Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The promises and perils of psychedelic pharmacology for psychiatry

Abstract

Psychedelic drugs including psilocybin, N,Nʹ-dimethyltryptamine (DMT) and lysergic acid diethylamide (LSD) are undergoing a renaissance as potentially useful drugs for various neuropsychiatric diseases, with a rapid onset of therapeutic activity. Notably, phase II trials have shown that psilocybin can produce statistically significant clinical effects following one or two administrations in depression and anxiety. These findings have inspired a ‘gold rush’ of commercial interest, with nearly 60 companies already formed to explore opportunities for psychedelics in treating diverse diseases. Additionally, these remarkable phenomenological and clinical observations are informing hypotheses about potential molecular mechanisms of action that need elucidation to realize the full potential of this investigative space. In particular, despite compelling evidence that the 5-HT2A receptor is a critical mediator of the behavioural effects of psychedelic drugs, uncertainty remains about which aspects of 5-HT2A receptor activity in the central nervous system are responsible for therapeutic effects and to what degree they can be isolated by developing novel chemical probes with differing specificity and selectivity profiles. Here, we discuss this emerging area of therapeutics, covering both controversies and areas of consensus related to the opportunities and perils of psychedelic and psychedelic-inspired therapeutics. We highlight how basic science breakthroughs can guide the discovery and development of psychedelic-inspired medications with the potential for improved efficacy without hallucinogenic or rewarding actions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Historical timeline of key events in psychedelic science.
Fig. 2: LSD has a complex polypharmacology.
Fig. 3: Current model for psychedelic drug actions.
Fig. 4: A crystal-clear view of psychedelic drug actions.
Fig. 5: The polypharmacology of the novel non-psychedelic drug TBG.

Similar content being viewed by others

References

  1. Hollister, L. E. Chemical Psychoses; LSD and Related Drugs (Thomas, 1968).

  2. Osmond, H. A review of the clinical effects of psychotomimetic agents. Ann. NY Acad. Sci. 66, 418–434 (1957).

    Article  CAS  PubMed  Google Scholar 

  3. Nichols, D. E. Psychedelics. Pharmacol. Rev. 68, 264–355 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alper, K. R. Ibogaine: a review. Alkaloids Chem. Biol. 56, 1–38 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Roth, B. L. et al. Salvinorin A: a potent naturally occurring nonnitrogenous κ opioid selective agonist. Proc. Natl Acad. Sci. USA 99, 11934–11939 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Johnson, M. W., MacLean, K. A., Reissig, C. J., Prisinzano, T. E. & Griffiths, R. R. Human psychopharmacology and dose-effects of salvinorin A, a κ opioid agonist hallucinogen present in the plant Salvia divinorum. Drug Alcohol Depend. 115, 150–155 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Hoffman, A. How LSD originated. J. Psychedelic Drugs 11, 53–60 (1979).

    Article  Google Scholar 

  8. Fantegrossi, W. E. et al. Hallucinogen-like effects of 2-([2-(4-cyano-2,5-dimethoxyphenyl) ethylamino]methyl)phenol (25CN-NBOH), a novel N-benzylphenethylamine with 100-fold selectivity for 5-HT2A receptors, in mice. Psychopharmacology 232, 1039–1047 (2015).

  9. Akers, B. P., Ruiz, J. F., Piper, A. & Ruck, C. A. P. A prehistoric mural in Spain depicting neurotropic Psilocybe mushrooms? Economic Bot. 65, 121–128 (2011).

    Article  Google Scholar 

  10. Carod-Artal, F. J. Hallucinogenic drugs in pre-Columbian Mesoamerican cultures. Neurologia 30, 42–49 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Heffter, A. Ueber Pellote. Ein Betrag zur pharmakologischen Kenntnis der Cacteen [German]. Naunyn Schmiedebergs Arch. Exp. Pathol. Pharmakol. 34, 65–86 (1894).

    Article  Google Scholar 

  12. Heffter, A. Uber peyote [German]. Naunyn Schmiedebergs Arch. Exp. Path. Pharmacol. 40, 385–429 (1898).

    Article  Google Scholar 

  13. Wasson, R. G. Notes on the present status of ololuiqui and the other hallucinogens of Mexico. Bot. Mus. Leafl. Harv. Univ. 20, 163–193 (1963).

    Google Scholar 

  14. Wasson, R. G. A new Mexican psychotropic drug from the mint family. Bot. Mus. Leafl. Harv. Univ. 20, 77–84 (1962).

    Article  Google Scholar 

  15. Abramson, H. A. The Use of LSD in Psychotherapy and Alcoholism (Bobbs-Merrill, 1967).

  16. Wooley, D. W. & Shaw, E. A biochemical and pharmacological suggestion about certain mental disorders. Proc. Natl Acad. Sci. USA 40, 228–231 (1954).

    Article  Google Scholar 

  17. Cole, J. O. & Katz, M. M. The psychotomimetic drugs. An overview. JAMA 187, 758–761 (1964).

    Article  CAS  PubMed  Google Scholar 

  18. Wooley, D. & Shaw, E. A biochemical and pharmacological suggestion about certain mental disoders. Proc. Natl Acad. Sci. USA 40, 228–231 (1954).

    Article  Google Scholar 

  19. Gaddum, J. H. & Hameed, K. A. Drugs which antagonize 5-hydroxytryptamine. Br. J. Pharmacol. Chemother. 9, 240–248 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Glennon, R. A., Titler, M. & McKenney, J. D. Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci. 35, 2505–2511 (1984).

    Article  CAS  PubMed  Google Scholar 

  21. Titeler, M., Lyon, R. A. & Glennon, R. A. Radioligand binding evidence implicates the brain 5-HT2 receptor as a site-of-action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology 94, 213–216 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Shulgin, A. T. & Shulgin, A. PIKHAL — A Chemical Love Story (Transform, 1991).

  23. Standridge, R. T., Howell, H. G., Gylys, J. A., Partyka, R. A. & Shulgin, A. T. Phenylakylamines with potential psychotherapeutic utility: 1. 2-amino-1-(2,5-dimethoxy-4-methylphenyl)butane. J. Med. Chem. 19, 1400–1404 (1976).

    Article  CAS  PubMed  Google Scholar 

  24. Repke, D. B., Grotjahn, D. B. & Shulgin, A. T. Psychotomimetic N-methyl-N-isopropyltryptamines. Effects of variation of aromatic oxygen substituents. J. Med. Chem. 28, 892–896 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Lemaire, D., Jacob, P. III & Shulgin, A. T. Ring-substituted β-methoxyphenethylamines: a new class of psychotomimetic agents active in man. J. Pharm. Pharmacol. 37, 575–577 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. Porter, R. H. et al. Functional characterization of agonists at recombinant human 5-HT2A, 5-HT2B and 5-HT2C receptors in CHO-K1 cells. Br. J. Pharmacol. 128, 13–20 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kroeze, W. K. et al. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat. Struct. Mol. Biol. 22, 362–369 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rickli, A. et al. Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs). Neuropharmacology 99, 546–553 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Rickli, A., Moning, O. D., Hoener, M. C. & Liechti, M. E. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur. Neuropsychopharmacol. 26, 1327–1337 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Simmler, L. D., Buchy, D., Chaboz, S., Hoener, M. C. & Liechti, M. E. In vitro characterization of psychoactive substances at rat, mouse, and human trace amine-associated receptor 1. J. Pharmacol. Exp. Ther. 357, 134–144 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Barnes, N. M., Hales, T. G., Lummis, S. C. & Peters, J. A. The 5-HT3 receptor — the relationship between structure and function. Neuropharmacology 56, 273–284 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Bunzow, J. R. et al. Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol. Pharmacol. 60, 1181–1188 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Keiser, M. et al. Predicting new molecular targets for known drugs. Nature 462, 175–181 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cassels, B. K. & Saez-Briones, P. Dark classics in chemical neuroscience: mescaline. ACS Chem. Neurosci. 9, 2448–2458 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, K. et al. Structure of a hallucinogen activated Gq-coupled 5-HT2A serotonin receptor. Cell 182, 1574–1588.e19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hansen, M. et al. Synthesis and structure-activity relationships of N-benzyl phenethylamines as 5-HT2A/2C agonists. ACS Chem. Neurosci. 5, 243–249 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roth, B. et al. Salvinorin A: a potent naturally occurring nonnitrogenous κ opioid selective agonist. Proc. Natl Acad. Sci. USA 99, 11934–11939 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pearl, S. M., Herrick-Davis, K., Teitler, M. & Glick, S. D. Radioligand-binding study of noribogaine, a likely metabolite of ibogaine. Brain Res. 675, 342–344 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Peng, Y. et al. 5-HT2C receptor structures reveal the structural basis of GPCR polypharmacology. Cell 172, 719–730.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wacker, D. et al. Structural features for functional selectivity at serotonin receptors. Science 340, 615–619 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sanders-Bush, E., Burris, K. D. & Knoth, K. Lysergic acid diethylamide and 2,5-dimethoxy-4-methylamphetamine are partial agonists at serotonin receptors linked to phosphoinositide hydrolysis. J. Pharmacol. Exp. Ther. 246, 924–928 (1988).

    CAS  PubMed  Google Scholar 

  42. Gonzalez-Maeso, J. et al. Hallucinogens recruit specific cortical 5-HT2A receptor-mediated signaling pathways to affect behavior. Neuron 53, 439–452 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Preller, K. H. et al. Changes in global and thalamic brain connectivity in LSD-induced altered states of consciousness are attributable to the 5-HT2A receptor. eLife 7, e35082 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kometer, M., Schmidt, A., Jancke, L. & Vollenweider, F. X. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on alpha oscillations, N170 visual-evoked potentials, and visual hallucinations. J. Neurosci. 33, 10544–10551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ettrup, A. et al. Serotonin 2A receptor agonist binding in the human brain with [11C]Cimbi-36. J. Cereb. Blood Flow Metab. 34, 1188–1196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Willins, D., Deutch, A. & Roth, B. Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse 27, 79–82 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Jakab, R. & Goldman-Rakic, P. 5-hydroxytryptamine 2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc. Natl Acad. Sci. USA 95, 735–740 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aghajanian, G. K. & Marek, G. J. Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36, 589–599 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Roth, B. L., Nakaki, T., Chuang, D. M. & Costa, E. Aortic recognition sites for serotonin (5HT) are coupled to phospholipase C and modulate phosphatidylinositol turnover. Neuropharmacology 23, 1223–1225 (1984).

    Article  CAS  PubMed  Google Scholar 

  50. Conn, P. J. & Sanders-Bush, E. Selective 5-HT2 antagonists inhibit serotonin-stimulated phosphatidylinositol metabolism in cerebral cortex. Neuropharmacology 23, 993–996 (1984).

    Article  CAS  PubMed  Google Scholar 

  51. Roth, B. L., Nakaki, T., Chuang, D. M. & Costa, E. 5-hydroxytryptamine 2 receptors coupled to phospholipase C in rat aorta — modulation of phosphoinositide turnover by phorbol ester. J. Pharmacol. Exp. Ther. 238, 480–485 (1986).

    CAS  PubMed  Google Scholar 

  52. Roth, B. L. Molecular pharmacology of metabotropic receptors targeted by neuropsychiatric drugs. Nat. Struct. Mol. Biol. 26, 535–544 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gelber, E. et al. Structure and function of the third intracellular loop of the 5-hydroxytryptamine 2A receptor: the third intracellular loop is α-helical and binds purified arrestins. J. Neurochem. 72, 2206–2214 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Gray, J., Bhatnagar, A., Gurevich, V. & Roth, B. The interaction of a constitutively active arrestin with the arrestin-insensitive 5-HT2A receptor induces agonist-independent internalization. Mol. Pharmacol. 63, 961–972 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Wacker, D. et al. Crystal structure of an LSD-bound human serotonin receptor. Cell 168, 377–389.e12 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schmid, C. L., Raehal, K. M. & Bohn, L. M. Agonist-directed signaling of the serotonin 2A receptor depends on β-arrestin-2 interactions in vivo. Proc. Natl Acad. Sci. USA 105, 1079–1084 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schmid, C. L. & Bohn, L. M. Serotonin, but not N-methyltryptamines, activates the serotonin 2A receptor via a ss-arrestin2/Src/Akt signaling complex in vivo. J. Neurosci. 30, 13513–13524 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rodriguez, R. M. et al. LSD-stimulated behaviors in mice require β-arrestin 2 but not β-arrestin 1. Sci. Rep. 11, 17690 (2021).

    Article  CAS  Google Scholar 

  59. Pottie, E., Dedecker, P. & Stove, C. P. Identification of psychedelic new psychoactive substances (NPS) showing biased agonism at the 5-HT2AR through simultaneous use of β-arrestin 2 and miniGalphaq bioassays. Biochem. Pharmacol. 182, 114251 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Johnson, M. P., Loncharich, R. J., Baez, M. & Nelson, D. L. Species variations in transmembrane region V of the 5-hydroxytryptamine type 2A receptor alter the structure–activity relationship of certain ergolines and tryptamines. Mol. Pharmacol. 45, 277–286 (1994).

    CAS  PubMed  Google Scholar 

  61. Roth, B. L. Drugs and valvular heart disease. N. Engl. J. Med. 356, 6–9 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Rothman, R. et al. Evidence for possible involvement of 5-HT2B receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications. Circulation 102, 2836–2841 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Connolly, H. M. et al. Valvular heart disease associated with fenfluramine-phentermine. N. Engl. J. Med. 337, 581–588 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Devereux, R. B. Appetite suppressants and valvular heart disease. N. Engl. J. Med. 339, 765–766 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Salner, A. L., Mullany, L. D. & Cole, S. R. Methysergide induced mitral valvular insufficiency. Conn. Med. 44, 6–8 (1980).

    CAS  PubMed  Google Scholar 

  66. Hendrikx, M., Van Dorpe, J., Flameng, W. & Daenen, W. Aortic and mitral valve disease induced by ergotamine therapy for migraine: a case report and review of the literature. J. Heart Valve Dis. 5, 235–237 (1996).

    CAS  PubMed  Google Scholar 

  67. Zanettini, R. et al. Valvular heart disease and the use of dopamine agonists for Parkinson’s disease. N. Engl. J. Med. 356, 39–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Setola, V. et al. 3,4-Methylenedioxymethamphetamine (MDMA, “Ecstasy”) induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro. Mol. Pharmacol. 63, 1223–1229 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Droogmans, S. et al. Possible association between 3,4-methylenedioxymethamphetamine abuse and valvular heart disease. Am. J. Cardiol. 100, 1442–1445 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Montastruc, F. et al. Valvular heart disease in a patient taking 3,4-methylenedioxymethamphetamine (MDMA, ‘Ecstasy’). Br. J. Clin. Pharmacol. 74, 547–548 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Fortier, J. H. et al. Drug-associated valvular heart diseases and serotonin-related pathways: a meta-analysis. Heart 105, 1140–1148 (2019).

    CAS  PubMed  Google Scholar 

  72. Thomsen, W. J. et al. Lorcaserin, a novel selective human 5-hydroxytryptamine 2C agonist: in vitro and in vivo pharmacological characterization. J. Pharmacol. Exp. Ther. 325, 577–587 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Smith, S. R. et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. N. Engl. J. Med. 363, 245–256 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Studerus, E., Kometer, M., Hasler, F. & Vollenweider, F. X. Acute, subacute and long-term subjective effects of psilocybin in healthy humans: a pooled analysis of experimental studies. J. Psychopharmacol. 25, 1434–1452 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Schifano, F. et al. New psychoactive substances (NPS) and serotonin syndrome onset: a systematic review. Exp. Neurol. 339, 113638 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Mills, K. C. Serotonin syndrome. A clinical update. Crit. Care Clin. 13, 763–783 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Boyer, E. W. & Shannon, M. The serotonin syndrome. N. Engl. J. Med. 352, 1112–1120 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Canal, C. E. & Morgan, D. Head-twitch response in rodents induced by the hallucinogen 2,5-dimethoxy-4-iodoamphetamine: a comprehensive history, a re-evaluation of mechanisms, and its utility as a model. Drug Test. Anal. 4, 556–576 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Appel, J. B., White, F. J. & Holohean, A. M. Analyzing mechanism(s) of hallucinogenic drug action with drug discrimination procedures. Neurosci. Biobehav. Rev. 6, 529–536 (1982).

    Article  CAS  PubMed  Google Scholar 

  80. Nielsen, E. B., Ginn, S. R., Cunningham, K. A. & Appel, J. B. Antagonism of the LSD cue by putative serotonin antagonists: relationship to inhibition of in vivo [3H]spiroperidol binding. Behav. Brain Res. 16, 171–176 (1985).

    Article  CAS  PubMed  Google Scholar 

  81. White, F. J. & Appel, J. B. Lysergic acid diethylamide (LSD) and lisuride: differentiation of their neuropharmacological actions. Science 216, 535–537 (1982).

    Article  CAS  PubMed  Google Scholar 

  82. Koerner, J. & Appel, J. B. Psilocybin as a discriminative stimulus: lack of specificity in an animal behavior model for ‘hallucinogens’. Psychopharmacology 76, 130–135 (1982).

    Article  CAS  PubMed  Google Scholar 

  83. Cunningham, K. A. & Appel, J. B. Neuropharmacological reassessment of the discriminative stimulus properties of d-lysergic acid diethylamide (LSD). Psychopharmacology 91, 67–73 (1987).

    Article  CAS  PubMed  Google Scholar 

  84. Glennon, R. A., Young, R. & Rosencrans, J. A. Antagonism of the effects of the hallucinogen DOM, and the purported 5-HT agonist quipazine, by 5-HT2 antagonists. Eur. Pharm. 91, 189–193 (1983).

    Article  CAS  Google Scholar 

  85. Fiorella, D., Rabin, R. A. & Winter, J. C. The role of the 5-HT2A and 5-HT2C receptors in the stimulus effects of m-chlorophenylpiperazine. Psychopharmacology 119, 222–230 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Halberstadt, A. L., Chatha, M., Klein, A. K., Wallach, J. & Brandt, S. D. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology 167, 107933 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Keller, D. L. & Umbreit, W. W. Permanent alteration of behavior in mice by chemical and psychological means. Science 124, 723–724 (1956).

    Article  CAS  PubMed  Google Scholar 

  88. Corne, S. J. & Pickering, R. W. A possible correlation between drug-induced hallucinations in man and a behavioural response in mice. Psychopharmacologia 11, 65–78 (1967).

    Article  CAS  PubMed  Google Scholar 

  89. Silva, M. T. & Calil, H. M. Screening hallucinogenic drugs: systematic study of three behavioral tests. Psychopharmacologia 42, 163–171 (1975).

    Article  CAS  PubMed  Google Scholar 

  90. Barrett, F. S., Preller, K. H., Herdener, M., Janata, P. & Vollenweider, F. X. Serotonin 2A receptor signaling underlies LSD-induced alteration of the neural response to dynamic changes in music. Cereb. Cortex 28, 3939–3950 (2018).

    Article  PubMed  Google Scholar 

  91. Holze, F. et al. Acute dose-dependent effects of lysergic acid diethylamide in a double-blind placebo-controlled study in healthy subjects. Neuropsychopharmacology 46, 537–544 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Vollenweider, F. X., Vollenweider-Scherpenhuyzen, M. F., Babler, A., Vogel, H. & Hell, D. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport 9, 3897–3902 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Abbas, A. et al. PSD-95 is essential for hallucinogen and atypical antipsychotic drug actions at serotonin receptors. J. Neurosci. 29, 7124–7136 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Corne, S. J., Pickering, R. W. & Warner, B. T. A method for assessing the effects of drugs on the central actions of 5-hydroxytryptamine. Br. J. Pharmacol. Chemother. 20, 106–120 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Halberstadt, A. L. & Geyer, M. A. Effect of hallucinogens on unconditioned behavior. Curr. Top. Behav. Neurosci. 36, 159–199 (2017).

    Article  CAS  Google Scholar 

  96. Abbas, A. I. et al. PSD-95 is essential for hallucinogen and atypical antipsychotic drug actions at serotonin receptors. J. Neurosci. 29, 7124–7136 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Allen, J. A., Yadav, P. N., Setola, V., Farrell, M. & Roth, B. L. Schizophrenia risk gene CAV1 is both pro-psychotic and required for atypical antipsychotic drug actions in vivo. Transl. Psych. 1, e33 (2011).

    Article  CAS  Google Scholar 

  98. Jones, K. et al. Rapid modulation of spine morphology by the 5-HT2A serotonin receptor through kalirin-7 signaling. Proc. Natl Acad. Sci. USA 106, 19575–19580 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ly, C. et al. Psychedelics promote structural and functional neural plasticity. Cell Rep. 23, 3170–3182 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Raval, N. R. et al. A single dose of psilocybin increases synaptic density and decreases 5-HT2A receptor density in the pig brain. Int. J. Mol. Sci. 22, 835 (2021).

    Article  CAS  PubMed Central  Google Scholar 

  101. Duman, R. S., Li, N., Liu, R. J., Duric, V. & Aghajanian, G. Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology 62, 35–41 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Coyle, J. T. & Duman, R. S. Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron 38, 157–160 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Kavalali, E. T. & Monteggia, L. M. Targeting homeostatic synaptic plasticity for treatment of mood disorders. Neuron 106, 715–726 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Olsen, R. H. J. et al. TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nat. Chem. Biol. 16, 841–849 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Che, T. et al. Structure of the nanobody-stabilized active state of the κ opioid receptor. Cell 172, 55–67.e15 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Coleman, J. A. et al. Serotonin transporter–ibogaine complexes illuminate mechanisms of inhibition and transport. Nature 569, 141–145 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nutt, D., Erritzoe, D. & Carhart-Harris, R. Psychedelic psychiatry’s brave new world. Cell 181, 24–28 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Carhart-Harris, R. L. et al. Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. Lancet Psychiatry 3, 619–627 (2016).

    Article  PubMed  Google Scholar 

  109. Griffiths, R. R. et al. Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: a randomized double-blind trial. J. Psychopharmacol. 30, 1181–1197 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Carhart-Harris, R. et al. Trial of psilocybin versus escitalopram for depression. N. Engl. J. Med. 384, 1402–1411 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Carhart-Harris, R. L. et al. Psilocybin with psychological support for treatment-resistant depression: six-month follow-up. Psychopharmacology 235, 399–408 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Reiff, C. M. et al. Psychedelics and psychedelic-assisted psychotherapy. Am. J. Psychiatry 177, 391–410 (2020).

    Article  PubMed  Google Scholar 

  113. McCorvy, J. D., Olsen, R. H. & Roth, B. L. Psilocybin for depression and anxiety associated with life-threatening illnesses. J. Psychopharmacol. 30, 1209–1210 (2016).

    Article  PubMed  Google Scholar 

  114. Barnby, J. M. & Mehta, M. A. Psilocybin and mental health — don’t lose control. Front Psychiatry 9, 293 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Ross, S. et al. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J. Psychopharmacol. 30, 1165–1180 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Davis, A. K. et al. Effects of psilocybin-assisted therapy on major depressive disorder: a randomized clinical trial. JAMA Psychiatry 78, 481–489 (2020).

    Article  Google Scholar 

  117. Bonson, K. R., Buckholtz, J. W. & Murphy, D. L. Chronic administration of serotonergic antidepressants attenuates the subjective effects of LSD in humans. Neuropsychopharmacology 14, 425–436 (1996).

    Article  CAS  PubMed  Google Scholar 

  118. Bonson, K. R. & Murphy, D. L. Alterations in responses to LSD in humans associated with chronic administration of tricyclic antidepressants, monoamine oxidase inhibitors or lithium. Behav. Brain Res. 73, 229–233 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Davies, M. A. et al. Pharmacologic analysis of non-synonymous coding h5-HT2A SNPs reveals alterations in atypical antipsychotic and agonist efficacies. Pharmacogenomics J. 6, 42–51 (2005).

    Article  CAS  Google Scholar 

  121. Niswender, C. M. et al. RNA editing of the human serotonin 5-HT2C receptor. alterations in suicide and implications for serotonergic pharmacotherapy. Neuropsychopharmacology 24, 478–491 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Klein, A. K. et al. Investigation of the structure–activity relationships of psilocybin analogues. ACS Pharmacol. Transl. Sci. 4, 533–542 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Roseman, L., Nutt, D. J. & Carhart-Harris, R. L. Quality of acute psychedelic experience predicts therapeutic efficacy of psilocybin for treatment-resistant depression. Front. Pharmacol. 8, 974 (2017).

    Article  PubMed  Google Scholar 

  124. Barrett, F. S. & Griffiths, R. R. Classic hallucinogens and mystical experiences: phenomenology and neural correlates. Curr. Top. Behav. Neurosci. 36, 393–430 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Madsen, M. K. et al. Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology 44, 1328–1334 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hesselgrave, N., Troppoli, T. A., Wulff, A. B., Cole, A. B. & Thompson, S. M. Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proc. Natl Acad. Sci. USA 118, e2022489118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Conn, P. & Roth, B. Opportunities and challenges of psychiatric drug discovery: roles for scientists in academic, industry, and government settings. Neuropsychopharmacology 33, 2048–2060 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Cameron, L. P. et al. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature 589, 474–479 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Dong, C. et al. Psychedelic-inspired drug discovery using an engineered biosensor. Cell 184, 2779–2792.e18 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lyu, J. et al. Ultra-large library docking for discovering new chemotypes. Nature 566, 224–229 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Stein, R. M. et al. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Natur 579, 609–614 (2020).

    Article  CAS  Google Scholar 

  132. Wacker, D., Stevens, R. C. & Roth, B. L. How ligands illuminate GPCR molecular pharmacology. Cell 170, 414–427 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

B.L.R. was supported by grants from the National Institutes of Health (NIH), a cooperative agreement from the Defense Advanced Research Projects Agency (DARPA) and the Michael Hooker Distinguished Professorship. T.D.M.-B. is a programme manager in the DARPA Biological Technologies Office.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Bryan L. Roth.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks David Nutt, Harriet de Wit and Magali Haas for their contribution to the peer review of this work.

Additional information

Disclaimer

The views, opinions and/or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the US Department of Defense or the US Government.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

FDA Breakthrough Therapy: https://www.fda.gov/patients/fast-track-breakthrough-therapy-accelerated-approval-priority-review/breakthrough-therapy

Genome Aggregation Database: https://gnomad.broadinstitute.org/

Psychedelic Stock Index: www.psychedelicinvest.com

Substance Abuse and Mental Health Service Administration — 2019 National Survey on Drug Use and Health Detailed Tables: https://www.samhsa.gov/data/report/2019-nsduh-detailed-tables

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McClure-Begley, T.D., Roth, B.L. The promises and perils of psychedelic pharmacology for psychiatry. Nat Rev Drug Discov 21, 463–473 (2022). https://doi.org/10.1038/s41573-022-00421-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-022-00421-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research