Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic targeting of the hypoxic tumour microenvironment

Abstract

Hypoxia is prevalent in human tumours and contributes to microenvironments that shape cancer evolution and adversely affect therapeutic outcomes. Historically, two different tumour microenvironment (TME) research communities have been discernible. One has focused on physicochemical gradients of oxygen, pH and nutrients in the tumour interstitium, motivated in part by the barrier that hypoxia poses to effective radiotherapy. The other has focused on cellular interactions involving tumour and non-tumour cells within the TME. Over the past decade, strong links have been established between these two themes, providing new insights into fundamental aspects of tumour biology and presenting new strategies for addressing the effects of hypoxia and other microenvironmental features that arise from the inefficient microvascular system in solid tumours. This Review provides a perspective on advances at the interface between these two aspects of the TME, with a focus on translational therapeutic opportunities relating to the elimination and/or exploitation of tumour hypoxia.

Key points

  • O2 deficiency (euhypoxia), and mutations that have similar effects on patterns of gene expression (pseudohypoxia), have widespread effects on tumour evolution and sensitivity to anticancer agents.

  • Hypoxia-activated prodrugs have been widely investigated for targeting hypoxic tumour cells, but their clinical development has been compromised by a failure to assess hypoxia (and other relevant biomarkers) in individual tumours.

  • Electron-affinic radiosensitizers mimic some of the effects of O2 in radiation biology and might have applications in highly hypofractionated radiotherapy protocols that are increasingly used to control oligometastatic disease.

  • Hypoxia and associated features of the tumour microenvironment (adenosine, acidosis and nutrient deficiencies) are profoundly immunosuppressive; agents that alleviate hypoxia and/or acidosis can enhance the efficacy of immune-checkpoint inhibitors.

  • New evidence demonstrates that suppression of O2 consumption using inhibitors of the mitochondrial electron transport chain can relieve tumour hypoxia in patients.

  • Anticancer therapies that induce vascular damage can exacerbate tumour hypoxia, triggering a vascular repair process that supports tumour regrowth while also suppressing homology-directed repair of DNA damage. Both of these responses to treatment-induced hypoxia can be targeted therapeutically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hypoxia and associated TME stresses have key roles in cancer biology.
Fig. 2: Radioresistance of hypoxic tumours and mechanisms of radiosensitization by O2 and EARs.
Fig. 3: Targeting hypoxic tumours with HAPs.
Fig. 4: Influence of tumour hypoxia on immune cell recruitment and function.
Fig. 5: Novel therapeutic strategies associated with responses to hypoxia induced by vascular-damaging agents.

Similar content being viewed by others

References

  1. Vaupel, P., Hockel, M. & Mayer, A. Detection and characterization of tumor hypoxia using pO2 histography. Antioxid. Redox Signal. 9, 1221–1235 (2007).

    CAS  PubMed  Google Scholar 

  2. Arteel, G. E., Thurman, R. G., Yates, J. M. & Raleigh, J. A. Evidence that hypoxia markers detect oxygen gradients in liver: pimonidazole and retrograde perfusion of rat liver. Br. J. Cancer 72, 889–895 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Spencer, J. A. et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508, 269–273 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wilson, W. R. & Hay, M. P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 11, 393–410 (2011).

    CAS  PubMed  Google Scholar 

  5. Bhandari, V. et al. Molecular landmarks of tumor hypoxia across cancer types. Nat. Genet. 51, 308–318 (2019).

    CAS  PubMed  Google Scholar 

  6. Bhandari, V., Li, C. H., Bristow, R. G., Boutros, P. C. & PCAWG Consortium. Divergent mutational processes distinguish hypoxic and normoxic tumours. Nat. Commun. 11, 737 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Thiruthaneeswaran, N. et al. Lost in application: measuring hypoxia for radiotherapy optimisation. Eur. J. Cancer 148, 260–276 (2021).

    CAS  PubMed  Google Scholar 

  8. Nordsmark, M. et al. Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother. Oncol. 77, 18–24 (2005).

    PubMed  Google Scholar 

  9. Zschaeck, S. et al. Individual patient data meta-analysis of FMISO and FAZA hypoxia PET scans from head and neck cancer patients undergoing definitive radio-chemotherapy. Radiother. Oncol. 149, 189–196 (2020).

    CAS  PubMed  Google Scholar 

  10. Kaelin, W. G., Ratcliffe, P. J., Semenza, G. L. Nobel Lectures. https://www.youtube.com/watch?v=cnpE3uAg7g8 (2019).

  11. Lee, P., Chandel, N. S. & Simon, M. C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. Cell. Biol. 21, 268–283 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Losman, J. A., Koivunen, P. & Kaelin, W. G. Jr. 2-Oxoglutarate-dependent dioxygenases in cancer. Nat. Rev. Cancer 20, 710–726 (2020).

    CAS  PubMed  Google Scholar 

  13. Thienpont, B. et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 537, 63–68 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Batie, M. et al. Hypoxia induces rapid changes to histone methylation and reprograms chromatin. Science 363, 1222–1226 (2019).

    CAS  PubMed  Google Scholar 

  15. King, A., Selak, M. A. & Gottlieb, E. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25, 4675–4682 (2006).

    CAS  PubMed  Google Scholar 

  16. Kaelin, W. G. Jr. The von Hippel-Lindau tumor suppressor protein and clear cell renal carcinoma. Clin. Cancer Res. 13, 680s–684s (2007).

    CAS  PubMed  Google Scholar 

  17. Riera-Domingo, C. et al. Immunity, hypoxia, and metabolism-the menage a trois of cancer: Implications for immunotherapy. Physiol. Rev. 100, 1–102 (2020).

    CAS  PubMed  Google Scholar 

  18. Pillai, S. R. et al. Causes, consequences, and therapy of tumors acidosis. Cancer Metast. Rev. 38, 205–222 (2019).

    CAS  Google Scholar 

  19. Semenza, G. L. Hypoxia-inducible factors: coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype. EMBO J. 36, 252–259 (2017).

    CAS  PubMed  Google Scholar 

  20. Reczek, C. R. & Chandel, N. S. The two faces of reactive oxygen species in cancer. Ann. Rev. Cancer Biol. 1, 79–98 (2017).

    Google Scholar 

  21. Bodo, S. et al. Single-dose radiotherapy disables tumor cell homologous recombination via ischemia/reperfusion injury. J. Clin. Invest. 129, 786–801 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. Brown, J. M. Radiation damage to tumor vasculature initiates a program that promotes tumor recurrences. Int. J. Radiat. Oncol. Biol. Phys. 108, 734–744 (2020).

    PubMed  Google Scholar 

  23. Lambert, A. W. & Weinberg, R. A. Linking EMT programmes to normal and neoplastic epithelial stem cells. Nat. Rev. Cancer 21, 325–338 (2021).

    CAS  PubMed  Google Scholar 

  24. Wang, Y., Shang, W., Niu, M., Tian, J. & Xu, K. Hypoxia-active nanoparticles used in tumor theranostic. Int. J. Nanomed. 14, 3705–3722 (2019).

    CAS  Google Scholar 

  25. Zhou, S., Gravekamp, C., Bermudes, D. & Liu, K. Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer 18, 727–743 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, X. & Cubillos-Ruiz, J. R. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat. Rev. Cancer 21, 71–88 (2021).

    CAS  PubMed  Google Scholar 

  27. Mottram, J. C. A factor of importance in the radio sensitivity of tumours. Br. J. Radiol. 9, 606–614 (1936).

    Google Scholar 

  28. Gray, L. H., Conger, A. D., Ebert, M., Hornsey, S. & Scott, O. C. Concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br. J. Radiol. 26, 638–648 (1953).

    CAS  PubMed  Google Scholar 

  29. Thomlinson, R. H. & Gray, L. H. The histological structure of some human lung cancers and possible implications for radiotherapy. Br. J. Cancer 9, 539–549 (1955).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Shrieve, D. C. & Harris, J. W. The in vitro sensitivity of chronically hypoxic EMT6/SF cells to X-radiation and hypoxic cell radiosensitizers. Int. J. Radiat. Biol. 48, 127–138 (1985).

    CAS  Google Scholar 

  31. Adams, G. E. Hypoxic cell sensitizers for radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 4, 135–141 (1978).

    CAS  PubMed  Google Scholar 

  32. Jackson, R. K., Liew, L. P. & Hay, M. P. Overcoming radioresistance: Small molecule radiosensitisers and hypoxia-activated prodrugs. Clin. Oncol. 31, 290–302 (2019).

    CAS  Google Scholar 

  33. Koike, N. et al. 2-Nitroimidazoles induce mitochondrial stress and ferroptosis in glioma stem cells residing in a hypoxic niche. Commun. Biol. 3, 450 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wardman, P. Chemical radiosensitizers for use in radiotherapy. Clin. Oncol. 19, 397–417 (2007).

    CAS  Google Scholar 

  35. Overgaard, J. et al. A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85. Radiother. Oncol. 46, 135–146 (1998).

    CAS  PubMed  Google Scholar 

  36. Toustrup, K. et al. Development of a hypoxia gene expression classifier with predictive impact for hypoxic modification of radiotherapy in head and neck cancer. Cancer Res. 71, 5923–5931 (2011).

    CAS  PubMed  Google Scholar 

  37. Brown, J. M., Diehn, M. & Loo, B. W. Stereotactic ablative radiotherapy should be combined with a hypoxic cell radiosensitizer. Int. J. Radiat. Onc. Biol. Phys. 78, 323–327 (2010).

    Google Scholar 

  38. Carlson, D. J., Keall, P. J., Loo, B. W. Jr., Chen, Z. J. & Brown, J. M. Hypofractionation results in reduced tumor cell kill compared to conventional fractionation for tumors with regions of hypoxia. Int. J. Radiat. Onc. Biol. Phys. 79, 1188–1195 (2011).

    Google Scholar 

  39. Shuttle Pharmaceuticals. Rapidoxuridine. https://www.shuttlepharma.com/copy-of-overview (2021).

  40. Karasawa, K. et al. Efficacy of novel hypoxic cell sensitiser doranidazole in the treatment of locally advanced pancreatic cancer: long-term results of a placebo-controlled randomised study. Radiother. Oncol. 87, 326–330 (2008).

    CAS  PubMed  Google Scholar 

  41. Sakso, M. et al. Influence of FAZA PET hypoxia and HPV-status for the outcome of head and neck squamous cell carcinoma (HNSCC) treated with radiotherapy: Long-term results from the DAHANCA 24 trial (NCT01017224). Radiother. Oncol. 151, 126–133 (2020).

    PubMed  Google Scholar 

  42. O’Connor, J. P. et al. Oxygen-enhanced MRI accurately identifies, quantifies, and maps tumor hypoxia in preclinical cancer models. Cancer Res. 76, 787–795 (2016).

    PubMed  Google Scholar 

  43. Salem, A. et al. Oxygen-enhanced MRI Is feasible, repeatable, and detects radiotherapy-induced change in hypoxia in xenograft models and in patients with non-small cell lung cancer. Clin. Cancer Res. 25, 3818–3829 (2019).

    CAS  PubMed  Google Scholar 

  44. Janssens, G. O. et al. Accelerated radiotherapy with carbogen and nicotinamide for laryngeal cancer: results of a phase III randomized trial. J. Clin. Oncol. 30, 1777–1783 (2012).

    CAS  PubMed  Google Scholar 

  45. Hoskin, P. J., Rojas, A. M., Bentzen, S. M. & Saunders, M. I. Radiotherapy with concurrent carbogen and nicotinamide in bladder carcinoma. J. Clin. Oncol. 28, 4912–4918 (2010).

    PubMed  Google Scholar 

  46. Ashton, T. M., McKenna, W. G., Kunz-Schughart, L. A. & Higgins, G. S. Oxidative phosphorylation as an emerging target in cancer therapy. Clin. Cancer Res. 24, 2482–2490 (2018).

    CAS  PubMed  Google Scholar 

  47. Ashton, T. M. et al. The anti-malarial atovaquone increases radiosensitivity by alleviating tumour hypoxia. Nat. Commun. 7, 12308 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Skwarski, M. et al. Mitochondrial inhibitor atovaquone increases tumor oxygenation and inhibits hypoxic gene expression in patients with non-small cell lung cancer. Clin. Cancer Res. 27, 2459–2469 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Benej, M. et al. Papaverine and its derivatives radiosensitize solid tumors by inhibiting mitochondrial metabolism. Proc. Natl Acad. Sci. USA 115, 10756–10761 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. McGowan, D. R. et al. Buparlisib with thoracic radiotherapy and its effect on tumour hypoxia: A phase I study in patients with advanced non-small cell lung carcinoma. Eur. J. Cancer 113, 87–95 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kheir, J. N. et al. Oxygen gas-filled microparticles provide intravenous oxygen delivery. Sci. Transl. Med. 4, 140ra188 (2012).

    Google Scholar 

  52. Zou, M. Z. et al. A Multifunctional biomimetic nanoplatform for relieving hypoxia to enhance chemotherapy and inhibit the PD-1/PD-L1 axis. Small 14, e1801120 (2018).

    PubMed  Google Scholar 

  53. Sharma, A. et al. Hypoxia-targeted drug delivery. Chem. Soc. Rev. 48, 771–813 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Phillips, R. M. Targeting the hypoxic fraction of tumours using hypoxia-activated prodrugs. Cancer Chemother. Pharmacol. 77, 441–457 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mason, R. P. & Holtzman, J. L. The role of catalytic superoxide formation in the O2 inhibition of nitroreductase. Biochem. Biophys. Res. Commun. 67, 1267–1274 (1975).

    CAS  PubMed  Google Scholar 

  56. Guise, C. P. et al. The bioreductive prodrug PR-104A is activated under aerobic conditions by human aldo-keto reductase 1C3. Cancer Res. 70, 1573–1584 (2010).

    CAS  PubMed  Google Scholar 

  57. Bailey, S. M. et al. Involvement of NADPH: cytochrome P450 reductase in the activation of indoloquinone EO9 to free radical and DNA damaging species. Biochem. Pharmacol. 62, 461–468 (2001).

    CAS  PubMed  Google Scholar 

  58. Hunter, F. W., Wouters, B. G. & Wilson, W. R. Hypoxia-activated prodrugs: paths forward in the era of personalised medicine. Br. J. Cancer 114, 1071–1077 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hunter, F. W. et al. Identification of P450 oxidoreductase as a major determinant of sensitivity to hypoxia-activated prodrugs. Cancer Res. 75, 4211–4223 (2015).

    CAS  PubMed  Google Scholar 

  60. Su, J. et al. Zinc finger nuclease knockout of NADPH:cytochrome P450 oxidoreductase (POR) in human tumour cell lines demonstrates that hypoxia-activated prodrugs differ in POR dependence. J. Biol. Chem. 288, 37138–37153 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hong, C. R. et al. Cellular pharmacology of evofosfamide (TH-302): A critical re-evaluation of its bystander effects. Biochem. Pharmacol. 156, 265–280 (2018).

    CAS  PubMed  Google Scholar 

  62. Guise, C. P. et al. Diflavin oxidoreductases activate the bioreductive prodrug PR-104A under hypoxia. Mol. Pharmacol. 81, 31–40 (2012).

    CAS  PubMed  Google Scholar 

  63. Wang, J. et al. Identification of one-electron reductases that activate both the hypoxia prodrug SN30000 and diagnostic probe EF5. Biochem. Pharmacol. 91, 436–446 (2014).

    CAS  PubMed  Google Scholar 

  64. Belcourt, M. F., Hodnick, W. F., Rockwell, S. & Sartorelli, A. C. The intracellular location of NADH:cytochrome b5 reductase modulates the cytotoxicity of the mitomycins to Chinese hamster ovary cells. J. Biol. Chem. 273, 8875–8881 (1998).

    CAS  PubMed  Google Scholar 

  65. Hunter, F. W. et al. The flavoprotein FOXRED2 reductively activates nitro-chloromethylbenzindolines and other hypoxia-targeting prodrugs. Biochem. Pharmacol. 89, 224–235 (2014).

    CAS  PubMed  Google Scholar 

  66. Yu, H. et al. STEAP4 ISH and IHC diagnostics for tarloxotinib activation in EGFR/HER2 mutant cancers [abstract]. Cancer Res. 79, 4025 (2019).

    Google Scholar 

  67. Hunter, F. W. et al. Functional CRISPR and shRNA screens identify involvement of mitochondrial electron transport in the activation of evofosfamide. Mol. Pharmacol. 95, 638–651 (2019).

    CAS  PubMed  Google Scholar 

  68. Wang, J. et al. The 2-nitroimidazole EF5 is a biomarker for oxidoreductases that activate bioreductive prodrug CEN-209 under hypoxia. Clin. Cancer Res. 18, 1684–1695 (2012).

    CAS  PubMed  Google Scholar 

  69. Dubois, L. J. et al. New ways to image and target tumour hypoxia and its molecular responses. Radiother. Oncol. 116, 352–357 (2015).

    CAS  PubMed  Google Scholar 

  70. Dewhirst, M. W. & Secomb, T. W. Transport of drugs from blood vessels to tumour tissue. Nat. Rev. Cancer 17, 738–750 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Durand, R. E. & Olive, P. L. Physiologic and cytotoxic effects of tirapazamine in tumor-bearing mice. Radiat. Oncol. Invest. 5, 213–219 (1997).

    CAS  Google Scholar 

  72. Hicks, K. O., Pruijn, F. B., Sturman, J. R., Denny, W. A. & Wilson, W. R. Multicellular resistance to tirapazamine is due to restricted extravascular transport: a pharmacokinetic/pharmacodynamic study in HT29 multicellular layer cultures. Cancer Res. 63, 5970–5977 (2003).

    CAS  PubMed  Google Scholar 

  73. Hicks, K. O. et al. Use of three-dimensional tissue cultures to model extravascular transport and predict in vivo activity of hypoxia-targeted anticancer drugs. J. Natl Cancer Inst. 98, 1118–1128 (2006).

    CAS  PubMed  Google Scholar 

  74. Hicks, K. O. et al. Pharmacokinetic/pharmacodynamic modeling identifies SN30000 and SN29751 as tirapazamine analogues with improved tissue penetration and hypoxic cell killing in tumors. Clin. Cancer Res. 16, 4946–4957 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Guise, C. P. et al. Subcellular location of tirapazamine reduction dramatically affects aerobic but not anoxic cytotoxicity. Molecules 25, 4888 (2020).

    CAS  PubMed Central  Google Scholar 

  76. Wilson, W. R. et al. Bystander effects of bioreductive drugs: potential for exploiting pathological tumor hypoxia with dinitrobenzamide mustards. Radiat. Res. 167, 625–636 (2007).

    CAS  PubMed  Google Scholar 

  77. Hong, C. R. et al. Bystander effects of hypoxia-activated prodrugs: Agent-based modeling using three dimensional cell cultures. Front. Pharmacol. 9, 1013 (2018).

    PubMed  PubMed Central  Google Scholar 

  78. Hicks, K. O. et al. Oxygen dependence and extravascular transport of hypoxia-activated prodrugs: comparison of the dinitrobenzamide mustard PR-104A and tirapazamine. Int. J. Radiat. Oncol. Biol. Phys. 69, 560–571 (2007).

    CAS  PubMed  Google Scholar 

  79. Koch, C. J. Unusual oxygen concentration dependence of toxicity of SR-4233, a hypoxic cell toxin. Cancer Res. 53, 3992–3997 (1993).

    CAS  PubMed  Google Scholar 

  80. Meng, F. et al. Molecular and cellular pharmacology of the hypoxia-activated prodrug TH-302. Mol. Cancer Ther. 11, 740–751 (2012).

    CAS  PubMed  Google Scholar 

  81. Hicks, K. O., Siim, B. G., Pruijn, F. B. & Wilson, W. R. Oxygen dependence of the metabolic activation and cytotoxicity of tirapazamine: implications for extravascular transport and activity in tumors. Radiat. Res. 161, 656–666 (2004).

    CAS  PubMed  Google Scholar 

  82. O’Connor, L. J. et al. Design, synthesis and evaluation of molecularly targeted hypoxia-activated prodrugs. Nat. Protoc. 11, 781–794 (2016).

    PubMed  Google Scholar 

  83. Horan, A. D. & Koch, C. J. The K(m) for radiosensitization of human tumor cells by oxygen is much greater than 3 mmHg and is further increased by elevated levels of cysteine. Radiat. Res. 156, 388–398 (2001).

    CAS  PubMed  Google Scholar 

  84. Hong, C. R., Wilson, W. R. & Hicks, K. O. An intratumor pharmacokinetic/pharmacodynamic model for the hypoxia-activated prodrug evofosfamide (TH-302): Monotherapy activity is not dependent on a bystander effect. Neoplasia 21, 159–171 (2019).

    CAS  PubMed  Google Scholar 

  85. Patterson, L. H. & McKeown, S. R. AQ4N: a new approach to hypoxia-activated cancer chemotherapy. Br. J. Cancer 83, 1589–1593 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Estrada-Bernal, A. et al. Tarloxotinib Is a hypoxia-activated pan-HER kinase inhibitor active against a broad range of HER-family oncogenes. Clin. Cancer Res. 27, 1463–1475 (2021).

    CAS  PubMed  Google Scholar 

  87. Winn, B. A. et al. Bioreductively activatable prodrug conjugates of combretastatin A-1 and combretastatin A-4 as anticancer agents targeted toward tumor-associated hypoxia. J. Nat. Prod. 83, 937–954 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Penketh, P. G. et al. A strategy for selective O6-alkylguanine-DNA alkyltransferase depletion under hypoxic conditions. Chem. Biol. Drug Des. 80, 279–290 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Cazares-Korner, C. et al. CH-01 is a hypoxia-activated prodrug that sensitizes cells to hypoxia/reoxygenation through inhibition of Chk1 and Aurora A. ACS Chem. Biol. 8, 1451–1459 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Dickson, B. D., Wong, W. W., Wilson, W. R. & Hay, M. P. Studies towards hypoxia-activated prodrugs of PARP inhibitors. Molecules 24, 1559 (2019).

    CAS  PubMed Central  Google Scholar 

  91. Lindquist, K. E. et al. Selective radiosensitization of hypoxic cells using BCCA621C: a novel hypoxia activated prodrug targeting DNA-dependent protein kinase. Tumor Microenvir. Ther. 1, 46–55 (2013).

    Google Scholar 

  92. Wong, W. W. et al. Hypoxia-selective radiosensitisation by SN38023, a bioreductive prodrug of DNA-dependent protein kinase inhibitor IC87361. Biochem. Pharmacol. 169, 113641 (2019).

    CAS  PubMed  Google Scholar 

  93. Brown, J. M. Beware of clinical trials of DNA repair inhibitors. Int. J. Radiat. Oncol. Biol. Phys. 103, 1182–1183 (2019).

    PubMed  Google Scholar 

  94. Calder, E. D. D. et al. Hypoxia-activated pro-drugs of the KDAC inhibitor vorinostat (SAHA). Tetrahedron 76, 131170 (2020).

    CAS  Google Scholar 

  95. Skwarska, A. et al. Development and pre-clinical testing of a novel hypoxia-activated KDAC inhibitor. Cell. Chem. Biol. 28, 1–13 (2021).

    Google Scholar 

  96. Sansom, G. N. et al. Prototyping kinase inhibitor-cytotoxin anticancer mutual prodrugs activated by tumour hypoxia: A chemical proof of concept study. Bioorg. Med. Chem. Lett. 29, 1215–1219 (2019).

    CAS  PubMed  Google Scholar 

  97. Wei, H. et al. Design, synthesis and biological evaluation of novel 4-anilinoquinazoline derivatives as hypoxia-selective EGFR and VEGFR-2 dual inhibitors. Eur. J. Med. Chem. 181, 111552 (2019).

    PubMed  Google Scholar 

  98. Bielec, B. et al. Development and biological investigations of hypoxia-sensitive prodrugs of the tyrosine kinase inhibitor crizotinib. Bioorg. Chem. 99, 103778 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu, S. V. et al. First analysis of RAIN-701: Study of tarloxotinib in patients with non-small cell lung cancer (NSCLC) EGFR Exon 20 insertion, HER2-activating mutations & other solid tumours with NRG1/ERBB gene fusions [abstract LBA61]. Ann. Oncol. 31 (Suppl 4), S1189 (2020).

    Google Scholar 

  100. Lloyd, M. C. et al. Darwinian dynamics of intratumoral heterogeneity: Not solely random mutations but also variable environmental selection forces. Cancer Res. 76, 3136–3144 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wojtkowiak, J. W., Verduzco, D., Schramm, K. J. & Gillies, R. J. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol. Pharm. 8, 2032–2038 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Persi, E. et al. Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nat. Commun. 9, 2997 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. Robey, I. F. et al. Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res. 69, 2260–2268 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Estrella, V. et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 73, 1524–1535 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. El-Kenawi, A. et al. Acidity promotes tumour progression by altering macrophage phenotype in prostate cancer. Br. J. Cancer 121, 556–566 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Johnston, R. J. et al. VISTA is an acidic pH-selective ligand for PSGL-1. Nature 574, 565–570 (2019).

    CAS  PubMed  Google Scholar 

  107. Helmlinger, G., Yuan, F., Dellian, M. & Jain, R. K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat. Med. 3, 177–182 (1997).

    CAS  PubMed  Google Scholar 

  108. Rohani, N. et al. Acidification of tumor at stromal boundaries drives transcriptome alterations associated with aggressive phenotypes. Cancer Res. 79, 1952–1966 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Svastova, E. et al. Carbonic anhydrase IX interacts with bicarbonate transporters in lamellipodia and increases cell migration via its catalytic domain. J. Biol. Chem. 287, 3392–3402 (2012).

    CAS  PubMed  Google Scholar 

  110. Voegtlin, C. & Kahler, H. The estimation of the hydrogen-ion concentration of the tissues in living animals. Science 75, 362–364 (1932).

    CAS  PubMed  Google Scholar 

  111. Griffiths, J. R., Stevens, A. N., Iles, R. A., Gordon, R. E. & Shaw, D. 31P-NMR investigation of solid tumours in the living rat. Biosci. Rep. 1, 319–325 (1981).

    CAS  PubMed  Google Scholar 

  112. Denny, W. A. & Wilson, W. R. Considerations for the design of nitrophenyl mustards as agents with selective toxicity for hypoxic tumor cells. J. Med. Chem. 29, 879–887 (1986).

    CAS  PubMed  Google Scholar 

  113. Griffiths, J. R. Are cancer cells acidic? Br. J. Cancer 64, 425–427 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Wike-Hooley, J. L., Haveman, J. & Reinhold, H. S. The relevance of tumour pH to the treatment of malignant disease. Radiother. Oncol. 2, 343–366 (1984).

    CAS  PubMed  Google Scholar 

  115. Ibrahim-Hashim, A. et al. Tris-base buffer: a promising new inhibitor for cancer progression and metastasis. Cancer Med. 6, 1720–1729 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Pilon-Thomas, S. et al. Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 76, 1381–1390 (2016).

    CAS  PubMed  Google Scholar 

  117. Brophy, G. T. & Sladek, N. E. Influence of pH on the cytotoxic activity of chlorambucil. Biochem. Pharmacol. 32, 79–84 (1983).

    CAS  PubMed  Google Scholar 

  118. Gerweck, L. E., Vijayappa, S. & Kozin, S. Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol. Cancer Ther. 5, 1275–1279 (2006).

    CAS  PubMed  Google Scholar 

  119. Burns, K. E., McCleerey, T. P. & Thevenin, D. pH-selective cytotoxicity of pHLIP-antimicrobial peptide conjugates. Sci. Rep. 6, 28465 (2016).

    PubMed  PubMed Central  Google Scholar 

  120. Catalani, E. et al. The natural compound climacostol as a prodrug strategy based on pH activation for efficient delivery of cytotoxic small agents. Front. Chem. 7, 463 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Puri, S. & Juvale, K. Monocarboxylate transporter 1 and 4 inhibitors as potential therapeutics for treating solid tumours: A review with structure-activity relationship insights. Eur. J. Med. Chem. 199, 112393 (2020).

    CAS  PubMed  Google Scholar 

  122. Becker, H. M. Carbonic anhydrase IX and acid transport in cancer. Br. J. Cancer 122, 157–167 (2020).

    CAS  PubMed  Google Scholar 

  123. Lee, S. H. et al. Carbonic anhydrase IX is a pH-stat that sets an acidic tumour extracellular pH in vivo. Br. J. Cancer 119, 622–630 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. van Kuijk, S. J. et al. Prognostic significance of carbonic anhydrase IX expression in cancer patients: A meta-analysis. Front. Oncol. 6, 69 (2016).

    PubMed  PubMed Central  Google Scholar 

  125. Pastorekova, S. et al. Carbonic anhydrase IX, MN/CA IX: analysis of stomach complementary DNA sequence and expression in human and rat alimentary tracts. Gastroenterology 112, 398–408 (1997).

    CAS  PubMed  Google Scholar 

  126. Pastorekova, S. & Gillies, R. J. The role of carbonic anhydrase IX in cancer development: links to hypoxia, acidosis, and beyond. Cancer Metast. Rev. 38, 65–77 (2019).

    CAS  Google Scholar 

  127. Williams, K. J. & Gieling, R. G. Preclinical evaluation of ureidosulfamate carbonic anhydrase IX/XII inhibitors in the treatment of cancers. Int. J. Mol. Sci. 20, 6080 (2019).

    CAS  PubMed Central  Google Scholar 

  128. Pacchiano, F. et al. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. J. Med. Chem. 54, 1896–1902 (2011).

    CAS  PubMed  Google Scholar 

  129. McDonald, P. C. et al. Regulation of pH by carbonic anhydrase 9 mediates survival of pancreatic cancer cells with activated KRAS in response to hypoxia. Gastroenterology 157, 823–837 (2019).

    CAS  PubMed  Google Scholar 

  130. Andreucci, E. et al. The carbonic anhydrase IX inhibitor SLC-0111 sensitises cancer cells to conventional chemotherapy. J. Enzym. Inhib. Med. Chem. 34, 117–123 (2019).

    CAS  Google Scholar 

  131. Chafe, S. C. et al. Targeting hypoxia-induced carbonic anhydrase IX enhances immune-checkpoint blockade locally and systemically. Cancer Immunol. Res. 7, 1064–1078 (2019).

    CAS  PubMed  Google Scholar 

  132. McDonald, P. C. et al. A phase 1 study of SLC-0111, a novel inhibitor of carbonic anhydrase IX, in patients with advanced solid tumors. Am. J. Clin. Oncol. 43, 484–490 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Cepa, A. et al. In vitro evaluation of the monoclonal antibody (64)Cu-IgG M75 against human carbonic anhydrase IX and its in vivo imaging. Appl. Radiat. Isot. 133, 9–13 (2018).

    CAS  PubMed  Google Scholar 

  134. Iikuni, S. et al. Cancer radiotheranostics targeting carbonic anhydrase-IX with (111)In- and (90)Y-labeled ureidosulfonamide scaffold for SPECT imaging and radionuclide-based therapy. Theranostics 8, 2992–3006 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Koh, M. Y. & Powis, G. Passing the baton: the HIF switch. Trends Biochem. Sci. 37, 364–372 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Semenza, G. L. Pharmacologic targeting of hypoxia-inducible factors. Ann. Rev. Pharmacol. Toxicol. 59, 379–403 (2019).

    CAS  Google Scholar 

  137. Chen, W. et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539, 112–117 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Cho, H. et al. On-target efficacy of a HIF-2α antagonist in preclinical kidney cancer models. Nature 539, 107–111 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Courtney, K. D. et al. Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor-2α antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J. Clin. Oncol. 36, 867–874 (2018).

    CAS  PubMed  Google Scholar 

  140. Choueiri, T. K. et al. Inhibition of hypoxia-inducible factor-2α in renal cell carcinoma with belzutifan: a phase 1 trial and biomarker analysis. Nat. Med. 27, 802–805 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Price, C. et al. Genome-wide interrogation of human cancers identifies EGLN1 dependency in clear cell ovarian cancers. Cancer Res. 79, 2564–2579 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Haase, V. H. Hypoxia-inducible factor-prolyl hydroxylase inhibitors in the treatment of anemia of chronic kidney disease. Kidney Int. Suppl. 11, 8–25 (2021).

    Google Scholar 

  143. Waypa, G. B., Smith, K. A. & Schumacker, P. T. O2 sensing, mitochondria and ROS signaling: The fog is lifting. Mol. Asp. Med. 47-48, 76–89 (2016).

    CAS  Google Scholar 

  144. Chouchani, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Dewhirst, M. W. Relationships between cycling hypoxia, HIF-1, angiogenesis and oxidative stress. Radiat. Res. 172, 653–665 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Hernansanz-Agustin, P. et al. Na(+) controls hypoxic signalling by the mitochondrial respiratory chain. Nature 586, 287–291 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Lee, G. et al. Oxidative dimerization of PHD2 is responsible for its inactivation and contributes to metabolic reprogramming via HIF-1α activation. Sci. Rep. 6, 18928 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Groth, C. et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br. J. Cancer 120, 16–25 (2019).

    CAS  PubMed  Google Scholar 

  149. Stockwell, B. R. et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Latimer, H. R. & Veal, E. A. Peroxiredoxins in regulation of MAPK signalling pathways; sensors and barriers to signal transduction. Mol. Cell 39, 40–45 (2016).

    CAS  Google Scholar 

  151. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Google Scholar 

  152. Kim, J. W., Tchernyshyov, I., Semenza, G. L. & Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177–185 (2006).

    PubMed  Google Scholar 

  153. Lu, H. et al. Chemotherapy triggers HIF-1-dependent glutathione synthesis and copper chelation that induces the breast cancer stem cell phenotype. Proc. Natl Acad. Sci. USA 112, E4600–E4609 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Hoefflin, R. et al. HIF-1α and HIF-2α differently regulate tumour development and inflammation of clear cell renal cell carcinoma in mice. Nat. Commun. 11, 4111 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Rouschop, K. M. et al. PERK/eIF2α signaling protects therapy resistant hypoxic cells through induction of glutathione synthesis and protection against ROS. Proc. Natl Acad. Sci. USA 110, 4622–4627 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Koong, A. C., Chen, E. Y. & Giaccia, A. J. Hypoxia causes the activation of nuclear factor kappa B through the phosphorylation of I kappa B alpha on tyrosine residues. Cancer Res. 54, 1425–1430 (1994).

    CAS  PubMed  Google Scholar 

  157. Goodman, M., Bostick, R. M., Kucuk, O. & Jones, D. P. Clinical trials of antioxidants as cancer prevention agents: past, present, and future. Free Radic. Biol. Med. 51, 1068–1084 (2011).

    CAS  PubMed  Google Scholar 

  158. Dachs, G. U. et al. Vitamin C administration by intravenous infusion increases tumor ascorbate content in patients with colon cancer: A clinical intervention study. Front. Oncol. 10, 600715 (2021).

    PubMed  PubMed Central  Google Scholar 

  159. Orr, A. L. et al. Suppressors of superoxide production from mitochondrial complex III. Nat. Chem. Biol. 11, 834–836 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Wong, H. S. et al. Superoxide produced by mitochondrial site IQ inactivates cardiac succinate dehydrogenase and induces hepatic steatosis in Sod2 knockout mice. Free Radic. Biol. Med. 164, 223–232 (2021).

    CAS  PubMed  Google Scholar 

  161. Ye, J. et al. Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov. 4, 1406–1417 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. He, L. et al. Study of SHMT2 inhibitors and their binding mechanism by computational alanine scanning. J. Chem. Inf. Model. 59, 3871–3878 (2019).

    CAS  PubMed  Google Scholar 

  163. Bader, J. E., Voss, K. & Rathmell, J. C. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol. Cell 78, 1019–1033 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Liu, A. & Curran, M. A. Tumor hypermetabolism confers resistance to immunotherapy. Semin. Cancer Biol. 65, 155–163 (2020).

    CAS  PubMed  Google Scholar 

  165. Brooks, J. M. et al. Development and validation of a combined hypoxia and immune prognostic classifier for head and neck cancer. Clin. Cancer Res. 25, 5315–5328 (2019).

    CAS  PubMed  Google Scholar 

  166. Manaster, Y. et al. Reduced CTL motility and activity in avascular tumor areas. Cancer Immunol. Immunother. 68, 1287–1301 (2019).

    CAS  PubMed  Google Scholar 

  167. Najjar, Y. G. et al. Tumor cell oxidative metabolism as a barrier to PD-1 blockade immunotherapy in melanoma. JCI Insight 4, e124989 (2019).

    PubMed Central  Google Scholar 

  168. Zandberg, D. P. et al. Tumor hypoxia is associated with resistance to PD-1 blockade in squamous cell carcinoma of the head and neck. J. Immunother. Cancer 9, e002088 (2021).

  169. Jaiswal, A. R. et al. Melanoma evolves complete immunotherapy resistance through the acquisition of a hypermetabolic phenotype. Cancer Immunol. Res. 8, 1365–1380 (2020).

    PubMed  PubMed Central  Google Scholar 

  170. Scharping, N. E. et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat. Immunol. 22, 205–215 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Hatfield, S. M. et al. Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci. Transl. Med. 7, 277ra230 (2015).

    Google Scholar 

  172. Hatfield, S. M. et al. Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1α-dependent and extracellular adenosine-mediated tumor protection. J. Mol. Med. 92, 1283–1292 (2014).

    CAS  PubMed  Google Scholar 

  173. Mahiddine, K. et al. Relief of tumor hypoxia unleashes the tumoricidal potential of neutrophils. J. Clin. Invest. 130, 389–403 (2020).

    CAS  PubMed  Google Scholar 

  174. Scharping, N. E., Menk, A. V., Whetstone, R. D., Zeng, X. & Delgoffe, G. M. Efficacy of PD-1 blockade Is potentiated by metformin-induced reduction of tumor hypoxia. Cancer Immunol. Res. 5, 9–16 (2017).

    CAS  PubMed  Google Scholar 

  175. Jayaprakash, P. et al. Targeted hypoxia reduction restores T cell infiltration and sensitizes prostate cancer to immunotherapy. J. Clin. Invest. 128, 5137–5149 (2018).

    PubMed  PubMed Central  Google Scholar 

  176. Hegde, A. et al. A phase I dose escalation study to evaluate the safety and tolerability of evofosfamide in combination with ipilimumab in advanced solid malignancies. Clin. Cancer Res. 27, 3050–3060 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Chiu, D. K. et al. Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26. Hepatology 64, 797–813 (2016).

    CAS  PubMed  Google Scholar 

  178. Facciabene, A. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475, 226–230 (2011).

    CAS  PubMed  Google Scholar 

  179. Henze, A. T. & Mazzone, M. The impact of hypoxia on tumor-associated macrophages. J. Clin. Invest. 126, 3672–3679 (2016).

    PubMed  PubMed Central  Google Scholar 

  180. Casazza, A. et al. Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24, 695–709 (2013).

    CAS  PubMed  Google Scholar 

  181. Wen, Z. et al. Increased metabolites of 5-lipoxygenase from hypoxic ovarian cancer cells promote tumor-associated macrophage infiltration. Oncogene 34, 1241–1252 (2015).

    CAS  PubMed  Google Scholar 

  182. Huber, R. et al. Tumour hypoxia promotes melanoma growth and metastasis via High Mobility Group Box-1 and M2-like macrophages. Sci. Rep. 6, 29914 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Jeong, H. et al. Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis. Cancer Res. 79, 795–806 (2019).

    CAS  PubMed  Google Scholar 

  184. Sethumadhavan, S. et al. Hypoxia and hypoxia-inducible factor (HIF) downregulate antigen-presenting MHC class I molecules limiting tumor cell recognition by T cells. PLoS ONE 12, e0187314 (2017).

    PubMed  PubMed Central  Google Scholar 

  185. Noman, M. Z. et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 211, 781–790 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Hatfield, S. M. & Sitkovsky, M. V. Antihypoxic oxygenation agents with respiratory hyperoxia to improve cancer immunotherapy. J. Clin. Invest. 130, 5629–5637 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Allard, B., Allard, D., Buisseret, L. & Stagg, J. The adenosine pathway in immuno-oncology. Nat. Rev. Clin. Oncol. 17, 611–629 (2020).

    CAS  PubMed  Google Scholar 

  188. Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Watson, M. J. et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 591, 645–651 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Deng, J. et al. Hypoxia-Induced VISTA promotes the suppressive function of myeloid-derived suppressor cells in the tumor microenvironment. Cancer Immunol. Res. 7, 1079–1090 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Wu, M. Z. et al. miR-25/93 mediates hypoxia-induced immunosuppression by repressing cGAS. Nat. Cell. Biol. 19, 1286–1296 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Liu, Y. et al. Hypoxia induced HMGB1 and mitochondrial DNA interactions mediate tumor growth in hepatocellular carcinoma through Toll-like receptor 9. J. Hepatol. 63, 114–121 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Miar, A. et al. Hypoxia induces transcriptional and translational downregulation of the type I IFN pathway in multiple cancer cell types. Cancer Res. 80, 5245–5256 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. McGettrick, A. F. & O’Neill, L. A. J. The role of HIF in immunity and inflammation. Cell Metab. 32, 524–536 (2020).

    CAS  PubMed  Google Scholar 

  195. Takeda, N. et al. Differential activation and antagonistic function of HIF-α isoforms in macrophages are essential for NO homeostasis. Genes Dev. 24, 491–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Ryan, D. G. et al. Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nat. Metab. 1, 16–33 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Palazon, A. et al. An HIF-1α/VEGF-A axis in cytotoxic T cells regulates tumor progression. Cancer Cell 32, 669–683 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Tyrakis, P. A. et al. S-2-hydroxyglutarate regulates CD8(+) T-lymphocyte fate. Nature 540, 236–241 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Clever, D. et al. Oxygen sensing by T cells establishes an immunologically tolerant metastatic niche. Cell 166, 1117–1131 e1114 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Bartok, E. & Hartmann, G. Immune sensing mechanisms that discriminate self from altered self and foreign nucleic acids. Immunity 53, 54–77 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. D’Anna, F. et al. DNA methylation repels binding of hypoxia-inducible transcription factors to maintain tumor immunotolerance. Genome Biol. 21, 182 (2020).

    PubMed  PubMed Central  Google Scholar 

  202. Jain, R. K. Normalizing tumor microenvironment to treat cancer: Bench to bedside to biomarkers. J. Clin. Oncol. 31, 2205–2218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Garcia-Barros, M. et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300, 1155–1159 (2003).

    CAS  PubMed  Google Scholar 

  204. Song, C. W. et al. Is indirect cell death involved in response of tumors to stereotactic radiosurgery and stereotactic body radiation therapy? Int. J. Radiat. Oncol. Biol. Phys. 89, 924–925 (2014).

    PubMed  Google Scholar 

  205. Bussink, J., Kaanders, J. H., Rijken, P. F., Raleigh, J. A. & van der Kogel, A. J. Changes in blood perfusion and hypoxia after irradiation of a human squamous cell carcinoma xenograft tumor line. Radiat. Res. 153, 398–404 (2000).

    CAS  PubMed  Google Scholar 

  206. Kioi, M. et al. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J. Clin. Invest. 120, 694–705 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Maeda, A. et al. In vivo imaging reveals significant tumor vascular dysfunction and increased tumor hypoxia-inducible factor-1alpha expression induced by high single-dose irradiation in a pancreatic tumor model. Int. J. Radiat. Oncol. Biol. Phys. 97, 184–194 (2017).

    CAS  PubMed  Google Scholar 

  208. Moeller, B. J., Cao, Y., Li, C. Y. & Dewhirst, M. W. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5, 429–441 (2004).

    CAS  PubMed  Google Scholar 

  209. Stephens, T. C., Currie, G. A. & Peacock, J. H. Repopulation of y-irradiated Lewis lung carcinoma by malignant cells and host macrophage progenitors. Br. J. Cancer 38, 573–582 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Ahn, G. O. & Brown, J. M. Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell 13, 193–205 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Du, R. et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13, 206–220 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).

    CAS  PubMed  Google Scholar 

  213. Ceradini, D. J. et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10, 858–864 (2004).

    CAS  PubMed  Google Scholar 

  214. Medina, R. J. et al. Endothelial progenitors: A consensus statement on nomenclature. Stem Cell Transl. Med. 6, 1316–1320 (2017).

    Google Scholar 

  215. Mancuso, M. R. et al. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J. Clin. Invest. 116, 2610–2621 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Lecavalier-Barsoum, M. et al. Targeting CXCL12/CXCR4 and myeloid cells to improve the therapeutic ratio in patient-derived cervical cancer models treated with radio-chemotherapy. Br. J. Cancer 121, 249–256 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Liu, S. C. et al. Blockade of SDF-1 after irradiation inhibits tumor recurrences of autochthonous brain tumors in rats. Neuro. Oncol. 16, 21–28 (2014).

    CAS  PubMed  Google Scholar 

  218. Walters, M. J. et al. Inhibition of CXCR7 extends survival following irradiation of brain tumours in mice and rats. Br. J. Cancer 110, 1179–1188 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Thomas, R. P. et al. Macrophage exclusion after radiation therapy (MERT): A first in human phase I/II trial using a CXCR4 inhibitor in glioblastoma. Clin. Cancer Res. 25, 6948–6957 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Dhani, N. C. et al. Analysis of the intra- and intertumoral heterogeneity of hypoxia in pancreatic cancer patients receiving the nitroimidazole tracer pimonidazole. Br. J. Cancer 113, 864–871 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Kaplan, A. R. & Glazer, P. M. Impact of hypoxia on DNA repair and genome integrity. Mutagenesis 35, 61–68 (2020).

    CAS  PubMed  Google Scholar 

  222. Bindra, R. S. et al. Hypoxia-induced down-regulation of BRCA1 expression by E2Fs. Cancer Res. 65, 11597–11604 (2005).

    CAS  PubMed  Google Scholar 

  223. Bindra, R. S. & Glazer, P. M. Repression of RAD51 gene expression by E2F4/p130 complexes in hypoxia. Oncogene 26, 2048–2057 (2007).

    CAS  PubMed  Google Scholar 

  224. Garriga, J. et al. A dynamic equilibrium between CDKs and PP2A modulates phosphorylation of pRB, p107 and p130. Cell Cycle 3, 1320–1330 (2004).

    CAS  PubMed  Google Scholar 

  225. Di Conza, G. et al. The mTOR and PP2A pathways regulate PHD2 phosphorylation to fine-tune HIF1alpha levels and colorectal cancer cell survival under hypoxia. Cell Rep. 18, 1699–1712 (2017).

    PubMed  PubMed Central  Google Scholar 

  226. Ito, A., Koshikawa, N., Mochizuki, S., Omura, K. & Takenaga, K. Hypoxia-inducible factor-1 mediates the expression of DNA polymerase iota in human tumor cells. Biochem. Biophys. Res. Commun. 351, 306–311 (2006).

    CAS  PubMed  Google Scholar 

  227. Czochor, J. R., Sulkowski, P. & Glazer, P. M. miR-155 overexpression promotes genomic instability by reducing high-fidelity polymerase delta expression and activating error-prone DSB repair. Mol. Cancer Res. 14, 363–373 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Anindya, R. Non-heme dioxygenases in tumor hypoxia: They’re all bound with the same fate. DNA Repair. 49, 21–25 (2017).

    CAS  PubMed  Google Scholar 

  229. Neumeister, V. M. et al. Hypoxia-induced protein CAIX is associated with somatic loss of BRCA1 protein and pathway activity in triple negative breast cancer. Breast Cancer Res. Treat. 136, 67–75 (2012).

    CAS  PubMed  Google Scholar 

  230. Jongen, J. M. J. et al. Downregulation of DNA repair proteins and increased DNA damage in hypoxic colon cancer cells is a therapeutically exploitable vulnerability. Oncotarget 8, 86296–86311 (2017).

    PubMed  PubMed Central  Google Scholar 

  231. Helleday, T. Amplifying tumour-specific replication lesions by DNA repair inhibitors - a new era in targeted cancer therapy. Eur. J. Cancer 44, 921–927 (2008).

    CAS  PubMed  Google Scholar 

  232. Kohn, K. W. Beyond DNA crosslinking: History and prospects of DNA-targeted cancer treatment - Fifteenth Bruce F. Cain Memorial Award Lecture. Cancer Res. 56, 5533–5546 (1996).

    CAS  PubMed  Google Scholar 

  233. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Johannessen, T. C. et al. The DNA repair protein ALKBH2 mediates temozolomide resistance in human glioblastoma cells. Neuro. Oncol. 15, 269–278 (2013).

    CAS  PubMed  Google Scholar 

  235. Chan, N. et al. Chronic hypoxia decreases synthesis of homologous recombination proteins to offset chemoresistance and radioresistance. Cancer Res. 68, 605–614 (2008).

    CAS  PubMed  Google Scholar 

  236. Lawrence, T. S., Blackstock, A. W. & McGinn, C. The mechanism of action of radiosensitization of conventional chemotherapeutic agents. Sem. Radiat. Oncol. 13, 13–21 (2003).

    Google Scholar 

  237. Gu, Y. et al. Roles of DNA repair and reductase activity in the cytotoxicity of the hypoxia-activated dinitrobenzamide mustard PR-104A. Mol. Cancer Ther. 8, 1714–1723 (2009).

    CAS  PubMed  Google Scholar 

  238. Hunter, F. W. et al. Dual targeting of hypoxia and homologous recombination repair dysfunction in triple-negative breast cancer. Mol. Cancer Ther. 13, 2501–2514 (2014).

    CAS  PubMed  Google Scholar 

  239. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    CAS  PubMed  Google Scholar 

  240. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    CAS  PubMed  Google Scholar 

  241. Chan, N. et al. Contextual synthetic lethality of cancer cell kill based on the tumor microenvironment. Cancer Res. 70, 8045–8054 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Hegan, D. C. et al. Inhibition of poly(ADP-ribose) polymerase downregulates BRCA1 and RAD51 in a pathway mediated by E2F4 and p130. Proc. Natl Acad. Sci. USA 107, 2201–2206 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Liu, J. F. et al. A phase III study comparing single-agent olaparib or the combination of cediranib and olaparib to standard platinum-based chemotherapy in recurrent platinum-sensitive ovarian cancer. J. Clin. Oncol. 38, 6003–6003 (2020).

    Google Scholar 

  244. Kaplan, A. R. et al. Cediranib suppresses homology-directed DNA repair through down-regulation of BRCA1/2 and RAD51. Sci. Transl. Med. 11, 492 (2019).

    Google Scholar 

  245. Mehibel, M. et al. Eliminating hypoxic tumor cells improves response to PARP inhibitors in homologous recombination-deficient cancer models. J. Clin. Invest. https://doi.org/10.1172/JCI146256 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Buffa, F. M., Harris, A. L., West, C. M. & Miller, C. R. Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene. Br. J. Cancer 102, 428–435 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Sulkowski, P. L. et al. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci. Transl. Med. 9, 375 (2017).

    Google Scholar 

  248. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 465, 966 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Eder, J. P. et al. Clinical efficacy of olaparib in IDH1/IDH2-mutant mesenchymal sarcomas. JCO Precis. Oncol. https://doi.org/10.1200/po.20.00247 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Sulkowski, P. L. et al. Oncometabolites suppress DNA repair by disrupting local chromatin signalling. Nature 582, 586–591 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Wise, D. R. et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc. Natl Acad. Sci. USA 108, 19611–19616 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Oldham, W. M., Clish, C. B., Yang, Y. & Loscalzo, J. Hypoxia-mediated increases in L-2-hydroxyglutarate coordinate the metabolic response to reductive stress. Cell Metab. 22, 291–303 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Intlekofer, A. M. et al. Hypoxia induces production of L-2-hydroxyglutarate. Cell Metab. 22, 304–311 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Zelefsky, M. J. et al. Phase III multi-center, prospective, randomized trial comparing single dose 24 Gy radiotherapy to a 3-fraction SBRT regimen in the treatment of oligometastatic cancer. Int. J. Radiat. Oncol. Biol. Phys. https://doi.org/10.1016/j.ijrobp.2021.01.004 (2021).

    Article  PubMed  Google Scholar 

  255. Bueno, M. T. & Richard, S. SUMOylation negatively modulates target gene occupancy of the KDM5B, a histone lysine demethylase. Epigenetics 8, 1162–1175 (2013).

    CAS  PubMed  Google Scholar 

  256. Yang, W. S., Campbell, M. & Chang, P. C. SUMO modification of a heterochromatin histone demethylase JMJD2A enables viral gene transactivation and viral replication. PLoS Pathog. 13, e1006216 (2017).

    PubMed  PubMed Central  Google Scholar 

  257. Yu, S. E., Park, S. H. & Jang, Y. K. Sumoylation of the histone demethylase KDM4A is required for binding to tumor suppressor p53 in HCT116 colon cancer cell lines. Anim. Cell Syst. 22, 22–28 (2018).

    CAS  Google Scholar 

  258. Jain, I. H. et al. Genetic screen for cell fitness in high or low oxygen highlights mitochondrial and lipid metabolism. Cell 181, 716–727 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Thomas, L. W. et al. Genome-wide CRISPR/Cas9 deletion screen defines mitochondrial gene essentiality and identifies routes for tumour cell viability in hypoxia. Commun. Biol. 4, 615 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Brown, J. M. & Siim, B. G. Hypoxia-specific cytotoxins in cancer therapy. Semin. Radiat. Oncol. 6, 22–36 (1996).

    CAS  PubMed  Google Scholar 

  261. Spiegelberg, L. et al. Hypoxia-activated prodrugs and (lack of) clinical progress: The need for hypoxia-based biomarker patient selection in phase III clinical trials. Clin. Transl. Radiat. Oncol. 15, 62–69 (2019).

    PubMed  PubMed Central  Google Scholar 

  262. Meaney, C. et al. Role of hypoxia-activated prodrugs in combination with radiation therapy: An in silico approach. Math. Biosci. Eng. 16, 6257–6273 (2019).

    PubMed  Google Scholar 

  263. Lukovic, J. et al. Intratumoral heterogeneity and hypoxia gene expression signatures: Is a single biopsy adequate? Clin. Transl. Radiat. Oncol. 19, 110–115 (2019).

    PubMed  PubMed Central  Google Scholar 

  264. Lock, S. et al. Repeat FMISO-PET imaging weakly correlates with hypoxia-associated gene expressions for locally advanced HNSCC treated by primary radiochemotherapy. Radiother. Oncol. 135, 43–50 (2019).

    PubMed  Google Scholar 

  265. Zuman, P. & Shah, B. Addition, reduction and oxidation reactions of nitrosobenzene. Chem. Rev. 94, 1621–1641 (1994).

    CAS  Google Scholar 

  266. Koong, A. C. et al. Hypoxic activation of nuclear factor-kappa B is mediated by a Ras and Raf signaling pathway and does not involve MAP kinase (ERK1 or ERK2). Cancer Res. 54, 5273–5279 (1994).

    CAS  PubMed  Google Scholar 

  267. Shinde, S. S., Anderson, R. F., Hay, M. P., Gamage, S. A. & Denny, W. A. Oxidation of 2-deoxyribose by benzotriazinyl radicals of antitumor 3-amino-1,2,4-benzotriazine 1,4-dioxides. J. Am. Chem. Soc. 126, 7865–7874 (2004).

    CAS  PubMed  Google Scholar 

  268. Patterson, A. V. et al. Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA crosslinking agent PR-104. Clin. Cancer Res. 13, 3922–3932 (2007).

    CAS  PubMed  Google Scholar 

  269. Tercel, M. et al. Influence of a basic side chain on the properties of hypoxia-selective nitro analogues of the duocarmycins: Demonstration of substantial anticancer activity in combination with irradiation or chemotherapy. J. Med. Chem. 60, 5834–5856 (2017).

    CAS  PubMed  Google Scholar 

  270. Baker, M. A., Zeman, E. M., Hirst, V. K. & Brown, J. M. Metabolism of SR 4233 by Chinese hamster ovary cells: basis of selective hypoxic cytotoxicity. Cancer Res. 48, 5947–5952 (1988).

    CAS  PubMed  Google Scholar 

  271. Whillans, D. W. & Rauth, A. M. An analysis of changes in oxygen tension in stirred cellular suspensions under conditions of radiolytic and cellular consumption. Cancer Clin. Trials 3, 63–67 (1980).

    CAS  PubMed  Google Scholar 

  272. Melvin, A. & Rocha, S. Chromatin as an oxygen sensor and active player in the hypoxia response. Cell Signal. 24, 35–43 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Masson, N. et al. Conserved N-terminal cysteine dioxygenases transduce responses to hypoxia in animals and plants. Science 365, 65–69 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Koritzinsky, M. et al. Two phases of disulfide bond formation have differing requirements for oxygen. J. Cell Biol. 203, 615–627 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Koumenis, C. et al. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol. Cell. Biol. 22, 7405–7416 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Pike, L. R. et al. Transcriptional up-regulation of ULK1 by ATF4 contributes to cancer cell survival. Biochem. J. 449, 389–400 (2013).

    CAS  PubMed  Google Scholar 

  277. Gusarova, G. A. et al. Hypoxia leads to Na,K-ATPase downregulation via Ca(2+) release-activated Ca(2+) channels and AMPK activation. Mol. Cell. Biol. 31, 3546–3556 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Mungai, P. T. et al. Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels. Mol. Cell. Biol. 31, 3531–3545 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Koritzinsky, M. & Wouters, B. G. The roles of reactive oxygen species and autophagy in mediating the tolerance of tumor cells to cycling hypoxia. Semin. Radiat. Oncol. 23, 252–261 (2013).

    PubMed  Google Scholar 

  280. Pires, I. M. et al. Effects of acute versus chronic hypoxia on DNA damage responses and genomic instability. Cancer Res. 70, 925–935 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Olcina, M., Lecane, P. S. & Hammond, E. M. Targeting hypoxic cells through the DNA damage response. Clin. Cancer Res. 16, 5620–5629 (2010).

    Google Scholar 

  282. Hammond, E. M., Dorie, M. J. & Giaccia, A. J. ATR/ATM targets are phosphorylated by ATR in response to hypoxia and ATM in response to reoxygenation. J. Biol. Chem. 278, 12207–12213 (2003).

    CAS  PubMed  Google Scholar 

  283. Overgaard, J. Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck–a systematic review and meta-analysis. Radiother. Oncol. 100, 22–32 (2011).

    PubMed  Google Scholar 

  284. Rischin, D. et al. Tirapazamine, cisplatin, and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck (TROG 02.02, HeadSTART): A phase III trial of the Trans-Tasman Radiation Oncology Group. J. Clin. Oncol. 28, 2989–2995 (2010).

    CAS  PubMed  Google Scholar 

  285. Peters, L. J. et al. Critical impact of radiotherapy protocol compliance and quality in the treatment of advanced head and neck cancer: Results from TROG 02.02. J. Clin. Oncol. 28, 2996–3001 (2010).

    PubMed  Google Scholar 

  286. Rischin, D. et al. Prognostic significance of [18 F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J. Clin. Oncol. 24, 2098–2104 (2006).

    PubMed  Google Scholar 

  287. Rischin, D., Fisher, R., Peters, L., Corry, J. & Hicks, R. Hypoxia in head and neck cancer: Studies with hypoxic positron emission tomography and hypoxic cytotoxins. Int. J. Radiat. Oncol. Biol. Phys. 69, S61–S63 (2007).

    PubMed  Google Scholar 

  288. Rischin, D. et al. Tirapazamine, cisplatin, and radiation versus fluorouracil, cisplatin, and radiation in patients with locally advanced head and neck cancer: a randomized phase II trial of the Trans-Tasman Radiation Oncology Group (TROG 98.02). J. Clin. Oncol. 23, 79–87 (2005).

    CAS  PubMed  Google Scholar 

  289. Trinkaus, M. E. et al. Correlation of p16 status, hypoxic imaging using [18 F]-misonidazole positron emission tomography and outcome in patients with loco-regionally advanced head and neck cancer. J. Med. Imag. Radiat. Oncol. 58, 89–97 (2014).

    Google Scholar 

  290. Graves, E. E. et al. Quantitative and qualitative analysis of [(18)F]FDG and [(18)F]FAZA positron emission tomography of head and neck cancers and associations with HPV status and treatment outcome. Eur. J. Nucl. Med. Mol. Imaging 43, 617–625 (2016).

    CAS  PubMed  Google Scholar 

  291. Borad, M. J. et al. Randomized phase II trial of gemcitabine plus TH-302 versus gemcitabine in patients with advanced pancreatic cancer. J. Clin. Oncol. 33, 1475–1481 (2015).

    CAS  PubMed  Google Scholar 

  292. Cutsem, E. V. et al. MAESTRO: A randomized, double-blind phase III study of evofosfamide (Evo) in combination with gemcitabine (Gem) in previously untreated patients (pts) with metastatic or locally advanced unresectable pancreatic ductal adenocarcinoma (PDAC). J. Clin. Oncol. 34, 4007 (2016).

    Google Scholar 

  293. Higgins, J. P., Sarapa, N., Kim, J. & Poma, E. Unexpected pharmacokinetics of evofosfamide observed in phase III MAESTRO study. J. Clin. Oncol. 36, 2568 (2018).

    Google Scholar 

  294. Cancer Genome Atlas Research. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    Google Scholar 

  295. Hakimi, A. A. et al. An integrated metabolic atlas of clear cell renal cell carcinoma. Cancer Cell 29, 104–116 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Courtney, K. D. et al. Isotope tracing of human clear cell renal cell carcinomas demonstrates suppressed glucose oxidation In vivo. Cell Metab. 28, 793–800 e792 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  297. Bacigalupa, Z. A. & Rathmell, W. K. Beyond glycolysis: Hypoxia signaling as a master regulator of alternative metabolic pathways and the implications in clear cell renal cell carcinoma. Cancer Lett. 489, 19–28 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  298. Metallo, C. M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380–384 (2011).

    PubMed  PubMed Central  Google Scholar 

  299. Mullen, A. R. et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481, 385–388 (2011).

    PubMed  PubMed Central  Google Scholar 

  300. Gameiro, P. A. et al. In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metab. 17, 372–385 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  301. Jimenez-Valerio, G. et al. Resistance to antiangiogenic therapies by metabolic symbiosis in renal cell carcinoma PDX models and patients. Cell Rep. 15, 1134–1143 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Sonveaux, P. et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930–3942 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Aspects of this Review were informed by valuable discussions with J.M. Brown (Stanford University, Stanford, CA, USA), C.P. Hart (University of California, San Francisco, CA, USA), M.P. Hay (University of Auckland, New Zealand), M. Vissers (University of Otago, Christchurch, New Zealand) and F.W. Hunter (Janssen Research and Development, Philadelphia, PA, USA).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data, discussion of content, drafting and editing the manuscript.

Corresponding author

Correspondence to William R. Wilson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks R. Bristow, who co-reviewed with A. Suvac; J. Overgaard; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singleton, D.C., Macann, A. & Wilson, W.R. Therapeutic targeting of the hypoxic tumour microenvironment. Nat Rev Clin Oncol 18, 751–772 (2021). https://doi.org/10.1038/s41571-021-00539-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-021-00539-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer