Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemical syntheses of bioinspired and biomimetic polymers toward biobased materials

Abstract

The rich structures and hierarchical organizations in nature provide many sources of inspiration for advanced material designs. We wish to recapitulate properties such as high mechanical strength, colour-changing ability, autonomous healing and antimicrobial efficacy in next-generation synthetic materials. Common in nature are non-covalent interactions such as hydrogen bonding, ionic interactions and hydrophobic effects, which are all useful motifs in tailor-made materials. Among these are biobased components, which are ubiquitously conceptualized in the space of recently developed bioinspired and biomimetic materials. In this regard, sustainable organic polymer chemistry enables us to tune the properties and functions of such materials that are essential for daily life. In this Review, we discuss recent progress in bioinspired and biomimetic polymers and provide insights into biobased materials through the evolution of chemical approaches, including networking/crosslinking, dynamic interactions and self-assembly. We focus on advances in biobased materials; namely polymeric mimics of resilin and spider silk, mechanically and optically adaptive materials, self-healing elastomers and hydrogels, and antimicrobial polymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemistry of bioinspired and biomimetic polymers and their biobased mimics.
Fig. 2: Chemical approaches in the design of resilin-mimicking materials.
Fig. 3: Synthetic spider silk mimics recapitulate the primary or secondary structure of spider silk proteins.
Fig. 4: Preparation and chemistry of biomimetic stimulus-responsive polymer composites.
Fig. 5: Biobased elastomers and hydrogels with dynamic chemical networks can self-heal.
Fig. 6: Bioinspired and biomimetic polymers for antimicrobial applications.

Similar content being viewed by others

References

  1. Wang, Y., Naleway, S. E. & Wang, B. Biological and bioinspired materials: structure leading to functional and mechanical performance. Bioact. Mater. 5, 745–757 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sanchez, C., Arribart, H. & Guille, M. M. G. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat. Mater. 4, 277–288 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).

    Article  CAS  Google Scholar 

  4. Montero de Espinosa, L., Meesorn, W., Moatsou, D. & Weder, C. Bioinspired polymer systems with stimuli-responsive mechanical properties. Chem. Rev. 117, 12851–12892 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Lefèvre, T. & Auger, M. Spider silk as a blueprint for greener materials: a review. Int. Mater. Rev. 61, 127–153 (2016).

    Article  Google Scholar 

  6. Tao, H., Kaplan, D. L. & Omenetto, F. G. Silk materials — a road to sustainable high technology. Adv. Mater. 24, 2824–2837 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Muiznieks, L. D. & Keeley, F. W. Biomechanical design of elastic protein biomaterials: a balance of protein structure and conformational disorder. ACS Biomater. Sci. Eng. 3, 661–679 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Balu, R., Dutta, N. K., Dutta, A. K. & Choudhury, N. R. Resilin-mimetics as a smart biomaterial platform for biomedical applications. Nat. Commun. 12, 149 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Capadona, J. R., Shanmuganathan, K., Tyler, D. J., Rowan, S. J. & Weder, C. Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319, 1370 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Fratzl, P. & Weinkamer, R. Nature’s hierarchical materials. Prog. Mater Sci. 52, 1263–1334 (2007).

    Article  CAS  Google Scholar 

  11. Whitesides, G. M. Bioinspiration: something for everyone. Interface Focus 5, 20150031 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bhushan, B. Biomimetics: lessons from nature — an overview. Philos. Trans. A Math. Phys. Eng. Sci. 367, 1445–1486 (2009).

    CAS  PubMed  Google Scholar 

  13. Fratzl, P., Dunlop, J. & Weinkamer, R. Materials Design Inspired by Nature: Function Through Inner Architecture (Royal Society of Chemistry, 2015).

  14. Chee, E. & Brown, A. C. Biomimetic antimicrobial material strategies for combating antibiotic resistant bacteria. Biomater. Sci. 8, 1089–1100 (2020).

    Article  PubMed  Google Scholar 

  15. Si, Y., Dong, Z. & Jiang, L. Bioinspired designs of superhydrophobic and superhydrophilic materials. ACS Cent. Sci. 4, 1102–1112 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nishimoto, S. & Bhushan, B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Adv. 3, 671–690 (2013).

    Article  CAS  Google Scholar 

  17. Zhu, Y., Yang, F. & Guo, Z. Bioinspired surfaces with special micro-structures and wettability for drag reduction: which surface design will be a better choice? Nanoscale 13, 3463–3482 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, Y. et al. Bioinspired multiscale wet adhesive surfaces: structures and controlled adhesion. Adv. Funct. Mater. 30, 1905287 (2020).

    Article  CAS  Google Scholar 

  19. Huang, W. et al. Multiscale toughening mechanisms in biological materials and bioinspired designs. Adv. Mater. 31, 1901561 (2019).

    Article  CAS  Google Scholar 

  20. Shang, L., Zhang, W., Xu, K. & Zhao, Y. Bio-inspired intelligent structural color materials. Mater. Horiz. 6, 945–958 (2019).

    Article  CAS  Google Scholar 

  21. Tao, P. et al. Bioinspired engineering of thermal materials. Adv. Mater. 27, 428–463 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Cremaldi, J. C. & Bhushan, B. Bioinspired self-healing materials: lessons from nature. Beilstein J. Nanotechnol 9, 907–935 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, S. & Urban, M. W. Self-healing polymers. Nat. Rev. Mater. 5, 562–583 (2020).

    Article  CAS  Google Scholar 

  24. Pedersen Zari, M. Biomimetic materials for addressing climate change. in Handbook of Ecomaterials (eds Torres Martínez, L. M., Vasilievna Kharissova, O. & Kharisov, B. I.) 3169–3191 (Springer Nature Limited, 2019).

  25. Wagh, P. & Escobar, I. C. Biomimetic and bioinspired membranes for water purification: a critical review and future directions. Environ. Prog. Sustain. Energy 38, e13215 (2019).

    Article  Google Scholar 

  26. Yang, G., Chen, S. & Zhang, J. Bioinspired and biomimetic nanotherapies for the treatment of infectious diseases. Front. Pharmacol. 10, 751 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Green, J. J. & Elisseeff, J. H. Mimicking biological functionality with polymers for biomedical applications. Nature 540, 386–394 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lepora, N. F., Verschure, P. & Prescott, T. J. The state of the art in biomimetics. Bioinspir. Biomim. 8, 013001 (2013).

    Article  PubMed  Google Scholar 

  29. Speck, O., Speck, D., Horn, R., Gantner, J. & Sedlbauer, K. P. Biomimetic bio-inspired biomorph sustainable? An attempt to classify and clarify biology-derived technical developments. Bioinspir. Biomim. 12, 011004 (2017).

    Article  PubMed  Google Scholar 

  30. Wanieck, K. & Beismann, H. Perception and role of standards in the world of biomimetics. Bioinspired Biomim. Nanobiomaterials 10, 8–15 (2021).

    Article  Google Scholar 

  31. Zhu, Y., Romain, C. & Williams, C. K. Sustainable polymers from renewable resources. Nature 540, 354–362 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Schneiderman, D. K. & Hillmyer, M. A. 50th anniversary perspective: there is a great future in sustainable polymers. Macromolecules 50, 3733–3749 (2017).

    Article  CAS  Google Scholar 

  33. Wang, Z., Ganewatta, M. S. & Tang, C. Sustainable polymers from biomass: bridging chemistry with materials and processing. Prog. Polym. Sci. 101, 101197 (2020).

    Article  CAS  Google Scholar 

  34. Zheng, J. & Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change 9, 374–378 (2019).

    Article  Google Scholar 

  35. Hong, M. & Chen, E. Y. X. Future directions for sustainable polymers. Trends Chem 1, 148–151 (2019).

    Article  CAS  Google Scholar 

  36. Heinrich, L. A. Future opportunities for bio-based adhesives — advantages beyond renewability. Green Chem 21, 1866–1888 (2019).

    Article  CAS  Google Scholar 

  37. Yao, K. & Tang, C. Controlled polymerization of next-generation renewable monomers and beyond. Macromolecules 46, 1689–1712 (2013).

    Article  CAS  Google Scholar 

  38. Wilbon, P. A., Chu, F. & Tang, C. Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol. Rapid Commun. 34, 8–37 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Fratzl, P. Biomimetic materials research: what can we really learn from nature’s structural materials? J. R. Soc. Interface 4, 637–642 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, J., Cheng, Q., Lin, L. & Jiang, L. Synergistic toughening of bioinspired poly(vinyl alcohol)–clay–nanofibrillar cellulose artificial nacre. ACS Nano 8, 2739–2745 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Guan, Q.-F., Yang, H.-B., Han, Z.-M., Ling, Z.-C. & Yu, S.-H. An all-natural bioinspired structural material for plastic replacement. Nat. Commun. 11, 5401 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kushner, A. M., Vossler, J. D., Williams, G. A. & Guan, Z. A biomimetic modular polymer with tough and adaptive properties. J. Am. Chem. Soc. 131, 8766 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Z., Cheng, L., Zhao, J., Zhang, H. & Yan, X. Muscle-mimetic synergistic covalent and supramolecular polymers: phototriggered formation leads to mechanical performance boost. J. Am. Chem. Soc. 143, 902–911 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Qin, G., Hu, X., Cebe, P. & Kaplan, D. L. Mechanism of resilin elasticity. Nat. Commun. 3, 1003 (2012).

    Article  PubMed  Google Scholar 

  46. Aeschbach, R., Amadoò, R. & Neukom, H. Formation of dityrosine cross-links in proteins by oxidation of tyrosine residues. Biochim. Biophys. Acta 439, 292–301 (1976).

    Article  CAS  PubMed  Google Scholar 

  47. Du, N., Yang, Z., Liu, X. Y., Li, Y. & Xu, H. Y. Structural origin of the strain-hardening of spider silk. Adv. Funct. Mater. 21, 772–778 (2011).

    Article  CAS  Google Scholar 

  48. Heim, M., Keerl, D. & Scheibel, T. Spider silk: from soluble protein to extraordinary fiber. Angew. Chem. Int. Ed. 48, 3584–3596 (2009).

    Article  CAS  Google Scholar 

  49. Haas, F., Gorb, S. & Blickhan, R. The function of resilin in beetle wings. Proc. R. Soc. B 267, 1375–1381 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Su, R. S.-C., Kim, Y. & Liu, J. C. Resilin: protein-based elastomeric biomaterials. Acta Biomater. 10, 1601–1611 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Balu, R., Whittaker, J., Dutta, N. K., Elvin, C. M. & Choudhury, N. R. Multi-responsive biomaterials and nanobioconjugates from resilin-like protein polymers. J. Mater. Chem. B 2, 5936–5947 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Tamburro, A. M. et al. Molecular and supramolecular structural studies on significant repetitive sequences of resilin. ChemBioChem 11, 83–93 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Partlow, B. P., Applegate, M. B., Omenetto, F. G. & Kaplan, D. L. Dityrosine cross-linking in designing biomaterials. ACS Biomater. Sci. Eng. 2, 2108–2121 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Fancy, D. A. & Kodadek, T. Chemistry for the analysis of protein–protein interactions: rapid and efficient cross-linking triggered by long wavelength light. Proc. Natl Acad. Sci. USA 96, 6020–6024 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Elvin, C. M. et al. Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437, 999–1002 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Qin, G. et al. Recombinant exon-encoded resilins for elastomeric biomaterials. Biomaterials 32, 9231–9243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, L., Teller, S., Clifton, R. J., Jia, X. & Kiick, K. L. Tunable mechanical stability and deformation response of a resilin-based elastomer. Biomacromolecules 12, 2302–2310 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McGann, C. L., Akins, R. E. & Kiick, K. L. Resilin–PEG hybrid hydrogels yield degradable elastomeric scaffolds with heterogeneous microstructure. Biomacromolecules 17, 128–140 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Desai, M. S. et al. Elastin-based rubber-like hydrogels. Biomacromolecules 17, 2409–2416 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Cui, J. et al. Synthetically simple, highly resilient hydrogels. Biomacromolecules 13, 584–588 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xiao, L., Liu, C., Zhu, J., Pochan, D. J. & Jia, X. Hybrid, elastomeric hydrogels crosslinked by multifunctional block copolymer micelles. Soft Matter 6, 5293–5297 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tan, M., Zhao, T., Huang, H. & Guo, M. Highly stretchable and resilient hydrogels from the copolymerization of acrylamide and a polymerizable macromolecular surfactant. Polym. Chem. 4, 5570–5576 (2013).

    Article  CAS  Google Scholar 

  63. Zhao, T. et al. Reactive macromolecular micelle crosslinked highly elastic hydrogel with water-triggered shape-memory behaviour. Polym. Chem. 5, 4965–4973 (2014).

    Article  CAS  Google Scholar 

  64. Si, L. et al. Silicone-based tough hydrogels with high resilience, fast self-recovery, and self-healing properties. Chem. Commun. 52, 8365–8368 (2016).

    Article  CAS  Google Scholar 

  65. Zhu, M. et al. A novel highly resilient nanocomposite hydrogel with low hysteresis and ultrahigh elongation. Macromol. Rapid Commun. 27, 1023–1028 (2006).

    Article  CAS  Google Scholar 

  66. Nah, C., Ryu, H. J., Wan, D. K. & Chang, Y. W. Preparation and properties of acrylonitrile–butadiene copolymer hybrid nanocomposites with organoclays. Polym. Int. 52, 1359–1364 (2003).

    Article  CAS  Google Scholar 

  67. Wang, Z. et al. Bioinspired high resilient elastomers to mimic resilin. ACS Macro Lett 5, 220–223 (2016).

    Article  CAS  Google Scholar 

  68. Yuan, L. et al. A biomass approach to mendable bio-elastomers. Soft Matter 13, 1306–1313 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Yarger, J., Cherry, B. & van der Vaart, A. Uncovering the structure–function relationship in spider silk. Nat. Rev. Mater. 3, 18008 (2018).

    Article  CAS  Google Scholar 

  70. Jenkins, J., Creager, M., Butler, E., Lewis, R. & Holland, G. Solid-state NMR evidence for elastin-like beta-turn structure in spider dragline silk. Chem. Commun. 46, 6714–6716 (2010).

    Article  CAS  Google Scholar 

  71. Krishnaji, S. T. et al. Sequence–structure–property relationships of recombinant spider silk proteins: integration of biopolymer design, processing, and modeling. Adv. Funct. Mater. 23, 241–253 (2013).

    Article  CAS  Google Scholar 

  72. Venkatesan, H. et al. Artificial spider silk is smart like natural one: having humidity-sensitive shape memory with superior recovery stress. Mater. Chem. Front. 3, 2472–2482 (2019).

    Article  CAS  Google Scholar 

  73. An, B. et al. Reproducing natural spider silks’ copolymer behavior in synthetic silk mimics. Biomacromolecules 13, 3938–3948 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rising, A. & Johansson, J. Toward spinning artificial spider silk. Nat. Chem. Biol. 11, 309–315 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Leigh, T. & Fernandez-Trillo, P. Helical polymers for biological and medical applications. Nat. Rev. Chem. 4, 291–310 (2020).

    Article  CAS  Google Scholar 

  76. Rathore, O. & Sogah, D. Y. Self-assembly of beta-sheets into nanostructures by poly(alanine) segments incorporated in multiblock copolymers inspired by spider silk. J. Am. Chem. Soc. 123, 5231–5239 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Yao, J. et al. Synthesis and solid-state secondary structure investigation of silk-proteinlike multiblock polymers. Macromolecules 36, 7508–7512 (2003).

    Article  CAS  Google Scholar 

  78. Zhou, C. et al. Synthesis and characterization of multiblock copolymers based on spider dragline silk proteins. Biomacromolecules 7, 2415–2419 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Tsuchiya, K. & Numata, K. Chemical synthesis of multiblock copolypeptides inspired by spider dragline silk proteins. ACS Macro Lett 6, 103–106 (2017).

    Article  CAS  Google Scholar 

  80. Gu, L., Jiang, Y. & Hu, J. Scalable spider-silk-like supertough fibers using a pseudoprotein polymer. Adv. Mater. 31, 1904311 (2019).

    Article  CAS  Google Scholar 

  81. Chan, N. J. et al. Spider-silk inspired polymeric networks by harnessing the mechanical potential of beta-sheets through network guided assembly. Nat. Commun. 11, 1630 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wu, Y. et al. Bioinspired supramolecular fibers drawn from a multiphase self-assembled hydrogel. Proc. Natl Acad. Sci. USA 114, 8163–8168 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu, Y. et al. Biomimetic supramolecular fibers exhibit water-induced supercontraction. Adv. Mater. 30, e1707169 (2018).

    Article  PubMed  Google Scholar 

  84. Dou, Y. et al. Artificial spider silk from ion-doped and twisted core-sheath hydrogel fibres. Nat. Commun. 10, 5293 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Song, P. et al. Bioinspired design of strong, tough, and thermally stable polymeric materials via nanoconfinement. ACS Nano 12, 9266–9278 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Yu, Y. et al. Biomimetic mineralized organic–inorganic hybrid macrofiber with spider silk-like supertoughness. Adv. Funct. Mater. 30, 1908556 (2019).

    Article  Google Scholar 

  87. Zhang, X., Liu, W., Yang, D. & Qiu, X. Biomimetic supertough and strong biodegradable polymeric materials with improved thermal properties and excellent UV-blocking performance. Adv. Funct. Mater. 29, 1806912 (2019).

    Article  Google Scholar 

  88. Niu, W. et al. Remalleable, healable, and highly sustainable supramolecular polymeric materials combining superhigh strength and ultrahigh toughness. ACS Appl. Mater. Interfaces 12, 30805–30814 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Liu, L., Yang, X., Yu, H., Ma, C. & Yao, J. Biomimicking the structure of silk fibers via cellulose nanocrystal as β-sheet crystallite. RSC Adv. 4, 14304–14313 (2014).

    Article  CAS  Google Scholar 

  90. Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).

    Article  PubMed  Google Scholar 

  91. Liu, F. & Urban, M. W. Recent advances and challenges in designing stimuli-responsive polymers. Prog. Polym. Sci. 35, 3–23 (2010).

    Article  CAS  Google Scholar 

  92. Theato, P., Sumerlin, B. S., O’Reilly, R. K. & Epps, T. H. III Stimuli responsive materials. Chem. Soc. Rev. 42, 7055–7056 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Wei, M., Gao, Y., Li, X. & Serpe, M. J. Stimuli-responsive polymers and their applications. Polym. Chem. 8, 127–143 (2017).

    Article  CAS  Google Scholar 

  94. Gao, S. et al. Stimuli-responsive bio-based polymeric systems and their applications. J. Mater. Chem. B 7, 709–729 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Dash, M., Chiellini, F., Ottenbrite, R. M. & Chiellini, E. Chitosan-A versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 36, 981–1014 (2011).

    Article  CAS  Google Scholar 

  96. Nasseri, R., Deutschman, C. P., Han, L., Pope, M. A. & Tam, K. C. Cellulose nanocrystals in smart and stimuli-responsive materials: a review. Mater. Today Adv. 5, 100055 (2020).

    Article  Google Scholar 

  97. Ionov, L. Biomimetic hydrogel-based actuating systems. Adv. Funct. Mater. 23, 4555–4570 (2013).

    Article  CAS  Google Scholar 

  98. Oliver, K., Seddon, A. & Trask, R. S. Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms. J. Mater. Sci. 51, 10663–10689 (2016).

    Article  CAS  Google Scholar 

  99. Erb, R. M., Sander, J. S., Grisch, R. & Studart, A. R. Self-shaping composites with programmable bioinspired microstructures. Nat. Commun. 4, 1712 (2013).

    Article  PubMed  Google Scholar 

  100. Studart, A. R. & Erb, R. M. Bioinspired materials that self-shape through programmed microstructures. Soft Matter 10, 1284–1294 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Mo, J. et al. Interfibrillar stiffening of echinoderm mutable collagenous tissue demonstrated at the nanoscale. Proc. Natl Acad. Sci. USA 113, E6362–E6371 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wilkie, I. C. Mutable collagenous tissue: overview and biotechnological perspective. in Echinodermata (ed. Matranga, V.) 221–250 (Springer, 2005).

  103. Habibi, Y., Lucia, L. A. & Rojas, O. J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110, 3479–3500 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Jorfi, M., Roberts, M. N., Foster, E. J. & Weder, C. Physiologically responsive, mechanically adaptive bio-nanocomposites for biomedical applications. ACS Appl. Mater. Interfaces 5, 1517–1526 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Way, A. E., Hsu, L., Shanmuganathan, K., Weder, C. & Rowan, S. J. pH-responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett. 1, 1001–1006 (2012).

    Article  CAS  Google Scholar 

  106. Zhou, S. et al. Cellulose hydrogels by reversible ion-exchange as flexible pressure sensors. Adv. Mater. Technol. 5, 2000358 (2020).

    Article  CAS  Google Scholar 

  107. Dagnon, K. L., Shanmuganathan, K., Weder, C. & Rowan, S. J. Water-triggered modulus changes of cellulose nanofiber nanocomposites with hydrophobic polymer matrices. Macromolecules 45, 4707–4715 (2012).

    Article  CAS  Google Scholar 

  108. Song, L., Wang, Z., Lamm, M. E., Yuan, L. & Tang, C. Supramolecular polymer nanocomposites derived from plant oils and cellulose nanocrystals. Macromolecules 50, 7475–7483 (2017).

    Article  CAS  Google Scholar 

  109. Wang, B. et al. Cellulose nanocrystal/plant oil polymer composites with hydrophobicity, humidity-sensitivity, and high wet strength. Carbohydr. Polym. 231, 115739 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Kai, D. et al. Towards lignin-based functional materials in a sustainable world. Green Chem. 18, 1175–1200 (2016).

    Article  CAS  Google Scholar 

  111. Ganewatta, M. S., Lokupitiya, H. N. & Tang, C. Lignin biopolymers in the age of controlled polymerization. Polymers 11, 1176 (2019).

    Article  PubMed Central  Google Scholar 

  112. Moreno, A. & Sipponen, M. H. Lignin-based smart materials: a roadmap to processing and synthesis for current and future applications. Mater. Horiz. 7, 2237–2257 (2020).

    Article  CAS  Google Scholar 

  113. Dallmeyer, I., Chowdhury, S. & Kadla, J. F. Preparation and characterization of kraft lignin-based moisture-responsive films with reversible shape-change capability. Biomacromolecules 14, 2354–2363 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Dai, L. et al. All-lignin-based hydrogel with fast pH-stimuli responsiveness for mechanical switching and actuation. Chem. Mater. 32, 4324–4330 (2020).

    Article  CAS  Google Scholar 

  115. Cuthill, I. C. et al. The biology of color. Science 357, eaan0221 (2017).

    Article  PubMed  Google Scholar 

  116. Tadepalli, S., Slocik, J. M., Gupta, M. K., Naik, R. R. & Singamaneni, S. Bio-optics and bio-inspired optical materials. Chem. Rev. 117, 12705–12763 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Shawkey, M. D. & D’Alba, L. Interactions between colour-producing mechanisms and their effects on the integumentary colour palette. Philos. Trans. R. Soc. B 372, 20160536 (2017).

    Article  Google Scholar 

  118. Isapour, G. & Lattuada, M. Bioinspired stimuli-responsive color-changing systems. Adv. Mater. 30, 1707069 (2018).

    Article  Google Scholar 

  119. Teyssier, J., Saenko, S. V., van der Marel, D. & Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 6, 6368 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. van Heeswijk, E. P. A., Kragt, A. J. J., Grossiord, N. & Schenning, A. P. H. J. Environmentally responsive photonic polymers. Chem. Commun. 55, 2880–2891 (2019).

    Article  Google Scholar 

  121. Xiong, R. et al. Biopolymeric photonic structures: design, fabrication, and emerging applications. Chem. Soc. Rev. 49, 983–1031 (2020).

    Article  CAS  PubMed  Google Scholar 

  122. Kose, O., Tran, A., Lewis, L., Hamad, W. Y. & MacLachlan, M. J. Unwinding a spiral of cellulose nanocrystals for stimuli-responsive stretchable optics. Nat. Commun. 10, 510 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fernandes, S. N. et al. Mind the microgap in iridescent cellulose nanocrystal films. Adv. Mater. 29, 1603560 (2017).

    Article  Google Scholar 

  124. Yao, K., Meng, Q., Bulone, V. & Zhou, Q. Flexible and responsive chiral nematic cellulose nanocrystal/poly (ethylene glycol) composite films with uniform and tunable structural color. Adv. Mater. 29, 1701323 (2017).

    Article  Google Scholar 

  125. Giese, M. & Spengler, M. Cellulose nanocrystals in nanoarchitectonics – towards photonic functional materials. Mol. Sys. Des. Eng. 4, 29–48 (2019).

    Article  CAS  Google Scholar 

  126. Xu, M. et al. Multifunctional chiral nematic cellulose nanocrystals/glycerol structural colored nanocomposites for intelligent responsive films, photonic inks and iridescent coatings. J. Mater. Chem. C 6, 5391–5400 (2018).

    Article  CAS  Google Scholar 

  127. Zhang, Z.-L. et al. Chameleon-inspired variable coloration enabled by a highly flexible photonic cellulose film. ACS Appl. Mater. Interfaces 12, 46710–46718 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Boott, C. E., Tran, A., Hamad, W. Y. & MacLachlan, M. J. Cellulose nanocrystal elastomers with reversible visible color. Angew. Chem. Int. Ed. 59, 226–231 (2020).

    Article  CAS  Google Scholar 

  129. Armstrong, E. & O’Dwyer, C. Artificial opal photonic crystals and inverse opal structures — fundamentals and applications from optics to energy storage. J. Mater. Chem. C 3, 6109–6143 (2015).

    Article  CAS  Google Scholar 

  130. Wang, Y., Li, M. & Wang, Y. Silk: a versatile biomaterial for advanced optics and photonics. Chin. Opt. Lett. 18, 080004 (2020).

    Article  Google Scholar 

  131. Wang, Y. et al. Design, fabrication, and function of silk-based nanomaterials. Adv. Funct. Mater. 28, 1805305 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Kim, S. et al. Silk inverse opals. Nat. Photon. 6, 818–823 (2012).

    Article  CAS  Google Scholar 

  133. Wang, Y. et al. Modulation of multiscale 3D lattices through conformational control: painting silk inverse opals with water and light. Adv. Mater. 29, 1702769 (2017).

    Article  Google Scholar 

  134. Swinerd, V. M., Collins, A. M., Skaer, N. J. V., Gheysens, T. & Mann, S. Silk inverse opals from template-directed β-sheet transformation of regenerated silk fibroin. Soft Matter 3, 1377–1380 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Wang, Y., Li, M., Colusso, E., Li, W. & Omenetto, F. G. Designing the iridescences of biopolymers by assembly of photonic crystal superlattices. Adv. Opt. Mater. 6, 1800066 (2018).

    Article  Google Scholar 

  136. Appold, M., Grune, E., Frey, H. & Gallei, M. One-step anionic copolymerization enables formation of linear ultrahigh-molecular-weight block copolymer films featuring vivid structural colors in the bulk state. ACS Appl. Mater. Interfaces 10, 18202–18212 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Appold, M. & Gallei, M. Bio-inspired structural colors based on linear ultrahigh molecular weight block copolymers. ACS Appl. Polym. Mater. 1, 239–250 (2019).

    Article  CAS  Google Scholar 

  138. Urbas, A. et al. Tunable block copolymer/homopolymer photonic crystals. Adv. Mater. 12, 812–814 (2000).

    Article  CAS  Google Scholar 

  139. Liberman-Martin, A. L., Chu, C. K. & Grubbs, R. H. Application of bottlebrush block copolymers as photonic crystals. Macromol. Rapid Commun. 38, 1700058 (2017).

    Article  Google Scholar 

  140. Miyake, G. M., Weitekamp, R. A., Piunova, V. A. & Grubbs, R. H. Synthesis of isocyanate-based brush block copolymers and their rapid self-assembly to infrared-reflecting photonic crystals. J. Am. Chem. Soc. 134, 14249–14254 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Xia, Y., Olsen, B. D., Kornfield, J. A. & Grubbs, R. H. Efficient synthesis of narrowly dispersed brush copolymers and study of their assemblies: the importance of side chain arrangement. J. Am. Chem. Soc. 131, 18525–18532 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Sveinbjörnsson, B. R. et al. Rapid self-assembly of brush block copolymers to photonic crystals. Proc. Natl Acad. Sci. USA 109, 14332 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Patel, B. B. et al. Tunable structural color of bottlebrush block copolymers through direct-write 3D printing from solution. Sci. Adv. 6, eaaz7202 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yang, Y., Ding, X. & Urban, M. W. Chemical and physical aspects of self-healing materials. Prog. Polym. Sci. 49, 34–59 (2015).

    Article  Google Scholar 

  145. Feng, Z. et al. Photothermal-induced self-healable and reconfigurable shape memory bio-based elastomer with recyclable ability. ACS Appl. Mater. Interfaces 11, 1469–1479 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Lamm, M. E. et al. Tuning mechanical properties of biobased polymers by supramolecular chain entanglement. Macromolecules 52, 8967–8975 (2019).

    Article  CAS  Google Scholar 

  147. Lu, C. et al. Sustainable multiple- and multistimulus-shape-memory and self-healing elastomers with semi-interpenetrating network derived from biomass via bulk radical polymerization. ACS Sustain. Chem. Eng 6, 6527–6535 (2018).

    Article  CAS  Google Scholar 

  148. Zeng, C., Seino, H., Ren, J., Hatanaka, K. & Yoshie, N. Bio-based furan polymers with self-healing ability. Macromolecules 46, 1794–1802 (2013).

    Article  CAS  Google Scholar 

  149. Amaral, A. J. R. & Pasparakis, G. Stimuli responsive self-healing polymers: gels, elastomers and membranes. Polym. Chem. 8, 6464–6484 (2017).

    Article  CAS  Google Scholar 

  150. Kim, S. M. et al. Superior toughness and fast self-healing at room temperature engineered by transparent elastomers. Adv. Mater. 30, 1705145 (2018).

    Article  Google Scholar 

  151. Lee, S., Shin, S. & Lee, D. Self-healing of cross-linked PU via dual-dynamic covalent bonds of a Schiff base from cystine and vanillin. Mater. Des. 172, 107774 (2019).

    Article  CAS  Google Scholar 

  152. Cromwell, O., Chung, J. & Guan, Z. Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds. J. Am. Chem. Soc. 137, 6492–6495 (2015).

    Article  CAS  PubMed  Google Scholar 

  153. Wang, P., Deng, G. H., Zhou, L. Y., Li, Z. Y. & Chen, Y. M. Ultrastretchable, self-healable hydrogels based on dynamic covalent bonding and triblock copolymer micellization. ACS Macro Lett. 6, 881–886 (2017).

    Article  CAS  Google Scholar 

  154. Tanasi, P., Santana, M. H., Carretero-Gonzalez, J., Verdejo, R. & Lopez-Manchado, M. A. Thermo-reversible crosslinked natural rubber: a Diels–Alder route for reuse and self-healing properties in elastomers. Polymer 175, 15–24 (2019).

    Article  CAS  Google Scholar 

  155. Feng, Z. et al. Environmentally friendly method to prepare thermo-reversible, self-healable biobased elastomers by one-step melt processing. ACS Appl. Polym. Mater. 1, 169–177 (2019).

    Article  CAS  Google Scholar 

  156. Shao, C., Wang, M., Chang, H., Xu, F. & Yang, J. A self-healing cellulose nanocrystal–poly(ethylene glycol) nanocomposite hydrogel via Diels–Alder click reaction. ACS Sustain. Chem. Eng. 5, 6167–6174 (2017).

    Article  CAS  Google Scholar 

  157. Hernández, M. et al. Turning vulcanized natural rubber into a self-healing polymer: effect of the disulfide/polysulfide ratio. ACS Sustain. Chem. Eng. 4, 5776–5784 (2016).

    Article  Google Scholar 

  158. Cordier, P., Tournilhac, F., Soulie-Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Chuanhui, X., Nie, J., Wu, W., Zheng, Z. & Chen, Y. Self-healable, recyclable, and strengthened epoxidized natural rubber/carboxymethyl chitosan biobased composites with hydrogen bonding supramolecular hybrid networks. ACS Sustain. Chem. Eng. 7, 15778–15789 (2019).

    Article  Google Scholar 

  160. Nakahata, M., Takashima, Y., Yamaguchi, H. & Harada, A. Redox-responsive self-healing materials formed from host–guest polymers. Nat. Commun. 2, 511 (2011).

    Article  PubMed  Google Scholar 

  161. Zhang, L. et al. A highly efficient self-healing elastomer with unprecedented mechanical properties. Adv. Mater. 31, 1901402 (2019).

    Article  Google Scholar 

  162. Xu, C., Cao, L., Lin, B., Liang, X. & Chen, Y. Design of self-healing supramolecular rubbers by introducing ionic cross-links into natural rubber via a controlled vulcanization. ACS Appl. Mater. Interfaces 8, 17728–17737 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Taylor, D. L. & Panhuis, M. I. H. Self-healing hydrogels. Adv. Mater. 28, 9060–9093 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Wei, Z. et al. Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem. Soc. Rev. 43, 8114–8131 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Yang, X. et al. Highly efficient self-healable and dual responsive cellulose-based hydrogels for controlled release and 3D cell culture. Adv. Funct. Mater. 27, 1703174 (2017).

    Article  Google Scholar 

  166. Liu, H. et al. Self-healing polysaccharide hydrogel based on dynamic covalent enamine bonds. Macromol. Mater. Eng. 301, 725–732 (2016).

    Article  CAS  Google Scholar 

  167. Zheng, W. J., Gao, J., Wei, Z., Zhou, J. & Chen, Y. M. Facile fabrication of self-healing carboxymethyl cellulose hydrogels. Eur. Polym. J. 72, 514–522 (2015).

    Article  CAS  Google Scholar 

  168. Shao, C., Chang, H., Wang, M., Xu, F. & Yang, J. High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl. Mater. Interfaces 9, 28305–28318 (2017).

    Article  CAS  PubMed  Google Scholar 

  169. Hussain, I. et al. Hydroxyethyl cellulose-based self-healing hydrogels with enhanced mechanical properties via metal–ligand bond interactions. Eur. Polym. J. 100, 219–227 (2018).

    Article  CAS  Google Scholar 

  170. Yang, X. et al. Scalable manufacturing of real-time self-healing strain sensors based on brominated natural rubber. Chem. Eng. J. 389, 124448 (2020).

    Article  Google Scholar 

  171. Cao, L., Yuan, D., Xu, C. & Chen, Y. Biobased, self-healable, high strength rubber with tunicate cellulose nanocrystals. Nanoscale 9, 15696–15706 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Wu, M. et al. Strong autonomic self-healing biobased polyamide elastomers. Chem. Mater. 32, 8325–8332 (2020).

    Article  CAS  Google Scholar 

  173. Bahar, A. A. & Ren, D. Antimicrobial peptides. Pharmaceuticals 6, 1543–1575 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Nakatsuji, T. & Gallo, R. L. Antimicrobial peptides: old molecules with new ideas. J. Invest. Dermatol. 132, 887–895 (2012).

    Article  CAS  PubMed  Google Scholar 

  175. Fjell, C. D., Hiss, J. A., Hancock, R. E. W. & Schneider, G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov. 11, 37–51 (2012).

    Article  CAS  Google Scholar 

  176. Jenssen, H., Hamill, P. & Hancock, R. E. W. Peptide antimicrobial agents. Clin. Microbiol. Rev. 19, 491–511 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hancock, R. E. W. & Sahl, H.-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24, 1551–1557 (2006).

    Article  CAS  PubMed  Google Scholar 

  178. Wang, G. Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J. Biol. Chem. 283, 32637–32643 (2008).

    Article  CAS  PubMed  Google Scholar 

  179. RCSB. RCSB Protein Data Bank. http://www.rcsb.org/3d-view/jsmol/2k6o (2020).

  180. Mowery, B. P., Lindner, A. H., Weisblum, B., Stahl, S. S. & Gellman, S. H. Structure–activity relationships among random nylon-3 copolymers that mimic antibacterial host-defense peptides. J. Am. Chem. Soc. 131, 9735–9745 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Wade, D. et al. All-D amino acid-containing channel-forming antibiotic peptides. Proc. Natl Acad. Sci. USA 87, 4761 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Nederberg, F. et al. Biodegradable nanostructures with selective lysis of microbial membranes. Nat. Chem. 3, 409–414 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Luong, H. X., Thanh, T. T. & Tran, T. H. Antimicrobial peptides–advances in development of therapeutic applications. Life Sci. 260, 118407 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Torres, M. D. T., Sothiselvam, S., Lu, T. K. & de la Fuente-Nunez, C. Peptide design principles for antimicrobial applications. J. Mol. Biol. 431, 3547–3567 (2019).

    Article  CAS  PubMed  Google Scholar 

  185. Gomes, B. et al. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol. Adv. 36, 415–429 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. Cardoso, M. H. et al. Computer-aided design of antimicrobial peptides: are we generating effective drug candidates? Front. Microbiol. 10, 3097 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Chen, C. H. et al. Simulation-guided rational de novo design of a small pore-forming antimicrobial peptide. J. Am. Chem. Soc. 141, 4839–4848 (2019).

    Article  CAS  PubMed  Google Scholar 

  188. Lu, C. et al. Molecular architecture and charging effects enhance the in vitro and in vivo performance of multi-arm antimicrobial agents based on star-shaped poly(l-lysine). Adv. Therap. 2, 1900147 (2019).

    Article  CAS  Google Scholar 

  189. Lam, S. J. et al. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat. Microbiol. 1, 16162 (2016).

    Article  CAS  PubMed  Google Scholar 

  190. De Santis, E. et al. Antimicrobial peptide capsids of de novo design. Nat. Commun. 8, 2263 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Hong, S. Y., Oh, J. E. & Lee, K.-H. Effect of d-amino acid substitution on the stability, the secondary structure, and the activity of membrane-active peptide. Biochem. Pharmacol. 58, 1775–1780 (1999).

    Article  CAS  PubMed  Google Scholar 

  192. Cui, H.-K. et al. Diaminodiacid-based solid-phase synthesis of peptide disulfide bond mimics. Angew. Chem. Int. Ed. 52, 9558–9562 (2013).

    Article  CAS  Google Scholar 

  193. Mourtada, R. et al. Design of stapled antimicrobial peptides that are stable, nontoxic and kill antibiotic-resistant bacteria in mice. Nat. Biotechnol. 37, 1186–1197 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Xiong, M. et al. Bacteria-assisted activation of antimicrobial polypeptides by a random-coil to helix transition. Angew. Chem. Int. Ed. 56, 10826–10829 (2017).

    Article  CAS  Google Scholar 

  195. Ganewatta, M. S. & Tang, C. Controlling macromolecular structures towards effective antimicrobial polymers. Polymer 63, A1–A29 (2015).

    Article  CAS  Google Scholar 

  196. Jain, A. et al. Antimicrobial polymers. Adv. Healthcare Mater. 3, 1969–1985 (2014).

    Article  CAS  Google Scholar 

  197. Konai, M. M., Bhattacharjee, B., Ghosh, S. & Haldar, J. Recent progress in polymer research to tackle infections and antimicrobial resistance. Biomacromolecules 19, 1888–1917 (2018).

    Article  CAS  PubMed  Google Scholar 

  198. Ergene, C., Yasuhara, K. & Palermo, E. F. Biomimetic antimicrobial polymers: recent advances in molecular design. Polym. Chem. 9, 2407–2427 (2018).

    Article  CAS  Google Scholar 

  199. Tew, G. N., Scott, R. W., Klein, M. L. & DeGrado, W. F. De novo design of antimicrobial polymers, foldamers, and small molecules: from discovery to practical applications. Acc. Chem. Res. 43, 30–39 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Kuroda, K. & Caputo, G. A. Antimicrobial polymers as synthetic mimics of host-defense peptides. WIREs Nanomed. Nanobiotechnol 5, 49–66 (2013).

    Article  CAS  Google Scholar 

  201. Mowery, B. P. et al. Mimicry of antimicrobial host-defense peptides by random copolymers. J. Am. Chem. Soc. 129, 15474–15476 (2007).

    Article  CAS  PubMed  Google Scholar 

  202. Judzewitsch, P. R., Nguyen, T.-K., Shanmugam, S., Wong, E. H. H. & Boyer, C. Towards sequence-controlled antimicrobial polymers: effect of polymer block order on antimicrobial activity. Angew. Chem. Int. Ed. 57, 4559–4564 (2018).

    Article  CAS  Google Scholar 

  203. Xue, Y., Xiao, H. & Zhang, Y. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. Int. J. Mol. Sci. 16, 3626–3655 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Gabriel, G. J. et al. Synthetic mimic of antimicrobial peptide with nonmembrane-disrupting antibacterial properties. Biomacromolecules 9, 2980–2983 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Locock, K. E. S. et al. Guanylated polymethacrylates: a class of potent antimicrobial polymers with low hemolytic activity. Biomacromolecules 14, 4021–4031 (2013).

    Article  CAS  PubMed  Google Scholar 

  206. Cuthbert, T. J. et al. Surprising antibacterial activity and selectivity of hydrophilic polyphosphoniums featuring sugar and hydroxy substituents. Angew. Chem. Int. Ed. 57, 12707–12710 (2018).

    Article  CAS  Google Scholar 

  207. Zhang, B., Li, M., Lin, M., Yang, X. & Sun, J. A convenient approach for antibacterial polypeptoids featuring sulfonium and oligo(ethylene glycol) subunits. Biomater. Sci. 8, 6969–6977 (2020).

    Article  CAS  PubMed  Google Scholar 

  208. Zhang, J. et al. Antimicrobial metallopolymers and their bioconjugates with conventional antibiotics against multidrug-resistant bacteria. J. Am. Chem. Soc. 136, 4873–4876 (2014).

    Article  CAS  PubMed  Google Scholar 

  209. Zhu, T. et al. Metallo-polyelectrolytes as a class of ionic macromolecules for functional materials. Nat. Commun. 9, 4329 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Zhu, T., Zhang, J. & Tang, C. Metallo-polyelectrolytes: correlating macromolecular architectures with properties and applications. Trends Chem. 2, 227–240 (2020).

    Article  CAS  PubMed  Google Scholar 

  211. Chin, W. et al. A macromolecular approach to eradicate multidrug resistant bacterial infections while mitigating drug resistance onset. Nat. Commun. 9, 917 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Sellenet, P. H., Allison, B., Applegate, B. M. & Youngblood, J. P. Synergistic activity of hydrophilic modification in antibiotic polymers. Biomacromolecules 8, 19–23 (2007).

    Article  CAS  PubMed  Google Scholar 

  213. Colak, S., Nelson, C. F., Nüsslein, K. & Tew, G. N. Hydrophilic modifications of an amphiphilic polynorbornene and the effects on its hemolytic and antibacterial activity. Biomacromolecules 10, 353–359 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Lienkamp, K., Kumar, K.-N., Som, A., Nüsslein, K. & Tew, G. N. “Doubly selective” antimicrobial polymers: how do they differentiate between bacteria? Chem. Eur. J. 15, 11710–11714 (2009).

    Article  CAS  PubMed  Google Scholar 

  215. Muñoz-Bonilla, A., Echeverria, C., Sonseca, Á., Arrieta, M. P. & Fernández-García, M. Bio-based polymers with antimicrobial properties towards sustainable development. Materials 12, 641 (2019).

    Article  PubMed Central  Google Scholar 

  216. Sahariah, P. & Másson, M. Antimicrobial chitosan and chitosan derivatives: a review of the structure–activity relationship. Biomacromolecules 18, 3846–3868 (2017).

    Article  CAS  PubMed  Google Scholar 

  217. Pranantyo, D., Xu, L. Q., Kang, E.-T. & Chan-Park, M. B. Chitosan-based peptidopolysaccharides as cationic antimicrobial agents and antibacterial coatings. Biomacromolecules 19, 2156–2165 (2018).

    Article  CAS  PubMed  Google Scholar 

  218. Su, Y. et al. Cationic peptidopolysaccharides synthesized by ‘click’ chemistry with enhanced broad-spectrum antimicrobial activities. Polym. Chem. 8, 3788–3800 (2017).

    Article  CAS  Google Scholar 

  219. Kugler, S., Ossowicz, P., Malarczyk-Matusiak, K. & Wierzbicka, E. Advances in rosin-based chemicals: the latest recipes, applications and future trends. Molecules 24, 1651 (2019).

    Article  PubMed Central  Google Scholar 

  220. Chen, Y. et al. Amphipathic antibacterial agents using cationic methacrylic polymers with natural rosin as pendant group. RSC Adv. 2, 10275–10282 (2012).

    Article  CAS  Google Scholar 

  221. Ganewatta, M. S. et al. Bio-inspired resin acid-derived materials as anti-bacterial resistance agents with unexpected activities. Chem. Sci. 5, 2011–2016 (2014).

    Article  CAS  Google Scholar 

  222. Rahman, M. A. et al. Macromolecular-clustered facial amphiphilic antimicrobials. Nat. Commun. 9, 5231 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Ganewatta, M. S. et al. Facially amphiphilic polyionene biocidal polymers derived from lithocholic acid. Bioact. Mater. 3, 186–193 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Lam, S. J., Wong, E. H. H., Boyer, C. & Qiao, G. G. Antimicrobial polymeric nanoparticles. Prog. Polym. Sci. 76, 40–64 (2018).

    Article  CAS  Google Scholar 

  225. Richter, A. P. et al. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nat. Nanotechnol. 10, 817–823 (2015).

    Article  CAS  PubMed  Google Scholar 

  226. Nova, A., Keten, S., Pugno, N. M., Redaelli, A. & Buehler, M. J. Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett. 10, 2626–2634 (2010).

    Article  CAS  Google Scholar 

  227. de Jong, E., Higson, A., Walsh, P. & Wellisch, M. Product developments in the bio-based chemicals arena. Biofuels Bioprod. Biorefin. 6, 606–624 (2012).

    Article  Google Scholar 

  228. Kim, Y., Gill, E. E. & Liu, J. C. Enzymatic crosslinking of resilin-based proteins for vascular tissue engineering applications. Biomacromolecules 17, 2530–2539 (2016).

    Article  CAS  PubMed  Google Scholar 

  229. Wimley, W. C. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem. Biol. 5, 905–917 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project has received partial funding from the US National Science Foundation (DMR-1806792 to C.T.) and the US National Institutes of Health (R01AI149810 to C.T.). Z.W. thanks Anhui Agricultural University for support.

Author information

Authors and Affiliations

Authors

Contributions

M.S.G. and Z.W. contributed equally to this work. M.S.G., Z.W. and C.T. conceived the Review. All authors contributed to the discussion and writing of the Review.

Corresponding author

Correspondence to Chuanbing Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganewatta, M.S., Wang, Z. & Tang, C. Chemical syntheses of bioinspired and biomimetic polymers toward biobased materials. Nat Rev Chem 5, 753–772 (2021). https://doi.org/10.1038/s41570-021-00325-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00325-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing