signalling: a novel role for cholecystokinin in circulatory control? Brain Res. Rev. 59, 140–154 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Silvestri, C. & Di Marzo, V. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab. 17, 475–490 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Sen, S. et al. Expression of the clock gene Rev-erbalpha in the brain controls the circadian organisation of food intake and locomotor activity, but not daily variations of energy metabolism. J. Neuroendocrinol. 30, e12557 (2018).

    Article  CAS  Google Scholar 

  44. Yang, S. et al. The role of mPer2 clock gene in glucocorticoid and feeding rhythms. Endocrinology 150, 2153–2160 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Adamovich, Y. et al. Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab. 19, 319–330 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kettner, N. M. et al. Circadian dysfunction induces leptin resistance in mice. Cell Metab. 22, 448–459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Noble, E. E. et al. Control of feeding behavior by cerebral ventricular volume transmission of melanin-concentrating hormone. Cell Metab. 28, 55–68 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tumani, H., Huss, A. & Bachhuber, F. The cerebrospinal fluid and barriers - anatomic and physiologic considerations. Handb. Clin. Neurol. 146, 21–32 (2017).

    Article  PubMed  Google Scholar 

  49. Nilsson, C. et al. Circadian variation in human cerebrospinal fluid production measured by magnetic resonance imaging. Am. J. Physiol. 262, R20–R24 (1992).

    CAS  PubMed  Google Scholar 

  50. Myung, J. et al. The choroid plexus is an important circadian clock component. Nat. Commun. 9, 1062 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Nagai, K., Nishio, T., Nakagawa, H., Nakamura, S. & Fukuda, Y. Effect of bilateral lesions of the suprachiasmatic nuclei on the circadian rhythm of food-intake. Brain Res. 142, 384–389 (1978).

    Article  CAS  PubMed  Google Scholar 

  52. Stoynev, A. G., Ikonomov, O. C. & Usunoff, K. G. Feeding pattern and light-dark variations in water intake and renal excretion after suprachiasmatic nuclei lesions in rats. Physiol. Behav. 29, 35–40 (1982).

    Article  CAS  PubMed  Google Scholar 

  53. Yoo, S. H. et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl Acad. Sci. USA 101, 5339–5346 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jaeger, C. et al. Circadian organization of the rodent retina involves strongly coupled, layer-specific oscillators. FASEB J. 29, 1493–1504 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Lucas, R. J., Lall, G. S., Allen, A. E. & Brown, T. M. How rod, cone, and melanopsin photoreceptors come together to enlighten the mammalian circadian clock. Prog. Brain Res. 199, 1–18 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Holmes, M. M. & Mistlberger, R. E. Food anticipatory activity and photic entrainment in food-restricted BALB/c mice. Physiol. Behav. 68, 655–666 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Castillo, M. R. et al. Entrainment of the master circadian clock by scheduled feeding. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R551–R555 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Guzman-Ruiz, M. et al. The suprachiasmatic nucleus changes the daily activity of the arcuate nucleus alpha-MSH neurons in male rats. Endocrinology 155, 525–535 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Feillet, C. A., Albrecht, U. & Challet, E. “Feeding time” for the brain: a matter of clocks. J. Physiol. 100, 252–260 (2006).

    Google Scholar 

  60. Silver, R., Balsam, P. D., Butler, M. P. & LeSauter, J. Food anticipation depends on oscillators and memories in both body and brain. Physiol. Behav. 104, 562–571 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Feillet, C. A. et al. Lack of food anticipation in Per2 mutant mice. Curr. Biol. 16, 2016–2022 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Dudley, C. A. et al. Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice. Science 301, 379–383 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Takasu, N. N. et al. Circadian regulation of food-anticipatory activity in molecular clock-deficient mice. PLOS ONE 7, e48892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li, Z. et al. Sex-related difference in food-anticipatory activity of mice. Horm. Behav. 70, 38–46 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Pitts, S., Perone, E. & Silver, R. Food-entrained circadian rhythms are sustained in arrhythmic Clk/Clk mutant mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R57–R67 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Pendergast, J. S., Wendroth, R. H., Stenner, R. C., Keil, C. D. & Yamazaki, S. mPeriod2 (Brdm1) and other single Period mutant mice have normal food anticipatory activity. Sci. Rep. 7, 15510 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Storch, K. F. & Weitz, C. J. Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock. Proc. Natl Acad. Sci. USA 106, 6808–6813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mieda, M. & Sakurai, T. Bmal1 in the nervous system is essential for normal adaptation of circadian locomotor activity and food intake to periodic feeding. J. Neurosci. 31, 15391–15396 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Delezie, J. et al. Rev-erbalpha in the brain is essential for circadian food entrainment. Sci. Rep. 6, 29386 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Duez, H. & Staels, B. Rev-erb alpha gives a time cue to metabolism. FEBS Lett. 582, 19–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Schmutz, I., Ripperger, J. A., Baeriswyl-Aebischer, S. & Albrecht, U. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 24, 345–357 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mendoza, J., Angeles-Castellanos, M. & Escobar, C. Entrainment by a palatable meal induces food-anticipatory activity and c-Fos expression in reward-related areas of the brain. Neuroscience 133, 293–303 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Hsu, C. T., Patton, D. F., Mistlberger, R. E. & Steele, A. D. Palatable meal anticipation in mice. PLOS ONE 5, e12903 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Smit, A. N., Patton, D. F., Michalik, M., Opiol, H. & Mistlberger, R. E. Dopaminergic regulation of circadian food anticipatory activity rhythms in the rat. PLOS ONE 8, e82381 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Pavlovski, I., Evans, J. A. & Mistlberger, R. E. Feeding time entrains the olfactory bulb circadian clock in anosmic PER2::LUC mice. Neuroscience 393, (175–184 (2018).

    Google Scholar 

  76. Coleman, G. J. & Hay, M. Anticipatory wheel-running in behaviorally anosmic rats. Physiol. Behav. 47, 1145–1151 (1990).

    Article  CAS  PubMed  Google Scholar 

  77. Davidson, A. J. et al. Food-anticipatory activity persists after olfactory bulb ablation in the rat. Physiol. Behav. 72, 231–235 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Blum, I. D., Lamont, E. W., Rodrigues, T. & Abizaid, A. Isolating neural correlates of the pacemaker for food anticipation. PLOS ONE 7, e36117 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mieda, M. et al. Orexin neurons function in an efferent pathway of a food-entrainable circadian oscillator in eliciting food-anticipatory activity and wakefulness. J. Neurosci. 24, 10493–10501 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wiater, M. F., Li, A. J., Dinh, T. T., Jansen, H. T. & Ritter, S. Leptin-sensitive neurons in the arcuate nucleus integrate activity and temperature circadian rhythms and anticipatory responses to food restriction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R949–R960 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Davidson, A. J. Lesion studies targeting food-anticipatory activity. Eur. J. Neurosci. 30, 1658–1664 (2009).

    Article  PubMed  Google Scholar 

  82. Gallardo, C. M. et al. Dopamine receptor 1 neurons in the dorsal striatum regulate food anticipatory circadian activity rhythms in mice. eLife 3, e03781 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mendoza, J., Pevet, P., Felder-Schmittbuhl, M. P., Bailly, Y. & Challet, E. The cerebellum harbors a circadian oscillator involved in food anticipation. J. Neurosci. 30, 1894–1904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Guilding, C. & Piggins, H. D. Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain? Eur. J. Neurosci. 25, 3195–3216 (2007).

    Article  PubMed  Google Scholar 

  85. Albrecht, U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74, 246–260 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Krauchi, K., Cajochen, C., Werth, E. & Wirz-Justice, A. Alteration of internal circadian phase relationships after morning versus evening carbohydrate-rich meals in humans. J. Biol. Rhythms 17, 364–376 (2002).

    Article  PubMed  Google Scholar 

  87. Wehrens, S. M. T. et al. Meal timing regulates the human circadian system. Curr. Biol. 27, 1768–1775 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Guilding, C., Hughes, A. T., Brown, T. M., Namvar, S. & Piggins, H. D. A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus. Mol. Brain 2, 28 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Abe, M. et al. Circadian rhythms in isolated brain regions. J. Neurosci. 22, 350–356 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang, D. et al. Effects of feeding time on daily rhythms of neuropeptide and clock gene expression in the rat hypothalamus. Brain Res. 1671, 93–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Jhanwar-Uniyal, M., Beck, B., Burlet, C. & Leibowitz, S. F. Diurnal rhythm of neuropeptide Y-like immunoreactivity in the suprachiasmatic, arcuate and paraventricular nuclei and other hypothalamic sites. Brain Res. 536, 331–334 (1990).

    Article  CAS  PubMed  Google Scholar 

  92. Lee, B. et al. Brain-specific homeobox factor as a target selector for glucocorticoid receptor in energy balance. Mol. Cell. Biol. 33, 2650–2658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lu, X. Y. et al. Diurnal rhythm of agouti-related protein and its relation to corticosterone and food intake. Endocrinology 143, 3905–3915 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Ramirez-Plascencia, O. D., Saderi, N., Escobar, C. & Salgado-Delgado, R. C. Feeding during the rest phase promotes circadian conflict in nuclei that control energy homeostasis and sleep-wake cycle in rats. Eur. J. Neurosci. 45, 1325–1332 (2017).

    Article  PubMed  Google Scholar 

  95. Wiater, M. F. et al. Circadian integration of sleep-wake and feeding requires NPY receptor-expressing neurons in the mediobasal hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1569–R1583 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tan, K., Knight, Z. A. & Friedman, J. M. Ablation of AgRP neurons impairs adaption to restricted feeding. Mol. Metab. 3, 694–704 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Girardet, C., Mavrikaki, M., Southern, M. R., Smith, R. G. & Butler, A. A. Assessing interactions between Ghsr and Mc3r reveals a role for AgRP in the expression of food anticipatory activity in male mice. Endocrinology 155, 4843–4855 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Fenzl, T., Flachskamm, C., Rossbauer, M., Deussing, J. M. & Kimura, M. Circadian rhythms of basal orexin levels in the hypothalamus are not influenced by an impaired corticotropin-releasing hormone receptor type 1 system. Behav. Brain Res. 203, 143–145 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Feillet, C. A. et al. Rev-erbalpha modulates the hypothalamic orexinergic system to influence pleasurable feeding behaviour in mice. Addict. Biol. 22, 411–422 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Mahoney, C. E., Brewer, J. M. & Bittman, E. L. Central control of circadian phase in arousal-promoting neurons. PLOS ONE 8, e67173 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yoshida, Y. et al. Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light-dark cycle and sleep-wake activities. Eur. J. Neurosci. 14, 1075–1081 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Laperchia, C. et al. The excitatory/inhibitory input to orexin/hypocretin neuron soma undergoes day/night reorganization. Brain Struct. Funct. 222, 3847–3859 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Akiyama, M. et al. Reduced food anticipatory activity in genetically orexin (hypocretin) neuron-ablated mice. Eur. J. Neurosci. 20, 3054–3062 (2004).

    Article  PubMed  Google Scholar 

  104. Buijs, R. M., van Eden, C. G., Goncharuk, V. D. & Kalsbeek, A. The biological clock tunes the organs of the body: timing by hormones and the autonomic nervous system. J. Endocrinol. 177, 17–26 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Muller, M. B., Keck, M. E., Zimmermann, S., Holsboer, F. & Wurst, W. Disruption of feeding behavior in CRH receptor 1-deficient mice is dependent on glucocorticoids. Neuroreport 11, 1963–1966 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Yoshihara, T., Honma, S. & Honma, K. Effects of restricted daily feeding on neuropeptide Y release in the rat paraventricular nucleus. Am. J. Physiol. 270, E589–E595 (1996).

    CAS  PubMed  Google Scholar 

  107. Bi, S., Kim, Y. J. & Zheng, F. Dorsomedial hypothalamic NPY and energy balance control. Neuropeptides 46, 309–314 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Verwey, M. & Amir, S. Nucleus-specific effects of meal duration on daily profiles of Period1 and Period2 protein expression in rats housed under restricted feeding. Neuroscience 192, 304–311 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Chou, T. C. et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J. Neurosci. 23, 10691–10702 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Angeles-Castellanos, M., Aguilar-Roblero, R. & Escobar, C. c-Fos expression in hypothalamic nuclei of food-entrained rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R158–R165 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Namvar, S., Gyte, A., Denn, M., Leighton, B. & Piggins, H. D. Dietary fat and corticosterone levels are contributing factors to meal anticipation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R711–R723 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Yu, X. et al. Circadian factor BMAL1 in histaminergic neurons regulates sleep architecture. Curr. Biol. 24, 2838–2844 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Meynard, M. M., Valdes, J. L., Recabarren, M., Seron-Ferre, M. & Torrealba, F. Specific activation of histaminergic neurons during daily feeding anticipatory behavior in rats. Behav. Brain Res. 158, 311–319 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Masaki, T. et al. Involvement of hypothalamic histamine H1 receptor in the regulation of feeding rhythm and obesity. Diabetes 53, 2250–2260 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Orozco-Solis, R. et al. The circadian clock in the ventromedial hypothalamus controls cyclic energy expenditure. Cell Metab. 23, 467–478 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ribeiro, A. C. et al. Two forces for arousal: Pitting hunger versus circadian influences and identifying neurons responsible for changes in behavioral arousal. Proc. Natl Acad. Sci. USA 104, 20078–20083 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Challet, E., Pevet, P., Lakhdar-Ghazal, N. & Malan, A. Ventromedial nuclei of the hypothalamus are involved in the phase advance of temperature and activity rhythms in food-restricted rats fed during daytime. Brain Res. Bull. 43, 209–218 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Kaneko, K. et al. Obesity alters circadian expressions of molecular clock genes in the brainstem. Brain Res. 1263, 58–68 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Juarez, C. et al. Synchronization of PER1 protein in parabrachial nucleus in a natural model of food anticipatory activity. Eur. J. Neurosci. 35, 1458–1465 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Angeles-Castellanos, M., Mendoza, J., Diaz-Munoz, M. & Escobar, C. Food entrainment modifies the c-Fos expression pattern in brain stem nuclei of rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R678–R684 (2005).

    Article  CAS  Google Scholar 

  121. Garcia-Caceres, C. et al. Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell 166, 867–880 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Marina, N. et al. Brain metabolic sensing and metabolic signaling at the level of an astrocyte. Glia 66, 1185–1199 (2018).

    Article  PubMed  Google Scholar 

  123. Challet, E. Keeping circadian time with hormones. Diabetes Obes. Metab. 17 (Suppl. 1), 76–83 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Oster, H. et al. The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr. Rev. 38, 3–45 (2017).

    Article  PubMed  Google Scholar 

  125. Van Cauter, E., Shapiro, E. T., Tillil, H. & Polonsky, K. S. Circadian modulation of glucose and insulin responses to meals: relationship to cortisol rhythm. Am. J. Physiol. 262, E467–E475 (1992).

    PubMed  Google Scholar 

  126. Wilkinson, C. W., Shinsako, J. & Dallman, M. F. Daily rhythms in adrenal responsiveness to adrenocorticotropin are determined primarily by the time of feeding in the rat. Endocrinology 104, 350–359 (1979).

    Article  CAS  PubMed  Google Scholar 

  127. Bogdan, A., Bouchareb, B. & Touitou, Y. Ramadan fasting alters endocrine and neuroendocrine circadian patterns. Meal-time as a synchronizer in humans? Life Sci. 68, 1607–1615 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Mitome, M., Honma, S., Yoshihara, T. & Honma, K. Prefeeding increase in paraventricular NE release is regulated by a feeding-associated rhythm in rats. Am. J. Physiol. 266, E606–E611 (1994).

    CAS  PubMed  Google Scholar 

  129. Warnecke, M., Oster, H., Revelli, J. P., Alvarez-Bolado, G. & Eichele, G. Abnormal development of the locus coeruleus in Ear2(Nr2f6)-deficient mice impairs the functionality of the forebrain clock and affects nociception. Genes Dev. 19, 614–625 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Shor-Posner, G., Azar, A. P., Jhanwar-Uniyal, M., Filart, R. & Leibowitz, S. F. Destruction of noradrenergic innervation to the paraventricular nucleus: deficits in food intake, macronutrient selection, and compensatory eating after food deprivation. Pharmacol. Biochem. Behav. 25, 381–392 (1986).

    Article  CAS  PubMed  Google Scholar 

  131. Cummings, D. E. et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50, 1714–1719 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Bodosi, B. et al. Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R1071–R1079 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. LeSauter, J., Hoque, N., Weintraub, M., Pfaff, D. W. & Silver, R. Stomach ghrelin-secreting cells as food-entrainable circadian clocks. Proc. Natl Acad. Sci. USA 106, 13582–13587 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Patton, D. F. & Mistlberger, R. E. Circadian adaptations to meal timing: neuroendocrine mechanisms. Front. Neurosci. 7, 185 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Merkestein, M. et al. GHS-R1a signaling in the DMH and VMH contributes to food anticipatory activity. Int. J. Obes. 38, 610–618 (2014).

    Article  CAS  Google Scholar 

  136. Mukherji, A., Kobiita, A. & Chambon, P. Shifting the feeding of mice to the rest phase creates metabolic alterations, which, on their own, shift the peripheral circadian clocks by 12 hours. Proc. Natl Acad. Sci. USA 112, E6683–E6690 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Sun, X. et al. Glucagon-CREB/CRTC2 signaling cascade regulates hepatic BMAL1 protein. J. Biol. Chem. 290, 2189–2197 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Ikeda, Y. et al. Glucagon and/or IGF-1 production regulates resetting of the liver circadian clock in response to a protein or amino acid-only diet. EBioMedicine 28, 210–224 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Tahara, Y., Otsuka, M., Fuse, Y., Hirao, A. & Shibata, S. Refeeding after fasting elicits insulin-dependent regulation of Per2 and Rev-erbalpha with shifts in the liver clock. J. Biol. Rhythms 26, 230–240 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Yamajuku, D. et al. Real-time monitoring in three-dimensional hepatocytes reveals that insulin acts as a synchronizer for liver clock. Sci. Rep. 2, 439 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Dang, F. et al. Insulin post-transcriptionally modulates Bmal1 protein to affect the hepatic circadian clock. Nat. Commun. 7, 12696 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Grosbellet, E. et al. Leptin modulates the daily rhythmicity of blood glucose. Chronobiol. Int. 32, 637–649 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Karamitri, A. & Jockers, R. Melatonin in type 2 diabetes mellitus and obesity. Nat. Rev. Endocrinol. 15, 105–125 (2018).

    Article  CAS  Google Scholar 

  144. Ando, H., Ushijima, K. & Fujimura, A. Indirect effects of glucagon-like peptide-1 receptor agonist exendin-4 on the peripheral circadian clocks in mice. PLOS ONE 8, e81119 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Landgraf, D. et al. Oxyntomodulin regulates resetting of the liver circadian clock by food. eLife 4, e06253 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Mimee, A. & Ferguson, A. V. Glycemic state regulates melanocortin, but not nesfatin-1, responsiveness of glucose-sensing neurons in the nucleus of the solitary tract. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R690–R699 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Fioramonti, X., Chretien, C., Leloup, C. & Penicaud, L. Recent advances in the cellular and molecular mechanisms of hypothalamic neuronal glucose detection. Front. Physiol. 8, 875 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Bolborea, M. & Dale, N. Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends Neurosci. 36, 91–100 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Oosterman, J. E. & Belsham, D. D. Glucose alters Per2 rhythmicity independent of AMPK, whereas AMPK inhibitor compound C causes profound repression of clock genes and AgRP in mHypoE-37 hypothalamic neurons. PLOS ONE 11, e0146969 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Kohsaka, A. et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 6, 414–421 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Magnan, C., Levin, B. E. & Luquet, S. Brain lipid sensing and the neural control of energy balance. Mol. Cell. Endocrinol. 418, 3–8 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Fick, L. J., Fick, G. H. & Belsham, D. D. Palmitate alters the rhythmic expression of molecular clock genes and orexigenic neuropeptide Y mRNA levels within immortalized, hypothalamic neurons. Biochem. Biophys. Res. Commun. 413, 414–419 (2011).

    Article  CAS  PubMed  Google Scholar 

  153. Eckel-Mahan, K. L. et al. Reprogramming of the circadian clock by nutritional challenge. Cell 155, 1464–1478 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Pendergast, J. S. et al. High-fat diet acutely affects circadian organisation and eating behavior. Eur. J. Neurosci. 37, 1350–1356 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Sasaki, T. et al. A central-acting connexin inhibitor, INI-0602, prevents high-fat diet-induced feeding pattern disturbances and obesity in mice. Mol. Brain 11, 28 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Palmisano, B. T., Stafford, J. M. & Pendergast, J. S. High-fat feeding does not disrupt daily rhythms in female mice because of protection by ovarian hormones. Front. Endocrinol. 8, 44 (2017).

    Article  Google Scholar 

  157. Chavan, R. et al. Liver-derived ketone bodies are necessary for food anticipation. Nat. Commun. 7, 10580 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Le Foll, C. & Levin, B. E. Fatty acid-induced astrocyte ketone production and the control of food intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R1186–R1192 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Brown, S. A. Circadian metabolism: from mechanisms to metabolomics and medicine. Trends Endocrinol. Metab. 27, 415–426 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Canaple, L. et al. Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol. Endocrinol. 20, 1715–1727 (2006).

    Article  CAS  PubMed  Google Scholar 

  161. Nakahata, Y. et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329–340 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Asher, G. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317–328 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Chang, H. C. & Guarente, L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153, 1448–1460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Asher, G. et al. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142, 943–953 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Jordan, S. D. & Lamia, K. A. AMPK at the crossroads of circadian clocks and metabolism. Mol. Cell. Endocrinol. 366, 163–169 (2013).

    Article  CAS  PubMed  Google Scholar 

  166. Ramanathan, C. et al. mTOR signaling regulates central and peripheral circadian clock function. PLOS Genet. 14, e1007369 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Milev, N. B. & Reddy, A. B. Circadian redox oscillations and metabolism. Trends Endocrinol. Metab. 26, 430–437 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Mukherji, A. et al. Shifting eating to the circadian rest phase misaligns the peripheral clocks with the master SCN clock and leads to a metabolic syndrome. Proc. Natl Acad. Sci. USA 112, E6691–E6698 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Sen, S. et al. Ultradian feeding in mice not only affects the peripheral clock in the liver, but also the master clock in the brain. Chronobiol. Int. 34, 17–36 (2017).

    Article  PubMed  Google Scholar 

  170. Challet, E. Interactions between light, mealtime and calorie restriction to control daily timing in mammals. J. Comp. Physiol. B 180, 631–644 (2010).

    Article  PubMed  Google Scholar 

  171. Yang, J. J., Cheng, R. C., Cheng, P. C., Wang, Y. C. & Huang, R. C. KATP channels mediate differential metabolic responses to glucose shortage of the dorsomedial and ventrolateral oscillators in the central clock. Sci. Rep. 7, 640 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Challet, E. et al. The role of PPARbeta/delta in the regulation of glutamatergic signaling in the hamster suprachiasmatic nucleus. Cell. Mol. Life Sci. 70, 2003–2014 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Bookout, A. L. et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat. Med. 19, 1147–1152 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Yi, C. X. et al. A circulating ghrelin mimetic attenuates light-induced phase delay of mice and light-induced Fos expression in the suprachiasmatic nucleus of rats. Eur. J. Neurosci. 27, 1965–1972 (2008).

    Article  PubMed  Google Scholar 

  175. Soty, M., Gautier-Stein, A., Rajas, F. & Mithieux, G. Gut-brain glucose signaling in energy homeostasis. Cell Metab. 25, 1231–1242 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. Tahara, Y. et al. Gut microbiota-derived short chain fatty acids induce circadian clock entrainment in mouse peripheral tissue. Sci. Rep. 8, 1395 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Fetissov, S. O. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat. Rev. Endocrinol. 13, 11 (2016).

    Article  PubMed  CAS  Google Scholar 

  178. Mukherji, A., Kobiita, A., Ye, T. & Chambon, P. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell 153, 812–827 (2013).

    Article  CAS  PubMed  Google Scholar 

  179. Thaiss, C. A. et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167, 1495–1510 (2016).

    Article  CAS  PubMed  Google Scholar 

  180. Weger, B. D. et al. The mouse microbiome is required for sex-specific diurnal rhythms of gene expression and metabolism. Cell Metab. 29, 362–382 (2018).

    Article  PubMed  CAS  Google Scholar 

  181. Leone, V. et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17, 681–689 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Liang, X., Bushman, F. D. & FitzGerald, G. A. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc. Natl Acad. Sci. USA 112, 10479–10484 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kaczmarek, J. L., Musaad, S. M. & Holscher, H. D. Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota. Am. J. Clin. Nutr. 106, 1220–1231 (2017).

    CAS  PubMed  Google Scholar 

  184. Arble, D. M. et al. Impact of sleep and circadian disruption on energy balance and diabetes: a summary of workshop discussions. Sleep 38, 1849–1860 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Nelson, R. J. & Chbeir, S. Dark matters: effects of light at night on metabolism. Proc. Nutr. Soc. 77, 223–229 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Kim, S. M. et al. Shift work cycle-induced alterations of circadian rhythms potentiate the effects of high-fat diet on inflammation and metabolism. FASEB J. 32, 3085–3095 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Barclay, J. L. et al. Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork. PLOS ONE 7, e37150 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Grosbellet, E. et al. Circadian desynchronization triggers premature cellular aging in a diurnal rodent. FASEB J. 29, 4794–4803 (2015).

    Article  CAS  PubMed  Google Scholar 

  189. Salgado-Delgado, R., Angeles-Castellanos, M., Saderi, N., Buijs, R. M. & Escobar, C. Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work. Endocrinology 151, 1019–1029 (2010).

    Article  CAS  PubMed  Google Scholar 

  190. Knutsson, A. & Kempe, A. Shift work and diabetes—a systematic review. Chronobiol. Int. 31, 1146–1151 (2014).

    Article  PubMed  Google Scholar 

  191. McHill, A. W. & Wright, K. P. Jr. Role of sleep and circadian disruption on energy expenditure and in metabolic predisposition to human obesity and metabolic disease. Obes. Rev. 18 (Suppl. 1), 15–24 (2017).

    Article  PubMed  Google Scholar 

  192. Scheer, F. A., Hilton, M. F., Mantzoros, C. S. & Shea, S. A. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl Acad. Sci. USA 106, 4453–4458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Gonnissen, H. K. et al. Effect of a phase advance and phase delay of the 24-h cycle on energy metabolism, appetite, and related hormones. Am. J. Clin. Nutr. 96, 689–697 (2012).

    Article  CAS  PubMed  Google Scholar 

  194. Leproult, R., Holmback, U. & Van Cauter, E. Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. Diabetes 63, 1860–1869 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Yoshida, C., Shikata, N., Seki, S., Koyama, N. & Noguchi, Y. Early nocturnal meal skipping alters the peripheral clock and increases lipogenesis in mice. Nutr. Metab. 9, 78 (2012).

    Article  CAS  Google Scholar 

  196. Mistlberger, R. E., Lukman, H. & Nadeau, B. G. Circadian rhythms in the Zucker obese rat: assessment and intervention. Appetite 30, 255–267 (1998).

    Article  CAS  PubMed  Google Scholar 

  197. Arble, D. M., Bass, J., Laposky, A. D., Vitaterna, M. H. & Turek, F. W. Circadian timing of food intake contributes to weight gain. Obesity 17, 2100–2102 (2009).

    Article  PubMed  Google Scholar 

  198. Haraguchi, A. et al. Controlling access time to a high-fat diet during the inactive period protects against obesity in mice. Chronobiol. Int. 31, 935–944 (2014).

    Article  CAS  PubMed  Google Scholar 

  199. Reutrakul, S. et al. The relationship between breakfast skipping, chronotype, and glycemic control in type 2 diabetes. Chronobiol. Int. 31, 64–71 (2014).

    Article  CAS  PubMed  Google Scholar 

  200. Jakubowicz, D. et al. Influences of breakfast on clock gene expression and postprandial glycemia in healthy individuals and individuals with diabetes: a randomized clinical trial. Diabetes Care 40, 1573–1579 (2017).

    Article  CAS  PubMed  Google Scholar 

  201. Baron, K. G. et al. Circadian timing and alignment in healthy adults: associations with BMI, body fat, caloric intake and physical activity. Int. J. Obes. 41, 203–209 (2017).

    Article  CAS  Google Scholar 

  202. Qian, J., Dalla Man, C., Morris, C. J., Cobelli, C. & Scheer, F. Differential effects of the circadian system and circadian misalignment on insulin sensitivity and insulin secretion in humans. Diabetes Obes. Metab. 20, 2481–2485 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Chaix, A., Lin, T., Le, H. D., Chang, M. W. & Panda, S. Time-restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock. Cell Metab. 29, 303–319 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  204. Hermengildo, Y. et al. Distribution of energy intake throughout the day and weight gain: a population-based cohort study in Spain. Br. J. Nutr. 115, 2003–2010 (2016).

    Article  CAS  Google Scholar 

  205. Hatori, M. et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 15, 848–860 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Garaulet, M. et al. Timing of food intake predicts weight loss effectiveness. Int. J. Obes. 37, 604–611 (2013).

    Article  CAS  Google Scholar 

  207. Ruiz-Lozano, T. et al. Timing of food intake is associated with weight loss evolution in severe obese patients after bariatric surgery. Clin. Nutr. 35, 1308–1314 (2016).

    Article  CAS  PubMed  Google Scholar 

  208. Challet, E. et al. Circadian clocks, food intake, and metabolism. Prog. Mol. Biol. Transl Sci. 119, 105–135 (2013).

    Article  PubMed  Google Scholar 

Download references

Reviewer information

Nature Reviews Endocrinology thanks H. Piggins, R. Mistlberger and F. Scheer for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Challet.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Secondary clocks

Circadian clocks found in brain structures outside of the suprachiasmatic nuclei and in peripheral organs. Self-sustained rhythmicity of extra-suprachiasmatic clocks and their cellular coupling are less robust, which might confer more flexibility to resetting cues, than the more rigid, master suprachiasmatic clock. The majority of the secondary clocks can be shifted by timed feeding (see the glossary entry for ‘Food-entrainable clocks’).

Free-running conditions

Housing conditions without external time cues, such as constant light or dark or constant temperature, that allow for the detection of the endogenous nature of circadian rhythms.

Clock genes

Specific genes involved in the molecular clock machinery.

Daily rhythm

A 24 h rhythm expressed under a light–dark cycle that is not necessarily endogenous.

Phase-shift

Change in phase of a circadian clock (or its readout, a circadian rhythm).

Food-entrainable clocks

Secondary clocks in the brain and peripheral tissues that can be phase-shifted by timed feeding.

Synchronizing factors

Sometimes called zeitgebers or time-givers; temporal signals, such as light or feeding time, that are able to reset circadian clocks, that is, to adjust their phase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Challet, E. The circadian regulation of food intake. Nat Rev Endocrinol 15, 393–405 (2019). https://doi.org/10.1038/s41574-019-0210-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-019-0210-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing