Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Charge-transfer processes in metal complexes enable luminescence and memory functions

Abstract

Molecular transition-metal–ligand complexes are emerging as useful paradigms in materials science. Transition metal complexes have diverse metal d electron configurations, oxidation states, coordination numbers and geometries such that they can undergo a diverse array of electronic transitions. Metal-to-ligand charge-transfer transitions and their associated excited states are especially attractive given their rich redox properties and robustness. This chemistry is accessible by appropriate choice of low-valence metal centres and strong π-acceptor ligands. An in-depth fundamental understanding of their charge-transfer, assembly and structure–property relationships is important to allow us to rationally design complexes and tune their characteristics for an intended application. In addition to their attractive light-harvesting and photocatalytic applications, this Perspective describes recent developments in the use of transition metal complexes as materials in phosphorescent organic light-emitting diodes and resistive memory devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Donor–acceptor Ptii complexes undergo charge-transfer transitions for artificial light harvesting.
Fig. 2: Host–guest interactions enable organization of Ptii motifs into well-defined assemblies.
Fig. 3: Molecular design and structure–property control of strongly luminescent Ptii complexes for OLED fabrication.
Fig. 4: Versatile phosphorescent Auiii complexes with sophisticated optical features.
Fig. 5: Metal complexes have properties that can be exploited in resistive memory devices.
Fig. 6: Transition metal complexes afford diverse memory switching behaviour.

Similar content being viewed by others

References

  1. Solomon, E. I. & Lever, A. B. P. Inorganic Electronic Structure and Spectroscopy, Applications and Case Studies Vol. 2 (Wiley-Interscience, 1999).

  2. Turro, N. J., Ramamurthy, V., Ramamurthy, V. & Scaiano, J. C. Principles of Molecular photochemistry: An Introduction (University Science Books, 2009).

  3. Nocera, D. G. Chemistry of the multielectron excited state. Acc. Chem. Res. 28, 209–217 (1995).

    CAS  Google Scholar 

  4. Esswein, A. J. & Nocera, D. G. Hydrogen production by molecular photocatalysis. Chem. Rev. 107, 4022–4047 (2007).

    CAS  PubMed  Google Scholar 

  5. Lee, J. et al. Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes. Nat. Commun. 8, 15566 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mason, W. R. & Gray, H. B. Electronic structures of square-planar complexes. J. Am. Chem. Soc. 90, 5721–5729 (1968).

    CAS  Google Scholar 

  7. Adamson, A. W. & Demas, J. N. New photosensitizer. Tris(2,2ʹ-bipyridine)ruthenium(ii) chloride. J. Am. Chem. Soc. 93, 1800–1801 (1971).

    CAS  Google Scholar 

  8. Jennette, K. W., Lippard, S. J., Vassiliades, G. A. & Bauer, W. R. Metallointercalation reagents 2-hydroxyethanethiolato (2,2ʹ,2ʹʹ-terpyridine)-platinum(ii) monocation binds strongly to DNA by intercalation. Proc. Natl Acad. Sci. USA 71, 3839–3843 (1974).

    CAS  PubMed  Google Scholar 

  9. Mann, K. R., Gordon, J. G. & Gray, H. B. Characterization of oligomers of tetrakis(phenyl isocyanide)rhodium(i) in acetonitrile solution. J. Am. Chem. Soc. 97, 3553–3555 (1975).

    CAS  Google Scholar 

  10. Mann, K. R., Lewis, N. S., Williams, R. M., Gray, H. B. & Gordon, J. G. Further studies of metal-metal bonded oligomers of rhodium(i) isocyanide complexes. Crystal structure analysis of octakis(phenyl isocyanide)dirhodium bis(tetraphenylborate). Inorg. Chem. 17, 828–834 (1978).

    CAS  Google Scholar 

  11. King, K. A., Spellane, P. J. & Watts, R. J. Excited-state properties of a triply ortho-metalated iridium(iii) complex. J. Am. Chem. Soc. 107, 1431–1432 (1985).

    CAS  Google Scholar 

  12. Roundhill, D. M., Gray, H. B. & Che, C. M. Pyrophosphito-bridged diplatinum chemistry. Acc. Chem. Res. 22, 55–61 (1989).

    CAS  Google Scholar 

  13. Che, C.-M., Wan, K.-T., He, L.-Y., Poon, C.-K. & Yam, V. W.-W. Novel luminescent platinum(ii) complexes. Photophysics and photochemistry of Pt(5,5ʹ-Me2bpy)(CN)2(5,5ʹ-Me2bpy=5,5ʹ-dimethyl-2,2ʹ-bipyridine). J. Chem. Soc. Chem. Commun. 943–944 (1989).

  14. Miskowski, V. M. & Houlding, V. H. Electronic spectra and photophysics of platinum(ii) complexes with α-diimine ligands. Solid-state effects. 1. Monomers and ligand π dimers. Inorg. Chem. 28, 1529–1533 (1989).

    CAS  Google Scholar 

  15. Kirk, A. D. Photochemistry and photophysics of chromium(iii) complexes. Chem. Rev. 99, 1607–1640 (1999).

    CAS  PubMed  Google Scholar 

  16. Indelli, M. T., Chiorboli, C. & Scandola, F. Photochemistry and photophysics of coordination compounds: rhodium. Top. Curr. Chem. 280, 215–255 (2007).

    CAS  Google Scholar 

  17. Campagna, S., Puntoriero, F., Nastasi, F., Bergamini, G. & Balzani, V. Photochemistry and photophysics of coordination compounds: ruthenium. Top. Curr. Chem. 280, 117–214 (2007).

    CAS  Google Scholar 

  18. Wong, K. M.-C., Au, V. K.-M. & Yam, V. W.-W. in Comprehensive Inorganic Chemistry II 2nd edn Vol. 8 (Vol. ed. Yam, V. W.-W.; Series eds Reedijk, J. & Poeppelmeier, K.) 59–130 (Elsevier, 2013).

  19. Yam, V. W.-W., Au, V. K.-M. & Leung, S. Y.-L. Light-emitting self-assembled materials based on d8 and d10 transition metal complexes. Chem. Rev. 115, 7589–7728 (2015).

    CAS  PubMed  Google Scholar 

  20. Gersten, S. W., Samuels, G. J. & Meyer, T. J. Catalytic oxidation of water by an oxo-bridged ruthenium dimer. J. Am. Chem. Soc. 104, 4029–4030 (1982).

    CAS  Google Scholar 

  21. Büldt, L. A. & Wenger, O. S. Chromium complexes for luminescence, solar cells, photoredox catalysis, upconversion, and phototriggered NO release. Chem. Sci. 8, 7359–7367 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).

    CAS  Google Scholar 

  23. O’Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    Google Scholar 

  24. Chi, Y. & Chou, P.-T. Transition-metal phosphors with cyclometalating ligands: fundamentals and applications. Chem. Soc. Rev. 39, 638–655 (2010).

    CAS  PubMed  Google Scholar 

  25. Yang, C.-H. et al. Deep-blue-emitting heteroleptic iridium(iii) complexes suited for highly efficient phosphorescent OLEDs. Chem. Mater. 24, 3684–3695 (2012).

    CAS  Google Scholar 

  26. Tang, M.-C., Chan, A. K.-W., Chan, M.-Y. & Yam, V. W.-W. Platinum and gold complexes for OLEDs. Top. Curr. Chem. 374, 46 (2016).

    Google Scholar 

  27. Hamze, R. et al. Eliminating nonradiative decay in Cu(i) emitters: >99% quantum efficiency and microsecond lifetime. Science 363, 601–606 (2019).

    CAS  PubMed  Google Scholar 

  28. Grätzel, M. Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42, 1788–1798 (2009).

    PubMed  Google Scholar 

  29. Tamayo, A. B. et al. Synthesis and characterization of facial and meridional tris-cyclometalated iridium(iii) complexes. J. Am. Chem. Soc. 125, 7377–7387 (2003).

    CAS  PubMed  Google Scholar 

  30. Yam, V. W.-W. & Wong, K. M.-C. Luminescent metal complexes of d6, d8 and d10 transition metal centres. Chem. Commun. 47, 11579–11592 (2011).

    CAS  Google Scholar 

  31. Lo, S.-C., Namdas, E. B., Burn, P. L. & Samuel, I. D. W. Synthesis and properties of highly efficient electroluminescent green phosphorescent iridium cored dendrimers. Macromolecules 36, 9721–9730 (2003).

    CAS  Google Scholar 

  32. Wong, K. M.-C., Chan, M. M.-Y. & Yam, V. W.-W. Supramolecular assembly of metal-ligand chromophores for sensing and phosphorescent OLED applications. Adv. Mater. 26, 5558–5568 (2014).

    CAS  PubMed  Google Scholar 

  33. Pinto, M. A. F. D. R. et al. A novel di-platinum(ii) octaphosphite complex showing metal–metal bonding and intense luminescence; a potential probe for basic proteins. X-ray crystal and molecular structure. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39800000013 (1980).

  34. Dorn, M. et al. A vanadium(iii) complex with blue and NIR-II spin-flip luminescence in solution. J. Am. Chem. Soc. 142, 7947–7955 (2020).

    CAS  PubMed  Google Scholar 

  35. Otto, S. et al. [Cr(ddpd)2]3+: a molecular, water-soluble, highly NIR-emissive ruby analogue. Angew. Chem. Int. Ed. 54, 11572–11576 (2015).

    CAS  Google Scholar 

  36. Wenger, O. S. Photoactive complexes with earth-abundant metals. J. Am. Chem. Soc. 140, 13522–13533 (2018).

    CAS  PubMed  Google Scholar 

  37. Chábera, P. et al. A low-spin Fe(iii) complex with 100-ps ligand-to-metal charge transfer photoluminescence. Nature 543, 695–699 (2017).

    PubMed  Google Scholar 

  38. Kjær, K. S. et al. Luminescence and reactivity of a charge-transfer excited iron complex with nanosecond lifetime. Science 363, 249–253 (2019).

    PubMed  Google Scholar 

  39. Pal, A. K., Li, C., Hanan, G. S. & Zysman-Colman, E. Blue-emissive cobalt(iii) complexes and their use in the photocatalytic trifluoromethylation of polycyclic aromatic hydrocarbons. Angew. Chem. Int. Ed. 57, 8027–8031 (2018).

    CAS  Google Scholar 

  40. Wong, Y.-S., Tang, M.-C., Ng, M. & Yam, V. W.-W. Toward the design of phosphorescent emitters of cyclometalated earth-abundant nickel(ii) and their supramolecular study. J. Am. Chem. Soc. 142, 7638–7646 (2020).

    CAS  PubMed  Google Scholar 

  41. Blaskie, M. W. & McMillin, D. R. Photostudies of copper(i) systems. 6. Room-temperature emission and quenching studies of bis(2,9-dimethyl-1,10-phenanthroline)copper(i). Inorg. Chem. 19, 3519–3522 (1980).

    CAS  Google Scholar 

  42. Deaton, J. C. et al. E-type delayed fluorescence of a phosphine-supported Cu2(μ-NAr2)2 diamond core: harvesting singlet and triplet excitons in OLEDs. J. Am. Chem. Soc. 132, 9499–9508 (2010).

    CAS  PubMed  Google Scholar 

  43. Czerwieniec, R., Yu, J. & Yersin, H. Blue-light emission of Cu(i) complexes and singlet harvesting. Inorg. Chem. 50, 8293–8301 (2011).

    CAS  PubMed  Google Scholar 

  44. Büldt, L. A., Larsen, C. B. & Wenger, O. S. Luminescent Ni0 diisocyanide chelates as analogues of CuI diimine complexes. Chem. Eur. J. 23, 8577–8580 (2017).

    PubMed  Google Scholar 

  45. Romanov, A. S. et al. Dendritic carbene metal carbazole complexes as photoemitters for fully solution-processed OLEDs. Chem. Mater. 31, 3613–3623 (2019).

    CAS  Google Scholar 

  46. Shi, S. et al. Highly efficient photo- and electroluminescence from two-coordinate Cu(i) complexes featuring nonconventional N-heterocyclic carbenes. J. Am. Chem. Soc. 141, 3576–3588 (2019).

    CAS  PubMed  Google Scholar 

  47. Yam, V. W.-W. & Lo, K. K.-W. Luminescent polynuclear d10 metal complexes. Chem. Soc. Rev. 28, 323–334 (1999).

    CAS  Google Scholar 

  48. Raptis, R. G. & Fackler, J. P. Structure of tris(μ-3,5-diphenylpyrazolato-N,Nʹ)tricopper(i). Structural comparisons with the silver(i) and gold(i) pyrazolate trimers. Inorg. Chem. 27, 4179–4182 (1988).

    CAS  Google Scholar 

  49. Yam, V. W.-W., Fung, W. K.-M. & Cheung, K.-K. Synthesis, structure, photophysics, and excited-state redox properties of the novel luminescent tetranuclear acetylidocopper(i) complex [Cu4(μ-dppm)4412-C≡C-)](BF4)2. Angew. Chem. Int. Ed. 35, 1100–1102 (1996).

    CAS  Google Scholar 

  50. Lo, W.-Y. et al. Synthesis, photophysics, electrochemistry, theoretical, and transient absorption studies of luminescent copper(i) and silver(i) diynyl complexes. X-ray crystal structures of [Cu3(μ-dppm)331-C≡CC≡CPh)2]PF6 and [Cu3(μ-dppm)331-C≡CC≡CH)2]PF6. J. Am. Chem. Soc. 126, 7300–7310 (2004).

    CAS  PubMed  Google Scholar 

  51. Zhan, S.-Z. et al. A luminescent edge-interlocked prismatic heteroleptic metallocage assembled through a ligand replacement reaction. Chem. Commun. 55, 11992–11995 (2019).

    CAS  Google Scholar 

  52. Lo, K. K.-W. Luminescent rhenium(i) and iridium(iii) polypyridine complexes as biological probes, imaging reagents, and photocytotoxic agents. Acc. Chem. Res. 48, 2985–2995 (2015).

    CAS  PubMed  Google Scholar 

  53. Wang, S.-W. et al. Panchromatic Ru(ii) sensitizers bearing single thiocyanate for high efficiency dye sensitized solar cells. J. Mater. Chem. A 2, 17618–17627 (2014).

    CAS  Google Scholar 

  54. Sun, L., Hammarström, L., Åkermark, B. & Styring, S. Towards artificial photosynthesis: ruthenium–manganese chemistry for energy production. Chem. Soc. Rev. 30, 36–49 (2001).

    CAS  Google Scholar 

  55. Blakemore, J. D. et al. Half-sandwich iridium complexes for homogeneous water-oxidation catalysis. J. Am. Chem. Soc. 132, 16017–16029 (2010).

    CAS  PubMed  Google Scholar 

  56. Blakemore, J. D., Crabtree, R. H. & Brudvig, G. W. Molecular catalysts for water oxidation. Chem. Rev. 115, 12974–13005 (2015).

    CAS  PubMed  Google Scholar 

  57. Ko, C.-C. & Yam, V. W.-W. Coordination compounds with photochromic ligands: ready tunability and visible light-sensitized photochromism. Acc. Chem. Res. 51, 149–159 (2018).

    CAS  PubMed  Google Scholar 

  58. Gao, F. G. & Bard, A. J. Solid-state organic light-emitting diodes based on tris(2,2ʹ-bipyridine)ruthenium(ii) complexes. J. Am. Chem. Soc. 122, 7426–7427 (2000).

    CAS  Google Scholar 

  59. Welter, S., Brunner, K., Hofstraat, J. W. & De Cola, L. Electroluminescent device with reversible switching between red and green emission. Nature 421, 54–57 (2003).

    CAS  PubMed  Google Scholar 

  60. Miao, W. & Bard, A. J. Electrogenerated chemiluminescence. 72. Determination of immobilized DNA and C-reactive protein on Au(111) electrodes using tris(2,2ʹ-bipyridyl)ruthenium(ii) labels. Anal. Chem. 75, 5825–5834 (2003).

    CAS  PubMed  Google Scholar 

  61. Tokel-Takvoryan, N. E., Hemingway, R. E. & Bard, A. J. Electrogenerated chemiluminescence. XIII. Electrochemical and electrogenerated chemiluminescence studies of ruthenium chelates. J. Am. Chem. Soc. 95, 6582–6589 (1973).

    CAS  Google Scholar 

  62. Yam, V. W.-W., Tang, R. P.-L., Wong, K. M.-C. & Cheung, K.-K. Synthesis, luminescence, electrochemistry, and ion-binding studies of platinum(ii) terpyridyl acetylide complexes. Organometallics 20, 4476–4482 (2001).

    CAS  Google Scholar 

  63. Wong, K. M.-C., Tang, W.-S., Lu, X.-X., Zhu, N. & Yam, V. W.-W. Functionalized platinum(ii) terpyridyl alkynyl complexes as colorimetric and luminescence pH sensors. Inorg. Chem. 44, 1492–1498 (2005).

    CAS  PubMed  Google Scholar 

  64. McGarrah, J. E., Kim, Y.-J., Hissler, M. & Eisenberg, R. Toward a molecular photochemical device:  a triad for photoinduced charge separation based on a platinum diimine bis(acetylide) chromophore. Inorg. Chem. 40, 4510–4511 (2001).

    CAS  PubMed  Google Scholar 

  65. Kwok, E. C.-H., Chan, M.-Y., Wong, K. M.-C., Lam, W. H. & Yam, V. W.-W. Functionalized alkynylplatinum(ii) polypyridyl complexes for use as sensitizers in dye-sensitized solar cells. Chem. Eur. J. 16, 12244–12254 (2010).

    CAS  PubMed  Google Scholar 

  66. Keller, J. M. et al. Negative polaron and triplet exciton diffusion in organometallic “molecular wires”. J. Am. Chem. Soc. 133, 11289–11298 (2011).

    CAS  PubMed  Google Scholar 

  67. Carsten, B. et al. Examining the effect of the dipole moment on charge separation in donor–acceptor polymers for organic photovoltaic applications. J. Am. Chem. Soc. 133, 20468–20475 (2011).

    CAS  PubMed  Google Scholar 

  68. Gust, D., Moore, T. A. & Moore, A. L. Mimicking photosynthetic solar energy transduction. Acc. Chem. Res. 34, 40–48 (2001).

    CAS  PubMed  Google Scholar 

  69. McCusker, J. K. Electronic structure in the transition metal block and its implications for light harvesting. Science 363, 484–488 (2019).

    CAS  PubMed  Google Scholar 

  70. Wrighton, M. & Morse, D. L. Nature of the lowest excited state in tricarbonylchloro-1,10-phenanthrolinerhenium(i) and related complexes. J. Am. Chem. Soc. 96, 998–1003 (1974).

    CAS  Google Scholar 

  71. Wrighton, M. S., Morse, D. L. & Pdungsap, L. Intraligand lowest excited states in tricarbonylhalobis(styrylpyridine)rhenium(i) complexes. J. Am. Chem. Soc. 97, 2073–2079 (1975).

    CAS  Google Scholar 

  72. Hawecker, J., Lehn, J.-M. & Ziessel, R. Electrocatalytic reduction of carbon dioxide mediated by Re(bipy)(CO)3Cl (bipy=2,2ʹ-bipyridine). J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39840000328 (1984).

  73. Takeda, H., Koike, K., Inoue, H. & Ishitani, O. Development of an efficient photocatalytic system for CO2 reduction using rhenium(i) complexes based on mechanistic studies. J. Am. Chem. Soc. 130, 2023–2031 (2008).

    CAS  PubMed  Google Scholar 

  74. Sekizawa, K., Maeda, K., Domen, K., Koike, K. & Ishitani, O. Artificial Z-scheme constructed with a supramolecular metal complex and semiconductor for the photocatalytic reduction of CO2. J. Am. Chem. Soc. 135, 4596–4599 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wenger, O. S. Proton-coupled electron transfer with photoexcited metal complexes. Acc. Chem. Res. 46, 1517–1526 (2013).

    CAS  PubMed  Google Scholar 

  76. Yella, A. et al. Porphyrin-sensitized solar cells with cobalt(ii/iii)–based redox electrolyte exceed 12 percent efficiency. Science 334, 629–634 (2011).

    CAS  PubMed  Google Scholar 

  77. Mathew, S. et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6, 242–247 (2014).

    CAS  PubMed  Google Scholar 

  78. Li, G., Mark, M. F., Lv, H., McCamant, D. W. & Eisenberg, R. Rhodamine-platinum diimine dithiolate complex dyads as efficient and robust photosensitizers for light-driven aqueous proton reduction to hydrogen. J. Am. Chem. Soc. 140, 2575–2586 (2018).

    CAS  PubMed  Google Scholar 

  79. Lee, S.-H. et al. Design and synthesis of bipyridine platinum(ii) bisalkynyl fullerene donor–chromophore–acceptor triads with ultrafast charge separation. J. Am. Chem. Soc. 136, 10041–10052 (2014).

    CAS  PubMed  Google Scholar 

  80. Cummings, S. D. & Eisenberg, R. Tuning the excited-state properties of platinum(ii) diimine dithiolate complexes. J. Am. Chem. Soc. 118, 1949–1960 (1996).

    CAS  Google Scholar 

  81. McMillin, D. R. & Moore, J. J. Luminescence that lasts from Pt(trpy)Cl+ derivatives (trpy=2,2ʹ;6ʹ,2ʹʹ-terpyridine). Coord. Chem. Rev. 229, 113–121 (2002).

    CAS  Google Scholar 

  82. Wong, K. M.-C. & Yam, V. W.-W. Self-assembly of luminescent alkynylplatinum(ii) terpyridyl complexes: modulation of photophysical properties through aggregation behavior. Acc. Chem. Res. 44, 424–434 (2011).

    CAS  PubMed  Google Scholar 

  83. Yam, V. W.-W., Wong, K. M.-C. & Zhu, N. Solvent-induced aggregation through metal···metal/π···π interactions:  large solvatochromism of luminescent organoplatinum(ii) terpyridyl complexes. J. Am. Chem. Soc. 124, 6506–6507 (2002).

    CAS  PubMed  Google Scholar 

  84. Yu, C., Wong, K. M.-C., Chan, K. H.-Y. & Yam, V. W.-W. Polymer-induced self-assembly of alkynylplatinum(ii) terpyridyl complexes by metalmetal/ππ interactions. Angew. Chem. Int. Ed. 44, 791–794 (2005).

    CAS  Google Scholar 

  85. Tam, A. Y.-Y., Wong, K. M.-C. & Yam, V. W.-W. Unusual luminescence enhancement of metallogels of alkynylplatinum(ii) 2,6-bis(N-alkylbenzimidazol-2ʹ-yl)pyridine complexes upon a gel-to-sol phase transition at elevated temperatures. J. Am. Chem. Soc. 131, 6253–6260 (2009).

    CAS  PubMed  Google Scholar 

  86. Chan, K. H.-Y., Chow, H.-S., Wong, K. M.-C., Yeung, M. C.-L. & Yam, V. W.-W. Towards thermochromic and thermoresponsive near-infrared (NIR) luminescent molecular materials through the modulation of inter- and/or intramolecular PtPt and π–π interactions. Chem. Sci. 1, 477–482 (2010).

    CAS  Google Scholar 

  87. Po, C., Tam, A. Y.-Y., Wong, K. M.-C. & Yam, V. W.-W. Supramolecular self-assembly of amphiphilic anionic platinum(ii) complexes: a correlation between spectroscopic and morphological properties. J. Am. Chem. Soc. 133, 12136–12143 (2011).

    CAS  PubMed  Google Scholar 

  88. Leung, S. Y.-L., Tam, A. Y.-Y., Tao, C.-H., Chow, H. S. & Yam, V. W.-W. Single-turn helix–coil strands stabilized by metal···metal and π–π interactions of the alkynylplatinum(ii) terpyridyl moieties in meta-phenylene ethynylene foldamers. J. Am. Chem. Soc. 134, 1047–1056 (2012).

    CAS  PubMed  Google Scholar 

  89. Chung, C. Y.-S., Li, S. P.-Y., Louie, M.-W., Lo, K. K.-W. & Yam, V. W.-W. Induced self-assembly and disassembly of water-soluble alkynylplatinum(ii) terpyridyl complexes with “switchable” near-infrared (NIR) emission modulated by metal–metal interactions over physiological pH: demonstration of pH-responsive NIR luminescent probes in cell-imaging studies. Chem. Sci. 4, 2453–2462 (2013).

    CAS  Google Scholar 

  90. Au-Yeung, H.-L., Leung, S. Y.-L., Tam, A. Y.-Y. & Yam, V. W.-W. Transformable nanostructures of platinum-containing organosilane hybrids: non-covalent self-assembly of polyhedral oligomeric silsesquioxanes assisted by Pt···Pt and π–π stacking interactions of alkynylplatinum(ii) terpyridine moieties. J. Am. Chem. Soc. 136, 17910–17913 (2014).

    CAS  PubMed  Google Scholar 

  91. Zhang, K., Yeung, M. C.-L., Leung, S. Y.-L. & Yam, V. W.-W. Manipulation of nanostructures in the co-assembly of platinum(ii) complexes and block copolymers. Chem 2, 825–839 (2017).

    CAS  Google Scholar 

  92. Chen, Z., Chan, A. K.-W., Wong, V. C.-H. & Yam, V. W.-W. A supramolecular strategy toward an efficient and selective capture of platinum(ii) complexes. J. Am. Chem. Soc. 141, 11204–11211 (2019).

    CAS  PubMed  Google Scholar 

  93. Chan, M. H.-Y., Leung, S. Y.-L. & Yam, V. W.-W. Rational design of multi-stimuli-responsive scaffolds: synthesis of luminescent oligo(ethynylpyridine)-containing alkynylplatinum(ii) polypyridine foldamers stabilized by Pt···Pt interactions. J. Am. Chem. Soc. 141, 12312–12321 (2019).

    CAS  PubMed  Google Scholar 

  94. Ai, Y. et al. A platinum(ii) molecular hinge with motions visualized by phosphorescence changes. Proc. Natl Acad. Sci. USA 116, 13856–13861 (2019).

    CAS  PubMed  Google Scholar 

  95. Zhang, K., Yeung, M. C.-L., Leung, S. Y.-L. & Yam, V. W.-W. Energy landscape in supramolecular coassembly of platinum(ii) complexes and polymers: morphological diversity, transformation, and dilution stability of nanostructures. J. Am. Chem. Soc. 140, 9594–9605 (2018).

    CAS  PubMed  Google Scholar 

  96. Leung, S. Y.-L., Wong, K. M.-C. & Yam, V. W.-W. Self-assembly of alkynylplatinum(ii) terpyridine amphiphiles into nanostructures via steric control and metal–metal interactions. Proc. Natl Acad. Sci. USA 113, 2845–2850 (2016).

    CAS  PubMed  Google Scholar 

  97. Kato, M., Omura, A., Toshikawa, A., Kishi, S. & Sugimoto, Y. Vapor-induced luminescence switching in crystals of the syn isomer of a dinuclear (bipyridine)platinum(ii) complex bridged with pyridine-2-thiolate ions. Angew. Chem. Int. Ed. 41, 3183–3185 (2002).

    CAS  Google Scholar 

  98. Krikorian, M., Liu, S. & Swager, T. M. Columnar liquid crystallinity and mechanochromism in cationic platinum(ii) complexes. J. Am. Chem. Soc. 136, 2952–2955 (2014).

    CAS  PubMed  Google Scholar 

  99. Aliprandi, A., Mauro, M. & De Cola, L. Controlling and imaging biomimetic self-assembly. Nat. Chem. 8, 10–15 (2016).

    CAS  PubMed  Google Scholar 

  100. Chen, Z. & Yam, V. W.-W. Precise size-selective sieving of nanoparticles using a highly oriented two-dimensional supramolecular polymer. Angew. Chem. Int. Ed. 59, 4840–4845 (2020).

    CAS  Google Scholar 

  101. Chakrabarty, R., Mukherjee, P. S. & Stang, P. J. Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem. Rev. 111, 6810–6918 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Sommer, R. D., Rheingold, A. L., Goshe, A. J. & Bosnich, B. Supramolecular chemistry:  molecular recognition and self-assembly using rigid spacer-chelators bearing cofacial terpyridyl palladium(ii) complexes separated by 7 Å. J. Am. Chem. Soc. 123, 3940–3952 (2001).

    CAS  PubMed  Google Scholar 

  103. Chan, A. K.-W. & Yam, V. W.-W. Precise modulation of molecular building blocks from tweezers to rectangles for recognition and stimuli-responsive processes. Acc. Chem. Res. 51, 3041–3051 (2018).

    CAS  PubMed  Google Scholar 

  104. Tanaka, Y., Wong, K. M.-C. & Yam, V. W.-W. Phosphorescent molecular tweezers based on alkynylplatinum(ii) terpyridine system: turning on of NIR emission via heterologous PtM interactions (M=PtII, PdII, AuIII and AuI). Chem. Sci. 3, 1185–1191 (2012).

    CAS  Google Scholar 

  105. Tanaka, Y., Wong, K. M.-C. & Yam, V. W.-W. Host–guest interactions of phosphorescent molecular tweezers based on an alkynylplatinum(ii) terpyridine system with polyaromatic hydrocarbons. Chem. Eur. J. 19, 390–399 (2013).

    CAS  PubMed  Google Scholar 

  106. Tanaka, Y., Wong, K. M.-C. & Yam, V. W.-W. Platinum-based phosphorescent double-decker tweezers: a strategy for extended heterologous metal–metal interactions. Angew. Chem. Int. Ed. 52, 14117–14120 (2013).

    CAS  Google Scholar 

  107. Magnus, G. Magnus’ green salt. Pogg. Ann. 14, 239–242 (1828).

    Google Scholar 

  108. Debije, M. G. et al. Optoelectronic properties of quasi-linear, self-assembled platinum complexes: Pt–Pt distance dependence. Adv. Funct. Mater. 14, 323–328 (2004).

    CAS  Google Scholar 

  109. Kong, F. K.-W., Chan, A. K.-W., Ng, M., Low, K.-H. & Yam, V. W.-W. Construction of discrete pentanuclear platinum(ii) stacks with extended metal–metal interactions by using phosphorescent platinum(ii) tweezers. Angew. Chem. Int. Ed. 56, 15103–15107 (2017).

    CAS  Google Scholar 

  110. Chan, A. K.-W., Lam, W. H., Tanaka, Y., Wong, K. M.-C. & Yam, V. W.-W. Multiaddressable molecular rectangles with reversible host–guest interactions: modulation of pH-controlled guest release and capture. Proc. Natl Acad. Sci. USA 112, 690–695 (2015).

    CAS  PubMed  Google Scholar 

  111. Constable, E. C., Henney, R. P. G., Leese, T. A. & Tocher, D. A. Cyclopalladated and cycloplatinated complexes of 6-phenyl-2,2ʹ-bipyridine: platinum-platinum interactions in the solid state. J. Chem. Soc. Chem. Commun. 513–515 (1990).

  112. Brooks, J. et al. Synthesis and characterization of phosphorescent cyclometalated platinum complexes. Inorg. Chem. 41, 3055–3066 (2002).

    CAS  PubMed  Google Scholar 

  113. Lu, W. et al. Light-emitting tridentate cyclometalated platinum(ii) complexes containing σ-alkynyl auxiliaries:  tuning of photo- and electrophosphorescence. J. Am. Chem. Soc. 126, 4958–4971 (2004).

    CAS  PubMed  Google Scholar 

  114. Fleetham, T., Li, G., Wen, L. & Li, J. Efficient “pure” blue OLEDs employing tetradentate Pt complexes with a narrow spectral bandwidth. Adv. Mater. 26, 7116–7121 (2014).

    CAS  PubMed  Google Scholar 

  115. Maestri, M. et al. Luminescence of ortho-metallated platinum(ii) complexes. Chem. Phys. Lett. 122, 375–379 (1985).

    CAS  Google Scholar 

  116. Barigelletti, F. et al. Temperature dependence of the luminescence of cyclometalated palladium(ii), rhodium(iii), platinum(ii), and platinum(iv) complexes. Inorg. Chem. 27, 3644–3647 (1988).

    CAS  Google Scholar 

  117. Cocchi, M., Virgili, D., Fattori, V., Rochester, D. L. & Williams, J. A. G. N^C^N-coordinated platinum(ii) complexes as phosphorescent emitters in high-performance organic light-emitting devices. Adv. Funct. Mater. 17, 285–289 (2007).

    CAS  Google Scholar 

  118. Yersin, H., Rausch, A. F., Czerwieniec, R., Hofbeck, T. & Fischer, T. The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs. Coord. Chem. Rev. 255, 2622–2652 (2011).

    CAS  Google Scholar 

  119. Tam, A. Y.-Y., Tsang, D. P.-K., Chan, M.-Y., Zhu, N. & Yam, V. W.-W. A luminescent cyclometalated platinum(ii) complex and its green organic light emitting device with high device performance. Chem. Commun. 47, 3383–3385 (2011).

    CAS  Google Scholar 

  120. Kui, S. C. F. et al. Luminescent organoplatinum(ii) complexes with functionalized cyclometalated C^N^C ligands: structures, photophysical properties, and material applications. Chem. Eur. J. 18, 96–109 (2012).

    CAS  PubMed  Google Scholar 

  121. Baldo, M. A., Lamansky, S., Burrows, P. E., Thompson, M. E. & Forrest, S. R. Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl. Phys. Lett. 75, 4–6 (1999).

    CAS  Google Scholar 

  122. Lam, E. S.-H. et al. Luminescent platinum(ii) complexes of 1,3-bis(N-alkylbenzimidazol-2ʹ-yl)benzene-type ligands with potential applications in efficient organic light-emitting diodes. Chem. Eur. J. 19, 6385–6397 (2013).

    CAS  PubMed  Google Scholar 

  123. Chan, A. K.-W. et al. Synthesis and characterization of luminescent cyclometalated platinum(ii) complexes of 1,3-bis-hetero-azolylbenzenes with tunable color for applications in organic light-emitting devices through extension of π conjugation by variation of the heteroatom. Chem. Eur. J. 19, 13910–13924 (2013).

    CAS  PubMed  Google Scholar 

  124. Kong, F. K.-W., Tang, M.-C., Wong, Y.-C., Chan, M.-Y. & Yam, V. W.-W. Design strategy for high-performance dendritic carbazole-containing alkynylplatinum(ii) complexes and their application in solution-processable organic light-emitting devices. J. Am. Chem. Soc. 138, 6281–6291 (2016).

    CAS  PubMed  Google Scholar 

  125. Yam, V. W.-W., Wong, K. M.-C., Hung, L.-L. & Zhu, N. Luminescent gold(iii) alkynyl complexes: synthesis, structural characterization, and luminescence properties. Angew. Chem. Int. Ed. 44, 3107–3110 (2005).

    CAS  Google Scholar 

  126. Wong, K. M.-C. et al. A novel class of phosphorescent gold(iii) alkynyl-based organic light-emitting devices with tunable colour. Chem. Commun. https://doi.org/10.1039/b503315b (2005).

  127. Au, V. K.-M. et al. High-efficiency green organic light-emitting devices utilizing phosphorescent bis-cyclometalated alkynylgold(iii) complexes. J. Am. Chem. Soc. 132, 14273–14278 (2010).

    CAS  PubMed  Google Scholar 

  128. Tang, M.-C., Tsang, D. P.-K., Chan, M. M.-Y., Wong, K. M.-C. & Yam, V. W.-W. Dendritic luminescent gold(iii) complexes for highly efficient solution-processable organic light-emitting devices. Angew. Chem. Int. Ed. 52, 446–449 (2013).

    CAS  Google Scholar 

  129. Wong, B. Y.-W., Wong, H.-L., Wong, Y.-C., Chan, M.-Y. & Yam, V. W.-W. Versatile synthesis of luminescent tetradentate cyclometalated alkynylgold(iii) complexes and their application in solution-processable organic light-emitting devices. Angew. Chem. Int. Ed. 56, 302–305 (2017).

    CAS  Google Scholar 

  130. Lee, C.-H. et al. Isomeric tetradentate ligand-containing cyclometalated gold(iii) complexes. J. Am. Chem. Soc. 142, 520–529 (2020).

    CAS  PubMed  Google Scholar 

  131. Tang, M.-C. et al. Highly emissive fused heterocyclic alkynylgold(iii) complexes for multiple color emission spanning from green to red for solution-processable organic light-emitting devices. Angew. Chem. Int. Ed. 57, 5463–5466 (2018).

    CAS  Google Scholar 

  132. Tang, M.-C. et al. Versatile design strategy for highly luminescent vacuum-evaporable and solution-processable tridentate gold(iii) complexes with monoaryl auxiliary ligands and their applications for phosphorescent organic light emitting devices. J. Am. Chem. Soc. 139, 9341–9349 (2017).

    CAS  PubMed  Google Scholar 

  133. Yam, V. W.-W., Choi, S. W.-K., Lai, T.-F. & Lee, W.-K. Syntheses, crystal structures and photophysics of organogold(iii) diimine complexes. J. Chem. Soc. Dalton Trans. https://doi.org/10.1039/DT9930001001 (1993).

  134. Tang, M.-C. et al. Realization of thermally stimulated delayed phosphorescence in arylgold(iii) complexes and efficient gold(iii) based blue-emitting organic light-emitting devices. J. Am. Chem. Soc. 140, 13115–13124 (2018).

    CAS  PubMed  Google Scholar 

  135. Leung, M.-Y. et al. Thermally stimulated delayed phosphorescence (TSDP)-based gold(iii) complexes of tridentate pyrazine-containing pincer ligand with wide emission color tunability and their application in organic light-emitting devices. J. Am. Chem. Soc. 142, 2448–2459 (2020).

    CAS  PubMed  Google Scholar 

  136. Li, L.-K. et al. Strategies towards rational design of gold(iii) complexes for high-performance organic light-emitting devices. Nat. Photonics 13, 185–191 (2019).

    CAS  Google Scholar 

  137. Kwok, W.-K. et al. Judicious choice of N-heterocycles for the realization of sky-blue- to green-emitting carbazolylgold(iii) C^C^N complexes and their applications for organic light-emitting devices. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202001972 (2020).

  138. To, W.-P. et al. Highly luminescent pincer gold(iii) aryl emitters: thermally activated delayed fluorescence and solution-processed OLEDs. Angew. Chem. Int. Ed. 56, 14036–14041 (2017).

    CAS  Google Scholar 

  139. Zhou, D. et al. Thermally stable donor–acceptor type (alkynyl)gold(iii) TADF emitters achieved EQEs and luminance of up to 23.4% and 70 300 cd m−2 in vacuum-deposited OLEDs. Adv. Sci. 6, 1802297 (2019).

    CAS  Google Scholar 

  140. Beucher, H. et al. Highly efficient green solution processable organic light-emitting diodes based on a phosphorescent κ3-(N^C^C)gold(iii)-alkynyl complex. Chem. Mater. 32, 1605–1611 (2020).

    CAS  Google Scholar 

  141. Sawa, A. Resistive switching in transition metal oxides. Mater. Today 11, 28–36 (2008).

    CAS  Google Scholar 

  142. Cho, B., Song, S., Ji, Y., Kim, T.-W. & Lee, T. Organic resistive memory devices: performance enhancement, integration, and advanced architectures. Adv. Funct. Mater. 21, 2806–2829 (2011).

    CAS  Google Scholar 

  143. Lin, W.-P., Liu, S.-J., Gong, T., Zhao, Q. & Huang, W. Polymer-based resistive memory materials and devices. Adv. Mater. 26, 570–606 (2014).

    CAS  PubMed  Google Scholar 

  144. Wang, P. et al. Thermoresponsive memory behavior in metallosupramolecular polymer-based ternary memory devices. ACS Appl. Mater. Interfaces 9, 32930–32938 (2017).

    CAS  PubMed  Google Scholar 

  145. Hwang, B., Gu, C., Lee, D. & Lee, J.-S. Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory. Sci. Rep. 7, 43794 (2017).

    PubMed  PubMed Central  Google Scholar 

  146. Li, B. et al. Metal halide perovskites for resistive switching memory devices and artificial synapses. J. Mater. Chem. C. 7, 7476–7493 (2019).

    CAS  Google Scholar 

  147. Fang, J., You, H., Chen, J., Lin, J. & Ma, D. Memory devices based on lanthanide (Sm3+, Eu3+, Gd3+) complexes. Inorg. Chem. 45, 3701–3704 (2006).

    CAS  PubMed  Google Scholar 

  148. Pradhan, B. & Das, S. Role of new bis(2,2ʹ-bipyridyl)(triazolopyridyl)ruthenium(ii) complex in the organic bistable memory application. Chem. Mater. 20, 1209–1211 (2008).

    CAS  Google Scholar 

  149. Paul, N. D., Rana, U., Goswami, S., Mondal, T. K. & Goswami, S. Azo anion radical complex of rhodium as a molecular memory switching device: isolation, characterization, and evaluation of current–voltage characteristics. J. Am. Chem. Soc. 134, 6520–6523 (2012).

    CAS  PubMed  Google Scholar 

  150. Goswami, S., Sengupta, D., Paul, N. D., Mondal, T. K. & Goswami, S. Redox non-innocence of coordinated 2-(arylazo) pyridines in iridium complexes: characterization of redox series and an insight into voltage-induced current characteristics. Chem. Eur. J. 20, 6103–6111 (2014).

    CAS  PubMed  Google Scholar 

  151. Au, V. K.-M., Wu, D. & Yam, V. W.-W. Organic memory devices based on a bis-cyclometalated alkynylgold(iii) complex. J. Am. Chem. Soc. 137, 4654–4657 (2015).

    CAS  PubMed  Google Scholar 

  152. Hong, E. Y.-H., Poon, C.-T. & Yam, V. W.-W. A phosphole oxide-containing organogold(iii) complex for solution-processable resistive memory devices with ternary memory performances. J. Am. Chem. Soc. 138, 6368–6371 (2016).

    CAS  PubMed  Google Scholar 

  153. Leung, M.-Y., Leung, S. Y.-L., Wu, D., Yu, T. & Yam, V. W.-W. Synthesis, electrochemistry, and photophysical studies of ruthenium(ii) polypyridine complexes with D–π–A–π–D type ligands and their application studies as organic memories. Chem. Eur. J. 22, 14013–14021 (2016).

    CAS  PubMed  Google Scholar 

  154. Chan, H., Lee, S.-H., Poon, C.-T., Ng, M. & Yam, V. W.-W. Manipulation of push–pull system by functionalization of porphyrin at β-position for high-performance solution-processable ternary resistive memory devices. ChemNanoMat 3, 164–167 (2017).

    CAS  Google Scholar 

  155. Hong, E. Y.-H. & Yam, V. W.-W. Triindole-tris-alkynyl-bridged trinuclear gold(i) complexes for cooperative supramolecular self-assembly and small-molecule solution-processable resistive memories. ACS Appl. Mater. Interfaces 9, 2616–2624 (2017).

    CAS  PubMed  Google Scholar 

  156. Chan, A. K.-W. et al. Synthesis and characterization of luminescent cyclometalated platinum(ii) complexes with tunable emissive colors and studies of their application in organic memories and organic light-emitting devices. J. Am. Chem. Soc. 139, 10750–10761 (2017).

    CAS  PubMed  Google Scholar 

  157. Li, Y. et al. Supramolecular self-assembly and dual-switch vapochromic, vapoluminescent, and resistive memory behaviors of amphiphilic platinum(ii) complexes. J. Am. Chem. Soc. 139, 13858–13866 (2017).

    CAS  PubMed  Google Scholar 

  158. Chan, H., Wong, H.-L., Ng, M., Poon, C.-T. & Yam, V. W.-W. Switching of resistive memory behavior from binary to ternary logic via alteration of substituent positioning on the subphthalocyanine core. J. Am. Chem. Soc. 139, 7256–7263 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

V.W.-W.Y. acknowledges support from the University of Hong Kong under the University Research Committee Strategically Oriented Research Theme on Functional Materials for Molecular Electronics. This work was supported by a General Research Fund grant from the Research Grants Council of Hong Kong Special Administrative Region, People’s Republic of China (HKU 17306219). The authors acknowledge M. H.-Y. Chan and Y.-H. Cheng for their technical assistance in the preparation of the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing and editing of the article. A.K.-W.C. and E.Y.-H.H. contributed equally to this work.

Corresponding author

Correspondence to Vivian Wing-Wah Yam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yam, V.WW., Chan, A.KW. & Hong, E.YH. Charge-transfer processes in metal complexes enable luminescence and memory functions. Nat Rev Chem 4, 528–541 (2020). https://doi.org/10.1038/s41570-020-0199-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-020-0199-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing