Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The kinetics of elementary thermal reactions in heterogeneous catalysis

Abstract

The kinetics of elementary reactions is fundamental to our understanding of catalysis. Just as microkinetic models of atmospheric chemistry provided the predictive power that led to the Montreal Protocol reversing loss of stratospheric ozone, pursuing a microkinetic approach to heterogeneous catalysis has tremendous potential for societal impact. However, the development of this approach for catalysis faces great challenges. Methods for measuring rate constants are quite limited, and the present predictive theoretical methods remain largely unvalidated. Here, we present a short Perspective on recent experimental advances in the measurement of rates of elementary reactions at surfaces that rely on a stroboscopic pump–probe concept for neutral matter. We present the principles behind successful measurement methods and discuss a recent implementation of those principles. The topic is discussed within the context of a specific but highly typical surface reaction, CO oxidation on Pt, which, despite more than 40 years of study, was only clarified after experiments with velocity-resolved kinetics became possible. This deceptively simple reaction illustrates fundamental lessons concerning the coverage dependence of activation energies, the nature of reaction mechanisms involving multiple reaction sites, the validity of transition-state theory to describe reaction rates at surfaces and the dramatic changes in reaction mechanism that are possible when studying reactions at low temperatures.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hyperthermal CO2 from CO oxidation on Pt(111).
Fig. 2: CO2 product angular distribution from the CO oxidation on Pt(111).
Fig. 3: An instrument for velocity-resolved surface-reaction kinetics.
Fig. 4: Ion imaging of chemical reaction products from CO oxidation on Pt(111).
Fig. 5: Comparison of the density versus time trace with the velocity-resolved CO2 flux trace.
Fig. 6: Temperature and coverage dependence of effective activation energies.
Fig. 7: The role of steps in a surface reaction.
Fig. 8: Measured and calculated rate constants for CO oxidation reactions occurring on steps or terraces.
Fig. 9: Angular and translational-energy distributions from ab initio molecular dynamics trajectories.

Similar content being viewed by others

References

  1. Anenberg, S. C. et al. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets. Nature 545, 467–471 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Thompson, G. J. In-use emissions testing of light-duty diesel vehicles in the United States. The International Council on Clean Transportation https://www.theicct.org/sites/default/files/publications/WVU_LDDV_in-use_ICCT_Report_Final_may2014.pdf (2014).

  3. Bloomberg. VW fights investors as diesel-scandal cost could top $35 billion. Fortune http://fortune.com/2018/09/08/volkswagen-vw-diesel-scandal/ (2018).

  4. Ling, S., Kho, F., Lim, J. & Chu, C. Driving Volkswagen AG into the future. Foster School of Business, University of Washington https://foster.uw.edu/wp-content/uploads/2014/12/PP-B3-Singapore-NUS.pdf (2016).

  5. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009). This article discusses strategies for using electronic-structure calculations to search for new solid catalysts and reviews successful examples of such searches.

    Article  PubMed  CAS  Google Scholar 

  6. Crutzen, P. J. My life with O3, NOx, and other YZOx compounds (Nobel lecture). Angew. Chem. Int. Ed. 35, 1758–1777 (1996).

    Article  CAS  Google Scholar 

  7. Weber, M. et al. Total ozone trends from 1979 to 2016 derived from five merged observational datasets - the emergence into ozone recovery. Atmos. Chem. Phys. 18, 2097–2117 (2018).

    Article  CAS  Google Scholar 

  8. Roy, S., Hegde, M. S. & Madras, G. Catalysis for NOx abatement. Appl. Energy 86, 2283–2297 (2009).

    Article  CAS  Google Scholar 

  9. Kurylo, M. J. & Orkin, V. L. Determination of atmospheric lifetimes via the measurement of OH radical kinetics. Chem. Rev. 103, 5049–5076 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Vereecken, L. & Francisco, J. S. Theoretical studies of atmospheric reaction mechanisms in the troposphere. Chem. Soc. Rev. 41, 6259–6293 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Wodtke, A. M. Electronically non-adiabatic influences in surface chemistry and dynamics. Chem. Soc. Rev. 45, 3641–3657 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Golibrzuch, K., Bartels, N., Auerbach, D. J. & Wodtke, A. M. The dynamics of molecular interactions and chemical reactions at metal surfaces: Testing the foundations of theory. Annu. Rev. Phys. Chem. 66, (399–425 (2015).

    Google Scholar 

  13. Silva, M., Jongma, R., Field, R. W. & Wodtke, A. M. The dynamics of “stretched molecules”: experimental studies of highly vibrationally excited molecules with stimulated emission pumping. Annu. Rev. Phys. Chem. 52, (811–852 (2001).

    Google Scholar 

  14. Becker, C. A., Cowin, J. P., Wharton, L. & Auerbach, D. J. CO2 product velocity distributions for CO oxidation on platinum. J. Chem. Phys. 67, 3394–3395 (1977).

    Article  CAS  Google Scholar 

  15. Campbell, C. T., Ertl, G., Kuipers, H. & Segner, J. A molecular-beam study of the catalytic-oxidation of CO on a Pt(111) surface. J. Chem. Phys. 73, 5862–5873 (1980).

    Article  CAS  Google Scholar 

  16. Gland, J. L. & Kollin, E. B. Carbon monoxide oxidation on the Pt(111) surface: Temperature programmed reaction of coadsorbed atomic oxygen and carbon monoxide. J. Chem. Phys. 78, 963–974 (1983).

    Article  CAS  Google Scholar 

  17. Segner, J., Campbell, C. T., Doyen, G. & Ertl, G. Catalytic oxidation of CO on Pt(111): the influence of surface defects and composition on the reaction dynamics. Surf. Sci. 138, 505–523 (1984).

    Article  CAS  Google Scholar 

  18. Neugebohren, J. et al. Velocity-resolved kinetics of site-specific carbon monoxide oxidation on platinum surfaces. Nature 558, 280–283 (2018). This article describes a velocity-resolved ion-imaging technique for accurate measurement of reaction kinetics at gas–surface interfaces. The method is applied to CO oxidation on Pt surfaces and the experimental results are successfully described using a coverage-independent microkinetic model.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou, L., Kandratsenka, A., Campbell, C. T., Wodtke, A. M. & Guo, H. Origin of thermal and hyperthermal CO2 from CO oxidation on Pt surfaces: the role of post-transition-state dynamics, active sites, and chemisorbed CO2. Angew. Chem. Int. Ed. 58, 6916–6920 (2019).

    Article  CAS  Google Scholar 

  20. Chandler, D. W. & Houston, P. L. Two-dimensional imaging of state-selected photodissociation products detected by multiphoton ionization. J. Chem. Phys. 87, 1445–1447 (1987).

    Article  CAS  Google Scholar 

  21. Heck, A. J. R. & Chandler, D. W. Imaging techniques for the study of chemical-reaction dynamics. Annu. Rev. Phys. Chem. 46, 335–372 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Harding, D. J., Neugebohren, J., Auerbach, D. J., Kitsopoulos, T. N. & Wodtke, A. M. Using ion imaging to measure velocity distributions in surface scattering experiments. J. Phys. Chem. A 119, 12255–12262 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Harding, D. J. et al. Ion and velocity map imaging for surface dynamics and kinetics. J. Chem. Phys. 147, 013939 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Gebhardt, C. R., Rakitzis, T. P., Samartzis, P. C., Ladopoulos, V. & Kitsopoulos, T. N. Slice imaging: A new approach to ion imaging and velocity mapping. Rev. Sci. Instrum. 72, 3848–3853 (2001).

    Article  CAS  Google Scholar 

  25. Eppink, A. & Parker, D. H. Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68, 3477–3484 (1997).

    Article  CAS  Google Scholar 

  26. Yeo, Y. Y., Vattuone, L. & King, D. A. Calorimetric heats for CO and oxygen adsorption and for the catalytic CO oxidation reaction on Pt{111}. J. Chem. Phys. 106, 392–401 (1997).

    Article  CAS  Google Scholar 

  27. Eichler, A. CO oxidation on transition metal surfaces: reaction rates from first principles. Surf. Sci. 498, 314–320 (2002).

    Article  CAS  Google Scholar 

  28. Díaz, C. et al. Chemically accurate simulation of a prototypical surface reaction: H2 dissociation on Cu(111). Science 326, 832–834 (2009).

    Article  PubMed  CAS  Google Scholar 

  29. Sprowl, L. H., Campbell, C. T. & Arnadottir, L. Hindered translator and hindered rotor models for adsorbates: partition functions and entropies. J. Phys. Chem. C 120, (9719–9731 (2016).

    Google Scholar 

  30. Jørgensen, M. & Grönbeck, H. Adsorbate entropies with complete potential energy sampling in microkinetic modeling. J. Phys. Chem. C 121, 7199–7207 (2017). Accurate calculation of the entropy of adsorbed species is a key factor in calculating the pre-exponential factor of reaction rates by transition-state theory. This article compares different approximations for entropy calculations using CO oxidation on Pt as an example system. The advantages of the complete potential energy sampling (CPES) method are discussed.

    Article  CAS  Google Scholar 

  31. Bünermann, O. et al. Electron-hole pair excitation determines the mechanism of hydrogen atom adsorption. Science 350, 1346–1349 (2015).

    Article  PubMed  CAS  Google Scholar 

  32. Campbell, C. T. & Sellers, J. R. V. Enthalpies and entropies of adsorption on well-defined oxide surfaces: experimental measurements. Chem. Rev. 113, 4106–4135 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Silbaugh, T. L. & Campbell, C. T. Energies of formation reactions measured for adsorbates on late transition metal surfaces. J. Phys. Chem. C 120, 25161–25172 (2016).

    Article  CAS  Google Scholar 

  34. Habenschaden, E. & Küppers, J. Evaluation of flash desorption spectra. Surf. Sci. 138, L147–L150 (1984).

    Article  CAS  Google Scholar 

  35. King, D. A. Thermal desorption from metal surfaces. Surf. Sci. 47, 384–402 (1975).

    Article  CAS  Google Scholar 

  36. Borroni-Bird, C. E., Al-Sarraf, N., Andersson, S. & King, D. A. Single-crystal adsorption microcalorimetry. Chem. Phys. Lett. 183, 516–520 (1991).

    Article  CAS  Google Scholar 

  37. Stuckless, J. T., Frei, N. A. & Campbell, C. T. A novel single-crystal adsorption calorimeter and additions for determining metal adsorption and adhesion energies. Rev. Sci. Instrum. 69, 2427–2438 (1998).

    Article  CAS  Google Scholar 

  38. Campbell, C. T. Energies of adsorbed catalytic intermediates on transition metal surfaces: calorimetric measurements and benchmarks for theory. Acc. Chem. Res. 52, 984–993 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Madix, R. J. & Telford, S. G. The kinetic isotope effect for C-H bond activation on Cu(110): the effects of tunnelling. Surf. Sci. 277, 246–252 (1992).

    Article  CAS  Google Scholar 

  40. Falconer, J. L. & Schwarz, J. A. Temperature-programmed desorption and reaction: applications to supported catalysts. Catal. Rev. Sci. Eng. 25, 141–227 (1983).

    Article  CAS  Google Scholar 

  41. Xu, J. Z. & Yates, J. T. Catalytic oxidation of CO on Pt(335): a study of the active site. J. Chem. Phys. 99, 725–732 (1993).

    Article  CAS  Google Scholar 

  42. Zaera, F. New advances in the use of infrared absorption spectroscopy for the characterization of heterogeneous catalytic reactions. Chem. Soc. Rev. 43, 7624–7663 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Fuhrmann, T. et al. Activated adsorption of methane on Pt(111) - an in situ XPS study. New J. Phys. 7, 107 (2005).

    Article  CAS  Google Scholar 

  44. Papp, C. & Steinrück, H. P. In situ high-resolution X-ray photoelectron spectroscopy - Fundamental insights in surface reactions. Surf. Sci. Rep. 68, 446–487 (2013).

    Article  CAS  Google Scholar 

  45. Wintterlin, J., Völkening, S., Janssens, T. V. W., Zambelli, T. & Ertl, G. Atomic and macroscopic reaction rates of a surface-catalyzed reaction. Science 278, 1931–1934 (1997). This work uses scanning tunnelling microscopy to measure accurate kinetics of CO oxidation on Pt(111) terraces at low temperature (230–275K) by directly counting the disappearance of O atoms on a timescale of minutes to hours. Under the conditions used in this work, reactions occur at domain boundaries between the not completely mixed CO and O islands. This work is an excellent example of how low-temperature studies of surface chemistry can be dramatically different to those carried out closer to the high temperatures used in real-world applications.

    Article  CAS  PubMed  Google Scholar 

  46. Schwarz, J. A. & Madix, R. J. Modulated beam relaxation spectrometry: its application to the study of heterogeneous kinetics. Surf. Sci. 46, 317–341 (1974).

    Article  CAS  Google Scholar 

  47. Jiang, H. Y. et al. Imaging covalent bond formation by H atom scattering from graphene. Science 364, 379–382 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Reuter, K. & Metiu, H. in Handbook of Materials Modeling (eds Yip, S. & Andreoni, W.) (Springer, 2018).

  49. van Spronsen, M. A., Frenken, J. W. M. & Groot, I. M. N. Surface science under reaction conditions: CO oxidation on Pt and Pd model catalysts. Chem. Soc. Rev. 46, 4347–4374 (2017).

    Article  PubMed  Google Scholar 

  50. Xu, B. J., Madix, R. J. & Friend, C. M. Predicting gold-mediated catalytic oxidative-coupling reactions from single crystal studies. Acc. Chem. Res. 47, 761–772 (2014). This article describes the elucidation of the microkinetic mechanism for oxidative-coupling-reaction networks on gold catalysts via first-principles studies on single-crystal gold surfaces.

    Article  CAS  PubMed  Google Scholar 

  51. Stowers, K. J., Madix, R. J. & Friend, C. M. From model studies on Au(111) to working conditions with unsupported nanoporous gold catalysts: Oxygen-assisted coupling reactions. J. Catal. 308, 131–141 (2013).

    Article  CAS  Google Scholar 

  52. Xu, B. J., Haubrich, J., Baker, T. A., Kaxiras, E. & Friend, C. M. Theoretical study of O-assisted selective coupling of methanol on Au(111). J. Phys. Chem. C 115, 3703–3708 (2011).

    Article  CAS  Google Scholar 

  53. Xu, B. J. & Friend, C. M. Oxidative coupling of alcohols on gold: Insights from experiments and theory. Faraday Discuss. 152, 307–320 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Outka, D. A. & Madix, R. J. Acid-base and nucleophilic chemistry of atomic oxygen on the Au(110) surface: reactions with formic acid and formaldehyde. Surf. Sci. 179, 361–376 (1987).

    Article  CAS  Google Scholar 

  55. Wachs, I. E. & Madix, R. J. The surface intermediate H2COO. Appl. Surf. Sci. 5, 426–428 (1980).

    Article  CAS  Google Scholar 

  56. Reece, C., Redekop, E. A., Karakalos, S., Friend, C. M. & Madix, R. J. Crossing the great divide between single-crystal reactivity and actual catalyst selectivity with pressure transients. Nat. Catal. 1, 852–859 (2018). This work demonstrated the use of fundamental studies on single-crystal gold to correctly predict the oxidative coupling of methanol on a nanoporous gold catalyst. Such studies demonstrate how the pressure and materials ‘gaps’ between surface science and real-world catalysis can be closed.

    Article  CAS  Google Scholar 

  57. Reuter, K. & Scheffler, M. First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: application to the CP oxidation at RuO2(110). Phys. Rev. B 73, 045433 (2006). This article describes the use of kinetic Monte Carlo methods based on rate constants calculated by density functional theory and transition-state theory to accurately predict catalytic CO oxidation on RuO 2 over a wide range of temperatures and pressures, relevant to experiments performed under ultrahigh vacuum, as well as industrially relevant conditions.

    Article  CAS  Google Scholar 

  58. Blomberg, S. et al. Strain dependent light-off temperature in catalysis revealed by planar laser-induced fluorescence. ACS Catal. 7, 110–114 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.M.W. gratefully acknowledges support from the Alexander von Humboldt Foundation. The authors acknowledge support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), the Ministerium für Wissenschaft und Kultur (MWK) Niedersachsen and the VolkswagenStiftung under grant no. INST 186/952-1. C.T.C. acknowledges support for this work by the US National Science Foundation under grant no. CHE-1665077. T.N.K. acknowledges the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. [833404]). D.B. thanks the BENCh graduate school, funded by the DFG — (389479699/GRK2455).

Author information

Authors and Affiliations

Authors

Contributions

A.M.W. conceived and wrote the Perspective together with C.T.C. G.B.P., T.N.K., D.B. and J.N. researched data for the Perspective. G.B.P., D.B. and C.T.C. contributed to the revisions and editing of the article. All authors contributed to the discussion of the Perspective.

Corresponding author

Correspondence to Alec M. Wodtke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Langmuir–Hinshelwood mechanism

A common reaction mechanism in heterogeneous catalysis comprising four steps: adsorption of reactants to the catalyst including possibly dissociation of reactant(s), followed by diffusion bringing reactants together and reaction, followed by product desorption.

Lean NOx traps

Devices that use adsorption to reduce NOx emissions in lean-burn combustion engines, which operate with high levels of O2. Such traps must be periodically purged when they become saturated with NOx. The traps are typically regenerated by the injection of fuel, leading to a reduction in fuel efficiency.

Selective catalytic reduction systems

An alternative to NOx traps that involves the catalytic reduction of NOx by a stoichiometric amount of reductant (such as urea or ammonia) that must be continuously injected into the flue or exhaust gas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, G.B., Kitsopoulos, T.N., Borodin, D. et al. The kinetics of elementary thermal reactions in heterogeneous catalysis. Nat Rev Chem 3, 723–732 (2019). https://doi.org/10.1038/s41570-019-0138-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-019-0138-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing