Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dissecting the biology of allogeneic HSCT to enhance the GvT effect whilst minimizing GvHD

Abstract

Allogeneic haematopoietic stem cell transplantation (allo-HSCT) was the first successful therapy for patients with haematological malignancies, predominantly owing to graft-versus-tumour (GvT) effects. Dramatic methodological changes, designed to expand eligibility for allo-HSCT to older patients and/or those with comorbidities, have led to the use of reduced-intensity conditioning regimens, in parallel with more aggressive immunosuppression to better control graft-versus-host disease (GvHD). Consequently, disease relapse has become the major cause of death following allo-HSCT. Hence, the prevention and treatment of relapse has come to the forefront and remains an unmet medical need. Despite >60 years of preclinical and clinical studies, the immunological requirements necessary to achieve GvT effects without promoting GvHD have not been fully established. Herein, we review learnings from preclinical modelling and clinical studies relating to the GvT effect, focusing on mechanisms of relapse and on immunomodulatory strategies that are being developed to overcome disease recurrence after both allo-HSCT and autologous HSCT. Emphasis is placed on discussing current knowledge and approaches predicated on the use of cell therapies, cytokines to augment immune responses and dual-purpose antibody therapies or other pharmacological agents that can control GvHD whilst simultaneously targeting cancer cells.

Key points

  • Autologous haematopoietic stem cell transplantation (HSCT) might present the optimal platform for immunotherapies, particularly for myeloma and lymphoma; future approaches to improve allogeneic HSCT will require the introduction of innovative immune and/or targeted therapies to prevent relapse, following effective prevention of graft-versus-host disease (GvHD).

  • In initial clinical trials, freshly isolated or in vitro expanded donor regulatory T cell infusions have been associated with low GvHD rates; in preclinical models and in preliminary clinical studies, donor regulatory T cell infusion does not seem to increase leukaemia relapse rates as had been feared, although more extensive, controlled trials are needed.

  • Immune system-targeted approaches to treat disease relapse after autologous or allogeneic HSCT now include pharmacological agents that block pathways essential for tumour cell survival and at the same time, for allogeneic HSCT, suppress GvHD.

  • Immune-checkpoint inhibitors targeting inhibitory signalling pathways in T cells or infusion of T cells genetically modified to express chimeric antigen receptors or T cell receptors reactive with tumour cells might prove advantageous in autologous HSCT, but the risk of GvHD warrants careful consideration in allogeneic HSCT.

  • Preclinical models used to delineate graft-versus-tumour from GvHD responses as well as to assess potential therapeutic interventions often use inbred laboratory mouse strains, which offer many advantages mechanistically, but crucial caveats beyond immunological differences between species need to be acknowledged during clinical extrapolation.

  • Nature killer (NK) cells are increasingly being examined for their ability to mediate graft-versus-tumour effects whilst having minimal effects on GvHD after HSCT, including the use of third-party chimeric antigen receptor NK cell products and the use of targeted biologic agents to exploit the ability of NK cells to mediate antibody-dependent cellular cytotoxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of leukaemia cell recognition and killing after haematopoietic stem cell transplantation.
Fig. 2: Mechanisms of immune escape after haematopoietic stem cell transplantation.

Similar content being viewed by others

References

  1. D’Souza, A. & Fretham, C. Current uses and outcomes of hematopoietic cell transplantation (HCT): CIBMTR summary slides https://www.cibmtr.org/ReferenceCenter/SlidesReports/SummarySlides/pages/index.aspx (2019).

  2. Lundqvist, A. & Childs, R. Allogeneic hematopoietic cell transplantation as immunotherapy for solid tumors: current status and future directions. J. Immunother. 28, 281–288 (2005).

    PubMed  Google Scholar 

  3. McDonald, G. B. et al. Survival, nonrelapse mortality, and relapse-related mortality after allogeneic hematopoietic cell transplantation: comparing 2003–2007 versus 2013–2017 cohorts. Ann. Intern. Med. 172, 229–239 (2020).

    PubMed  PubMed Central  Google Scholar 

  4. Meybodi, M. A. et al. HLA-haploidentical vs matched-sibling hematopoietic cell transplantation: a systematic review and meta-analysis. Blood Adv. 3, 2581–2585 (2019).

    PubMed  PubMed Central  Google Scholar 

  5. Passweg, J. R. et al. The EBMT activity survey report 2017: a focus on allogeneic HCT for nonmalignant indications and on the use of non-HCT cell therapies. Bone Marrow Transpl. 54, 1575–1585 (2019).

    CAS  Google Scholar 

  6. Stem Cell Trialists’ Collaborative Group. Allogeneic peripheral blood stem-cell compared with bone marrow transplantation in the management of hematologic malignancies: an individual patient data meta-analysis of nine randomized trials. J. Clin. Oncol. 23, 5074–5087 (2005).

    Google Scholar 

  7. Vuckovic, S. et al. Bone marrow transplantation generates T cell-dependent control of myeloma in mice. J. Clin. Invest. 129, 106–121 (2019).

    PubMed  Google Scholar 

  8. Chung, D. J. et al. T-cell exhaustion in multiple myeloma relapse after autotransplant: optimal timing of immunotherapy. Cancer Immunol. Res. 4, 61–71 (2016).

    CAS  PubMed  Google Scholar 

  9. Yadav, M. et al. Tigit, CD226 and PD-L1/PD-1 are highly expressed by marrow-infiltrating T cells in patients with multiple myeloma. Blood 128, 2102–2102 (2016).

    Google Scholar 

  10. Minnie, S. A. et al. Myeloma escape after stem cell transplantation is a consequence of T-cell exhaustion and is prevented by TIGIT blockade. Blood 132, 1675–1688 (2018).

    CAS  PubMed  Google Scholar 

  11. Choi, S. W. & Reddy, P. Current and emerging strategies for the prevention of graft-versus-host disease. Nat. Rev. Clin. Oncol. 11, 536 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Blazar, B. R., Murphy, W. J. & Abedi, M. Advances in graft-versus-host disease biology and therapy. Nat. Rev. Immunol. 12, 443 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Markey, K. A., MacDonald, K. P. & Hill, G. R. The biology of graft-versus-host disease: experimental systems instructing clinical practice. Blood 124, 354–362 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mirsoian, A. et al. Adiposity induces lethal cytokine storm after systemic administration of stimulatory immunotherapy regimens in aged mice. J. Exp. Med. 211, 2373–2383 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Murphy, W. J. & Longo, D. L. The surprisingly positive association between obesity and cancer immunotherapy efficacy. JAMA 321, 1247–1248 (2019).

    PubMed  Google Scholar 

  16. Stein-Thoeringer, C. K. et al. Lactose drives enterococcus expansion to promote graft-versus-host disease. Science 366, 1143–1149 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fink, E. C. et al. Crbn (I391V) is sufficient to confer in vivo sensitivity to thalidomide and its derivatives in mice. Blood 132, 1535–1544 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dossa, R. G. et al. Development of T-cell immunotherapy for hematopoietic stem cell transplantation recipients at risk of leukemia relapse. Blood 131, 108–120 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bleakley, M. & Riddell, S. R. Exploiting T cells specific for human minor histocompatibility antigens for therapy of leukemia. Immunol. Cell Biol. 89, 396–407 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Marijt, W. A. et al. Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc. Natl Acad. Sci. USA 100, 2742–2747 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shlomchik, W. D. et al. Prevention of graft versus host disease by inactivation of host antigen presenting cells. Science 285, 412–415 (1999).

    CAS  PubMed  Google Scholar 

  22. Bleakley, M. et al. Engineering human peripheral blood stem cell grafts that are depleted of naive T cells and retain functional pathogen-specific memory T cells. Biol. Blood Marrow Transpl. 20, 705–716 (2014).

    CAS  Google Scholar 

  23. Anderson, B. E. et al. Memory CD4+ T cells do not induce graft-versus-host disease. J. Clin. Invest. 112, 101–108 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. MacDonald, K. P. et al. An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood 116, 3955–3963 (2010).

    CAS  PubMed  Google Scholar 

  25. Koyama, M. et al. Recipient nonhematopoietic antigen-presenting cells are sufficient to induce lethal acute graft-versus-host disease. Nat. Med. 18, 135–142 (2012).

    CAS  Google Scholar 

  26. Matte-Martone, C., Liu, J., Jain, D., McNiff, J. & Shlomchik, W. D. CD8+ but not CD4+ T cells require cognate interactions with target tissues to mediate GVHD across only minor H antigens, whereas both CD4+ and CD8+ T cells require direct leukemic contact to mediate GVL. Blood 111, 3884–3892 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Matte, C. C. et al. Donor APCs are required for maximal GVHD but not for GVL. Nat. Med. 10, 987–992 (2004).

    CAS  PubMed  Google Scholar 

  28. Reddy, P. et al. A crucial role for antigen-presenting cells and alloantigen expression in graft-versus-leukemia responses. Nat. Med. 11, 1244–1249 (2005).

    CAS  PubMed  Google Scholar 

  29. Zheng, H. et al. Effector memory CD4+ T cells mediate graft-versus-leukemia without inducing graft-versus-host disease. Blood 111, 2476–2484 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Markey, K. A. et al. Flt-3L expansion of recipient CD8alpha+ dendritic cells deletes alloreactive donor T cells and represents an alternative to posttransplant cyclophosphamide for the prevention of GVHD. Clin. Cancer Res. 24, 1604–1616 (2018).

    CAS  PubMed  Google Scholar 

  31. Asakura, S. et al. Alloantigen expression on non-hematopoietic cells reduces graft-versus-leukemia effects in mice. J. Clin. Invest. 120, 2370–2378 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Koyama, M. et al. MHC class II antigen presentation by the intestinal epithelium initiates graft-versus-host disease and is influenced by the microbiota. Immunity 51, 1–14 (2019).

    Google Scholar 

  33. Koyama, M. et al. Donor colonic CD103+ dendritic cells determine the severity of acute graft-versus-host disease. J. Exp. Med. 212, 1303–1321 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gartlan, K. H. et al. Donor T-cell-derived GM-CSF drives alloantigen presentation by dendritic cells in the gastrointestinal tract. Blood Adv. 3, 2859–2865 (2019).

    PubMed  PubMed Central  Google Scholar 

  35. Christopher, M. J. et al. Immune escape of relapsed AML cells after allogeneic transplantation. N. Engl. J. Med. 379, 2330–2341 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Vago, L. et al. Loss of mismatched HLA in leukemia after stem-cell transplantation. N. Engl. J. Med. 361, 478–488 (2009).

    CAS  PubMed  Google Scholar 

  37. Alspach, E. et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 574, 696–701 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Beelen, D. W., Elmaagacli, A., Muller, K. D., Hirche, H. & Schaefer, U. W. Influence of intestinal bacterial decontamination using metronidazole and ciprofloxacin or ciprofloxacin alone on the development of acute graft-versus-host disease after marrow transplantation in patients with hematologic malignancies: final results and long term follow-up of an open-label prospective randomized trial. Blood 93, 3267–3275 (1999).

    CAS  PubMed  Google Scholar 

  39. Beelen, D. W. et al. Evidence that sustained growth suppression of intestinal anaerobic bacteria reduces the risk of acute graft-versus-host disease after sibling marrow transplantation. Blood 80, 2668–2676 (1992).

    CAS  PubMed  Google Scholar 

  40. Storb, R. et al. Graft-versus-host disease and survival in patients with aplastic anemia treated by marrow grafts from HLA-identical siblings. Beneficial effect of a protective environment. N. Engl. J. Med. 308, 302–307 (1983).

    CAS  PubMed  Google Scholar 

  41. Mathewson, N. D. et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat. Immunol. 17, 505–513 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Peled, J. U. et al. Members of the intestinal microbiota are associated with relapse after allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transpl. 22, S23–S24 (2016).

    Google Scholar 

  43. Zeiser, R. & Vago, L. Mechanisms of immune escape after allogeneic hematopoietic cell transplantation. Blood 133, 1290–1297 (2019).

    CAS  PubMed  Google Scholar 

  44. Matte-Martone, C. et al. Differential requirements for myeloid leukemia IFN-gamma conditioning determine graft-versus-leukemia resistance and sensitivity. J. Clin. Invest. 127, 2765–2776 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. Walter, R. B. et al. Significance of minimal residual disease before myeloablative allogeneic hematopoietic cell transplantation for AML in first and second complete remission. Blood 122, 1813–1821 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Minnie, S. A. & Hill, G. R. Immunotherapy of multiple myeloma. J. Clin. Invest. 130, 1565–1575 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Marmont, A. M. et al. T-cell depletion of HLA-identical transplants in leukemia. Blood 78, 2120–2130 (1991).

    CAS  PubMed  Google Scholar 

  48. Brandenburg, U., Gottlieb, D. & Bradstock, K. Antileukemic effects of rapid cyclosporin withdrawal in patients with relapsed chronic myeloid leukemia after allogeneic bone marrow transplantation. Leuk. Lymphoma 31, 545–550 (1998).

    CAS  PubMed  Google Scholar 

  49. Kolb, H. J. et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 86, 2041–2050 (1995).

    CAS  PubMed  Google Scholar 

  50. Soiffer, R. J. Checkpoint inhibition to prevent or treat relapse in allogeneic hematopoietic cell transplantation. Bone Marrow Transpl. 54, 798–802 (2019).

    Google Scholar 

  51. Schoch, L. K. et al. Immune checkpoint inhibitors as a bridge to allogeneic transplantation with posttransplant cyclophosphamide. Blood Adv. 2, 2226–2229 (2018).

    PubMed  PubMed Central  Google Scholar 

  52. Henden, A. S. et al. Pegylated interferon-2alpha invokes graft-versus-leukemia effects in patients relapsing after allogeneic stem cell transplantation. Blood Adv. 3, 3013–3019 (2019).

    PubMed  PubMed Central  Google Scholar 

  53. Alexander, K. A. et al. CSF-1-dependant donor-derived macrophages mediate chronic graft-versus-host disease. J. Clin. Invest. 124, 4266–4280 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kennedy, G. A. et al. Addition of interleukin-6 inhibition with tocilizumab to standard graft-versus-host disease prophylaxis after allogeneic stem-cell transplantation: a phase 1/2 trial. Lancet Oncol. 15, 1451–1459 (2014).

    CAS  PubMed  Google Scholar 

  55. Nakamura, K. et al. Dysregulated IL-18 is a key driver of immunosuppression and a possible therapeutic target in the multiple myeloma microenvironment. Cancer Cell 33, 634–648 (2018).

    CAS  PubMed  Google Scholar 

  56. Garfall, A. L. et al. Anti-CD19 CAR T cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma. JCI Insight 4, e127684 (2019).

    PubMed Central  Google Scholar 

  57. Pont, M. J. et al. γ-Secretase inhibition increases efficacy of BCMA-specific chimeric antigen receptor T cells in multiple myeloma. Blood 134, 1585–1597 (2019).

    PubMed  PubMed Central  Google Scholar 

  58. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    CAS  PubMed  Google Scholar 

  59. Majzner, R. G. & Mackall, C. L. Clinical lessons learned from the first leg of the CAR T cell journey. Nat. Med. 25, 1341–1355 (2019).

    CAS  PubMed  Google Scholar 

  60. Ghosh, A. et al. Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity. Nat. Med. 23, 242–249 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Di Stasi, A. et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365, 1673–1683 (2011).

    PubMed  PubMed Central  Google Scholar 

  62. Chapuis, A. G. et al. T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant. Nat. Med. 25, 1064–1072 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kantarjian, H. et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N. Engl. J. Med. 376, 836–847 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Qazilbash, M. H. et al. PR1 peptide vaccine induces specific immunity with clinical responses in myeloid malignancies. Leukemia 31, 697–704 (2017).

    CAS  PubMed  Google Scholar 

  65. McLaughlin, L. P. et al. EBV/LMP-specific T cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation. Blood 132, 2351–2361 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Doubrovina, E. et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood 119, 2644–2656 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zeiser, R. et al. Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogeneic stem cell transplantation: a multicenter survey. Leukemia 29, 2062–2068 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cutler, C. et al. Rituximab prophylaxis prevents corticosteroid-requiring chronic GVHD after allogeneic peripheral blood stem cell transplantation: results of a phase 2 trial. Blood 122, 1510–1517 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Cutler, C. et al. Rituximab for steroid-refractory chronic graft-versus-host disease. Blood 108, 756–762 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, Y. et al. Notch signaling is a critical regulator of allogeneic CD4+ T-cell responses mediating graft-versus-host disease. Blood 117, 299–308 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Radojcic, V. et al. Notch signaling mediated by delta-like ligands 1 and 4 controls the pathogenesis of chronic GVHD in mice. Blood 132, 2188–2200 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Mathew, N. R. et al. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nat. Med. 24, 282 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Jaglowski, S. M. & Blazar, B. R. How ibrutinib, a B-cell malignancy drug, became an FDA-approved second-line therapy for steroid-resistant chronic GVHD. Blood Adv. 2, 2012–2019 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Dubovsky, J. A. et al. Ibrutinib treatment ameliorates murine chronic graft-versus-host disease. J. Clin. Invest. 124, 4867–4876 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Flynn, R. et al. Targeting Syk-activated B cells in murine and human chronic graft-versus-host disease. Blood 125, 4085–4094 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pai, C. C. et al. Treatment of chronic graft-versus-host disease with bortezomib. Blood 124, 1677–1688 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Koreth, J. et al. Bortezomib, tacrolimus, and methotrexate for prophylaxis of graft-versus-host disease after reduced-intensity conditioning allogeneic stem cell transplantation from HLA-mismatched unrelated donors. Blood 114, 3956–3959 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Koreth, J. et al. Bortezomib-based graft-versus-host disease prophylaxis in HLA-mismatched unrelated donor transplantation. J. Clin. Oncol. 30, 3202–3208 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Paz, K. et al. Targeting PI3Kdelta function for amelioration of murine chronic graft-versus-host disease. Am. J. Transpl. 19, 1820–1830 (2019).

    CAS  Google Scholar 

  80. Taylor, P. A., Noelle, R. J. & Blazar, B. R. CD4+CD25+ immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J. Exp. Med. 193, 1311–1318 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Taylor, P. A., Lees, C. J. & Blazar, B. R. The infusion of ex vivo activated and expanded CD4+CD25+ immune regulatory cells inhibits graft-versus-host disease lethality. Blood 99, 3493–3499 (2002).

    CAS  PubMed  Google Scholar 

  82. Hoffmann, P., Ermann, J., Edinger, M., Fathman, C. G. & Strober, S. Donor-type CD4+CD25+ regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J. Exp. Med. 196, 389–399 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Cohen, J. L., Trenado, A., Vasey, D., Klatzmann, D. & Salomon, B. L. CD4+CD25+ immunoregulatory T cells: new therapeutics for graft-versus-host disease. J. Exp. Med. 196, 401–406 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Brunstein, C. G. et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood 117, 1061–1070 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Brunstein, C. G. et al. Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect. Blood 127, 1044–1051 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Edinger, M. et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat. Med. 9, 1144–1150 (2003).

    CAS  PubMed  Google Scholar 

  87. Trenado, A. et al. Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J. Clin. Invest. 112, 1688–1696 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Del Papa, B. et al. Clinical-grade-expanded regulatory T cells prevent graft-versus-host disease while allowing a powerful T cell-dependent graft-versus-leukemia effect in murine models. Biol. Blood Marrow Transpl. 23, 1847–1851 (2017).

    Google Scholar 

  89. Choi, B. D. et al. Human regulatory T cells kill tumor cells through granzyme-dependent cytotoxicity upon retargeting with a bispecific antibody. Cancer Immunol. Res. 1, 163 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Grossman, W. J. et al. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21, 589–601 (2004).

    CAS  PubMed  Google Scholar 

  91. Di Ianni, M. et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood 117, 3921–3928 (2011).

    PubMed  Google Scholar 

  92. Zhou, Q. et al. Depletion of endogenous tumor-associated regulatory T cells improves the efficacy of adoptive cytotoxic T-cell immunotherapy in murine acute myeloid leukemia. Blood 114, 3793–3802 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Szczepanski, M. J. et al. Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin. Cancer Res. 15, 3325–3332 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zou, L. et al. Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res. 64, 8451–8455 (2004).

    CAS  PubMed  Google Scholar 

  95. Martelli, M. F. et al. HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood 124, 638–644 (2014).

    CAS  PubMed  Google Scholar 

  96. Sawamukai, N. et al. Cell-autonomous role of TGFbeta and IL-2 receptors in CD4+ and CD8+ inducible regulatory T-cell generation during GVHD. Blood 119, 5575–5583 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang, P. et al. Induced regulatory T cells promote tolerance when stabilized by rapamycin and IL-2 in vivo. J. Immunol. 191, 5291–5303 (2013).

    CAS  PubMed  Google Scholar 

  98. Beres, A. J. et al. CD8+ Foxp3+ regulatory T cells are induced during graft-versus-host disease and mitigate disease severity. J. Immunol. 189, 464–474 (2012).

    CAS  PubMed  Google Scholar 

  99. Semple, K., Yu, Y., Wang, D., Anasetti, C. & Yu, X. Z. Efficient and selective prevention of GVHD by antigen-specific induced Tregs via linked-suppression in mice. Biol. Blood Marrow Transpl. 17, 309–318 (2011).

    CAS  Google Scholar 

  100. Li, J. et al. HY-specific induced regulatory T cells display high specificity and efficacy in the prevention of acute graft-versus-host disease. J. Immunol. 195, 717–725 (2015).

    CAS  PubMed  Google Scholar 

  101. Hippen, K. L. et al. Generation and large-scale expansion of human inducible regulatory T cells that suppress graft-versus-host disease. Am. J. Transpl. 11, 1148–1157 (2011).

    CAS  Google Scholar 

  102. Heinrichs, J. et al. CD8+ Tregs promote GVHD prevention and overcome the impaired GVL effect mediated by CD4+ Tregs in mice. Oncoimmunology 5, e1146842 (2016).

    PubMed  PubMed Central  Google Scholar 

  103. Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10, 1000–1007 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Rubtsov, Y. P. et al. Stability of the regulatory T cell lineage in vivo. Science 329, 1667–1671 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Fu, W. et al. A multiply redundant genetic switch ‘locks in’ the transcriptional signature of regulatory T cells. Nat. Immunol. 13, 972–980 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang, P. et al. Eomesodermin promotes the development of type 1 regulatory T (TR1) cells. Sci. Immunol. 2, eaah7152 (2017).

    PubMed  PubMed Central  Google Scholar 

  107. Lu, L. et al. Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions. Proc. Natl Acad. Sci. USA 111, E3432–E3440 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Di Pilato, M. et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature 570, 112–116 (2019).

    PubMed  PubMed Central  Google Scholar 

  109. Benson, M. J., Pino-Lagos, K., Rosemblatt, M. & Noelle, R. J. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med. 204, 1765–1774 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhou, X. et al. Cutting edge: all-trans retinoic acid sustains the stability and function of natural regulatory T cells in an inflammatory milieu. J. Immunol. 185, 2675–2679 (2010).

    CAS  PubMed  Google Scholar 

  112. Khafif, R. A., Gelbfish, G. A., Attie, J. N., Tepper, P. & Zingale, R. Thirty-year experience with 457 radical neck dissections in cancer of the mouth, pharynx, and larynx. Am. J. Surg. 158, 303–307 (1989).

    CAS  PubMed  Google Scholar 

  113. Yue, X. et al. Control of Foxp3 stability through modulation of TET activity. J. Exp. Med. 213, 377–397 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Sasidharan Nair, V., Song, M. H. & Oh, K. I. Vitamin C facilitates demethylation of the Foxp3 enhancer in a Tet-dependent manner. J. Immunol. 196, 2119–2131 (2016).

    CAS  PubMed  Google Scholar 

  115. Iamsawat, S. et al. Vitamin C stabilizes CD8+ iTregs and enhances their therapeutic potential in controlling murine GVHD and leukemia relapse. Blood Adv. 3, 4187–4201 (2019).

    PubMed  PubMed Central  Google Scholar 

  116. Zhang, Y. et al. The polycomb repressive complex 2 governs life and death of peripheral T cells. Blood 124, 737–749 (2014).

    CAS  PubMed  Google Scholar 

  117. DuPage, M. et al. The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation. Immunity 42, 227–238 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Betts, B. C. et al. Targeting JAK2 reduces GVHD and xenograft rejection through regulation of T cell differentiation. Proc. Natl Acad. Sci. USA 115, 1582–1587 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Locafaro, G. et al. IL-10-engineered human CD4+ Tr1 cells eliminate myeloid leukemia in an HLA class I-dependent mechanism. Mol. Ther. 25, 2254–2269 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Cudkowicz, G. & Bennett, M. Peculiar immunobiology of bone marrow allografts: I. Graft rejection by irradiated responder mice. J. Exp. Med. 134, 83–102 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Cudkowicz, G. & Bennett, M. Peculiar immunobiology of bone marrow allografts: II. Rejection of parental grafts by resistant F1 hybrid mice. J. Exp. Med. 134, 1513–1528 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Cerwenka, A. & Lanier, L. L. Natural killer cell memory in infection, inflammation and cancer. Nat. Rev. Immunol. 16, 112 (2016).

    CAS  PubMed  Google Scholar 

  123. Freud, A. G., Mundy-Bosse, B. L., Yu, J. & Caligiuri, M. A. The broad spectrum of human natural killer cell diversity. Immunity 47, 820–833 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Capuano, C. et al. Memory NK cell features exploitable in anticancer immunotherapy. J. Immunol. Res. 2019, 8795673 (2019).

    PubMed  PubMed Central  Google Scholar 

  125. Boudreau, J. E. & Hsu, K. C. Natural killer cell education and the response to infection and cancer therapy: stay tuned. Trends Immunol. 39, 222–239 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Hodgins, J. J., Khan, S. T., Park, M. M., Auer, R. C. & Ardolino, M. Killers 2.0: NK cell therapies at the forefront of cancer control. J. Clin. Invest. 129, 3499–3510 (2019).

    PubMed  PubMed Central  Google Scholar 

  127. Waggoner, S. N., Cornberg, M., Selin, L. K. & Welsh, R. M. Natural killer cells act as rheostats modulating antiviral T cells. Nature 481, 394 (2012).

    CAS  Google Scholar 

  128. Asai, O. et al. Suppression of graft-versus-host disease and amplification of graft-versus-tumor effects by activated natural killer cells after allogeneic bone marrow transplantation. J. Clin. Invest. 101, 1835–1842 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Olson, J. A. et al. NK cells mediate reduction of GVHD by inhibiting activated, alloreactive T cells while retaining GVT effects. Blood 115, 4293–4301 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Ruggeri, L. et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295, 2097–2100 (2002).

    CAS  PubMed  Google Scholar 

  131. Lee, D. A. et al. Haploidentical natural killer cells infused before allogeneic stem cell transplantation for myeloid malignancies: a phase I trial. Biol. Blood Marrow Transpl. 22, 1290–1298 (2016).

    CAS  Google Scholar 

  132. Björklund, A. T. et al. Complete remission with reduction of high-risk clones following haploidentical NK-cell therapy against MDS and AML. Clin. Cancer Res. 24, 1834–1844 (2018).

    PubMed  Google Scholar 

  133. Shah, N. N. et al. Acute GVHD in patients receiving IL-15/4-1BBL activated NK cells following T-cell–depleted stem cell transplantation. Blood 125, 784–792 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Curti, A. et al. Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood 118, 3273–3279 (2011).

    CAS  PubMed  Google Scholar 

  135. Rubnitz, J. E. et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J. Clin. Oncol. 28, 955 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Miller, J. S. et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105, 3051–3057 (2005).

    CAS  PubMed  Google Scholar 

  137. Shaffer, B. C. et al. Phase II study of haploidentical natural killer cell infusion for treatment of relapsed or persistent myeloid malignancies following allogeneic hematopoietic cell transplantation. Biol. Blood Marrow Transpl. 22, 705–709 (2016).

    CAS  Google Scholar 

  138. Sentman, M.-L. et al. Mechanisms of acute toxicity in NKG2D chimeric antigen receptor T cell-treated mice. J. Immunol. 197, 4674–4685 (2016).

    CAS  PubMed  Google Scholar 

  139. Karimi, M. A. et al. NKG2D expression by CD8+ T cells contributes to GVHD and GVT effects in a murine model of allogeneic HSCT. Blood 125, 3655–3663 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Venstrom, J. M. et al. HLA-C-dependent prevention of leukemia relapse by donor activating KIR2DS1. N. Engl. J. Med. 367, 805–816 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Sekine, T. et al. Specific combinations of donor and recipient KIR-HLA genotypes predict for large differences in outcome after cord blood transplantation. Blood 128, 297–312 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Hallner, A. et al. The HLA-B −21 dimorphism impacts on NK cell education and clinical outcome of immunotherapy in acute myeloid leukemia. Blood 133, 1479–1488 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Bachanova, V. et al. Donor KIR B genotype improves progression-free survival of non-Hodgkin lymphoma patients receiving unrelated donor transplantation. Biol. Blood Marrow Transpl. 22, 1602–1607 (2016).

    Google Scholar 

  144. Oevermann, L. et al. KIR B haplotype donors confer a reduced risk for relapse after haploidentical transplantation in children with ALL. Blood 124, 2744–2747 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. André, P. et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175, 1731–1743.e13 (2018).

    PubMed  PubMed Central  Google Scholar 

  146. Shaffer, B. C. & Hsu, K. C. How important is NK alloreactivity and KIR in allogeneic transplantation? Best Pract. Res. Clin. Haematol. 29, 351–358 (2016).

    PubMed  PubMed Central  Google Scholar 

  147. Bishara, A. et al. The beneficial role of inhibitory KIR genes of HLA class I NK epitopes in haploidentically mismatched stem cell allografts may be masked by residual donor-alloreactive T cells causing GVHD. Tissue Antigens 63, 204–211 (2004).

    CAS  PubMed  Google Scholar 

  148. Erbe, A. K. et al. Neuroblastoma patients’ KIR and KIR-ligand genotypes influence clinical outcome for dinutuximab-based immunotherapy: a report from the Children’s Oncology Group. Clin. Cancer Res. 24, 189–196 (2018).

    CAS  PubMed  Google Scholar 

  149. Barrow, A. D. et al. Natural killer cells control tumor growth by sensing a growth factor. Cell 172, 534–548.e19 (2018).

    CAS  PubMed  Google Scholar 

  150. Tran, H. C. et al. TGFβR1 blockade with galunisertib (LY2157299) enhances anti-neuroblastoma activity of the anti-GD2 antibody dinutuximab (ch14.18) with natural killer cells. Clin. Cancer Res. 23, 804–813 (2017).

    CAS  PubMed  Google Scholar 

  151. Ames, E. et al. NK cells preferentially target tumor cells with a cancer stem cell phenotype. J. Immunol. 195, 4010–4019 (2015).

    CAS  PubMed  Google Scholar 

  152. Tallerico, R. et al. NK cells control breast cancer and related cancer stem cell hematological spread. Oncoimmunology 6, e1284718 (2017).

    PubMed  PubMed Central  Google Scholar 

  153. Paczulla, A. M. et al. Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion. Nature 572, 254–259 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Foley, B. et al. Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood 119, 2665–2674 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Litjens, N. H., van der Wagen, L., Kuball, J. & Kwekkeboom, J. Potential beneficial effects of cytomegalovirus infection after transplantation. Front. Immunol. 9, 389 (2018).

    PubMed  PubMed Central  Google Scholar 

  156. Cichocki, F. et al. Adaptive NK cell reconstitution is associated with better clinical outcomes. JCI Insight 4, e125553 (2019).

    PubMed Central  Google Scholar 

  157. Alvarez, M. et al. Regulation of murine NK cell exhaustion through the activation of the DNA damage repair pathway. JCI Insight 4, e127729 (2019).

    PubMed Central  Google Scholar 

  158. Dong, W. et al. The mechanism of anti-PD-L1 antibody efficacy against PD-L1-negative tumors identifies NK cells expressing PD-L1 as a cytolytic effector. Cancer Discov. 9, 1422–1437 (2019).

    PubMed  PubMed Central  Google Scholar 

  159. Ciurea, S. O. et al. Phase 1 clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation. Blood 130, 1857–1868 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Kim, H. S. & Kim, N. Targeting checkpoint receptors and molecules for therapeutic modulation of natural killer cells. Front. Immunol. 9, 2041 (2018).

    PubMed  PubMed Central  Google Scholar 

  161. Haverkos, B. M. et al. PD-1 blockade for relapsed lymphoma post-allogeneic hematopoietic cell transplant: high response rate but frequent GVHD. Blood 130, 221–228 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Pazina, T. et al. Enhanced SLAMF7 homotypic interactions by elotuzumab improves NK cell killing of multiple myeloma. Cancer Immunol. Res. 7, 1633–1646 (2019).

    PubMed  PubMed Central  Google Scholar 

  163. Bachanova, V. et al. Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood 123, 3855–3863 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Sarhan, D. et al. 161533 TriKE stimulates NK-cell function to overcome myeloid-derived suppressor cells in MDS. Blood Adv. 2, 1459–1469 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Cooley, S. et al. First-in-human trial of rhIL-15 and haploidentical natural killer cell therapy for advanced acute myeloid leukemia. Blood Adv. 3, 1970–1980 (2019).

    PubMed  PubMed Central  Google Scholar 

  166. Mishra, A. et al. Aberrant overexpression of IL-15 initiates large granular lymphocyte leukemia through chromosomal instability and DNA hypermethylation. Cancer Cell 22, 645–655 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Koh, C. Y. et al. Augmentation of antitumor effects by NK cell inhibitory receptor blockade in vitro and in vivo. Blood 97, 3132–3137 (2001).

    CAS  PubMed  Google Scholar 

  168. Carlsten, M. et al. Checkpoint inhibition of KIR2D with the monoclonal antibody IPH2101 induces contraction and hyporesponsiveness of NK cells in patients with myeloma. Clin. Cancer Res. 22, 5211–5222 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Liu, E. et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 32, 520 (2018).

    CAS  PubMed  Google Scholar 

  170. Li, Y., Hermanson, D. L., Moriarity, B. S. & Kaufman, D. S. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell 23, 181–192.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Boyiadzis, M. et al. Phase 1 clinical trial of adoptive immunotherapy using “off-the-shelf” activated natural killer cells in patients with refractory and relapsed acute myeloid leukemia. Cytotherapy 19, 1225–1232 (2017).

    CAS  PubMed  Google Scholar 

  172. Han, J. et al. CAR-engineered NK cells targeting wild-type EGFR and EGFRvIII enhance killing of glioblastoma and patient-derived glioblastoma stem cells. Sci. Rep. 5, 11483 (2015).

    PubMed  PubMed Central  Google Scholar 

  173. Quintarelli, C. et al. Efficacy of third-party chimeric antigen receptor modified peripheral blood natural killer cells for adoptive cell therapy of B-cell precursor acute lymphoblastic leukemia. Leukemia 34, 1102–1115 (2019).

    PubMed  Google Scholar 

  174. Parihar, R. et al. NK cells expressing a chimeric activating receptor eliminate MDSCs and rescue impaired CAR-T cell activity against solid tumors. Cancer Immunol. Res. 7, 363–375 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Burga, R. A. et al. Engineering the TGFβ receptor to enhance the therapeutic potential of natural killer cells as an immunotherapy for neuroblastoma. Clin.Cancer Res. 25, 4400–4412 (2019).

    PubMed  PubMed Central  Google Scholar 

  176. Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Wolschke, C. et al. Postallograft lenalidomide induces strong NK cell-mediated antimyeloma activity and risk for T cell-mediated GvHD: results from a phase I/II dose-finding study. Exp. Hematol. 41, 134–142.e3 (2013).

    CAS  PubMed  Google Scholar 

  178. Giuliani, M., Janji, B. & Berchem, G. Activation of NK cells and disruption of PD-L1/PD-1 axis: two different ways for lenalidomide to block myeloma progression. Oncotarget 8, 24031 (2017).

    PubMed  PubMed Central  Google Scholar 

  179. Bunting, M. D. et al. GVHD prevents NK-cell-dependent leukemia and virus-specific innate immunity. Blood 129, 630–642 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Aldoss, I. et al. Redirecting T cells to eradicate B-cell acute lymphoblastic leukemia: bispecific T-cell engagers and chimeric antigen receptors. Leukemia 31, 777–787 (2017).

    CAS  PubMed  Google Scholar 

  181. Gleason, M. K. et al. CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets. Blood 123, 3016–3026 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Wiernik, A. et al. Targeting natural killer cells to acute myeloid leukemia in vitro with a CD16 × 33 bispecific killer cell engager and ADAM17 inhibition. Clin. Cancer Res. 19, 3844–3855 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Van den Bergh, J. M. et al. Monocyte-derived dendritic cells with silenced PD-1 ligands and transpresenting interleukin-15 stimulate strong tumor-reactive T-cell expansion. Cancer Immunol. Res. 5, 710–715 (2017).

    PubMed  Google Scholar 

  184. Tay, S. S., Carol, H. & Biro, M. TriKEs and BiKEs join CARs on the cancer immunotherapy highway. Hum. Vaccin. Immunother. 12, 2790–2796 (2016).

    PubMed  PubMed Central  Google Scholar 

  185. Hsu, J. et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J. Clin. Invest. 128, 4654–4668 (2018).

    PubMed  PubMed Central  Google Scholar 

  186. Du, J. et al. Invariant natural killer T cells ameliorate murine chronic GVHD by expanding donor regulatory T cells. Blood 129, 3121–3125 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Minculescu, L. & Sengeløv, H. The role of gamma delta T cells in haematopoietic stem cell transplantation. Scand. J. Immunol. 81, 459–468 (2015).

    CAS  PubMed  Google Scholar 

  188. Xu, X. et al. NKT cells co-expressing a GD2-specific chimeric antigen receptor and IL-15 show enhanced in vivo persistence and antitumor activity against neuroblastoma. Clin.Cancer Res. 25, 7126–7138 (2019).

    PubMed  PubMed Central  Google Scholar 

  189. Morris, E. S. et al. NKT cell-dependent leukemia eradication following stem cell mobilization with potent G-CSF analogs. J. Clin. Invest. 115, 3093–3103 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Arruda, L. C. M., Gaballa, A. & Uhlin, M. Impact of gammadelta T cells on clinical outcome of hematopoietic stem cell transplantation: systematic review and meta-analysis. Blood Adv. 3, 3436–3448 (2019).

    PubMed  PubMed Central  Google Scholar 

  191. Straetemans, T. et al. GMP-grade manufacturing of T cells engineered to express a defined gammadeltaTCR. Front. Immunol. 9, 1062 (2018).

    PubMed  PubMed Central  Google Scholar 

  192. Godder, K. et al. Long term disease-free survival in acute leukemia patients recovering with increased γδ T cells after partially mismatched related donor bone marrow transplantation. Bone Marrow Transpl. 39, 751–757 (2007).

    CAS  Google Scholar 

  193. Perko, R. et al. Gamma delta T cell reconstitution is associated with fewer infections and improved event-free survival after hematopoietic stem cell transplantation for pediatric leukemia. Biol. Blood Marrow Transpl. 21, 130–136 (2015).

    Google Scholar 

  194. Minculescu, L. et al. Improved overall survival, relapse-free-survival and less graft-versus-host-disease in patients with high immune reconstitution of TCR gamma delta cells 2 months after allogeneic stem cell transplantation. Front. Immunol. 10, 1997 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Pistoia, V. et al. Human gammadelta T-cells: from surface receptors to the therapy of high-risk leukemias. Front. Immunol. 9, 984 (2018).

    PubMed  PubMed Central  Google Scholar 

  196. Rådestad, E. et al. Alpha/beta T-cell depleted grafts as an immunological booster to treat graft failure after hematopoietic stem cell transplantation with HLA-matched related and unrelated donors. J. Immunol. Res. 2014, 578741 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the conception and preparation of this manuscript.

Corresponding authors

Correspondence to Bruce R. Blazar, Geoffrey R. Hill or William J. Murphy.

Ethics declarations

Competing interests

B.R.B. is a founder of Tmunity Therapeutics, and receives research support and is a member of the Scientific Advisory Board for BlueRock Therapeutics. G.R.H. has received research funding from Compass Therapeutics and Roche. W.J.M. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewer information

Nature Reviews Clinical Oncology thanks B. Savani and other, anonymous, reviewers for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blazar, B.R., Hill, G.R. & Murphy, W.J. Dissecting the biology of allogeneic HSCT to enhance the GvT effect whilst minimizing GvHD. Nat Rev Clin Oncol 17, 475–492 (2020). https://doi.org/10.1038/s41571-020-0356-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-020-0356-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing