Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Generation, manipulation and characterization of molecules by atomic force microscopy

Abstract

Using atomic manipulation, one can dissociate, form and rearrange bonds, as well as alter the conformation or charge state of molecules. The molecular structures of reactants, intermediates and products are revealed at unprecedented resolution by using atomic force microscopy (AFM) and a suitably functionalized tip. Our present capabilities of manipulation and imaging of molecules by AFM approach the level of control predicted by Richard P. Feynman in his famous lecture ‘There's plenty of room at the bottom’, in which he described how molecules and materials might be formed by attaching and detaching individual atoms at will. In this Review, we discuss recent progress and the future prospects of molecule generation by atom manipulation and molecular characterization by AFM.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Non-contact AFM imaging by modulating the resonance frequency of a cantilever.
Figure 2: SPM of naphthalocyanine on bilayer NaCl on Cu(111).
Figure 3: Sample preparation for AFM manipulation and analysis.
Figure 4: High-resolution structure elucidation of natural and synthetic products using AFM.
Figure 5: Tip-mediated charge-transfer enables reversible formation of gold complexes on bilayer NaCl on Cu(111).
Figure 6: Conversion of diiodoarene to a cumulene on bilayer NaCl on Cu(111) triggered by temporary electron attachment.
Figure 7: Atomic manipulation of 9,10-dibromoanthracene (DBA) on bilayer NaCl on Cu(111) leads to fragmentation and ring opening.

Similar content being viewed by others

References

  1. Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40, 178–180 (1982).

    Article  CAS  Google Scholar 

  2. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    Article  CAS  Google Scholar 

  4. Sugimoto, Y. et al. Atom inlays performed at room temperature using atomic force microscopy. Nat. Mater. 4, 156–159 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Sugimoto, Y., Miki, K., Abe, M. & Morita, S. Statistics of lateral atom manipulation by atomic force microscopy at room temperature. Phys. Rev. B 78, 205305 (2008).

    Article  CAS  Google Scholar 

  6. Stipe, B. et al. Single-molecule dissociation by tunneling electrons. Phys. Rev. Lett. 78, 4410–4413 (1997).

    Article  CAS  Google Scholar 

  7. Hla, S.-W., Bartels, L., Meyer, G. & Rieder, K.-H. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering. Phys. Rev. Lett. 85, 2777–2780 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Okawa, Y. & Aono, M. Nanoscale control of chain polymerization. Nature 409, 683–684 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Repp, J., Meyer, G., Stojkovic, S. M., Gourdon, A. & Joachim, C. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. Repp, J., Meyer, G., Paavilainen, S., Olsson, F. E. & Persson, M. Imaging bond formation between a gold atom and pentacene on an insulating surface. Science 312, 1196–1199 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Gross, L. et al. Organic structure determination using atomic resolution scanning probe microscopy. Nat. Chem. 2, 821–825 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2, 687–691 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. de Oteyza, D. G. et al. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340, 1434–1437 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Albrecht, F., Pavlicˇek, N., Herranz-Lancho, C., Ruben, M. & Repp, J. Characterization of a surface reaction by means of atomic force microscopy. J. Am. Chem. Soc. 137, 7424–7428 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Rogers, C. et al. Closing the nanographene gap: surface-assisted synthesis of peripentacene from 6,6′-bipentacene precursors. Angew. Chem. Int. Ed. 54, 15143–15146 (2015).

    Article  CAS  Google Scholar 

  19. Kawai, S. et al. Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat. Commun. 6, 8098 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Riss, A. et al. Imaging single-molecule reaction intermediates stabilized by surface dissipation and entropy. Nat. Chem. 8, 678–683 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. He, Y. et al. Fusing tetrapyrroles to graphene edges by surface-assisted covalent coupling. Nat. Chem. http://dx.doi.org/10.1038/nchem.2600 (2016).

  23. Schuler, B. et al. Adsorption geometry determination of single molecules by atomic force microscopy. Phys. Rev. Lett. 111, 106103 (2013).

    Article  PubMed  CAS  Google Scholar 

  24. Mohn, F., Schuler, B., Gross, L. & Meyer, G. Different tips for high-resolution AFM and STM imaging of single molecules. Appl. Phys. Lett. 102, 073109 (2013).

    Article  CAS  Google Scholar 

  25. Pavlicˇek, N. et al. On-surface generation and imaging of arynes by atomic force microscopy. Nat. Chem. 7, 623–628 (2015).

    Article  CAS  Google Scholar 

  26. Schuler, B. et al. Reversible Bergman cyclization by atomic manipulation. Nat. Chem. 8, 220–224 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Majzik, Z. et al. Synthesis of a naphthodiazaborinine and its verification by planarization with atomic force microscopy. ACS Nano 10, 5340–5345 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Mohn, F. et al. Reversible bond formation in a gold-atom–organic-molecule complex as a molecular switch. Phys. Rev. Lett. 105, 266102 (2010).

    Article  PubMed  CAS  Google Scholar 

  29. Albrecht, F., Neu, M., Quest, C., Swart, I. & Repp, J. Formation and characterization of a molecule–metal–molecule bridge in real space. J. Am. Chem. Soc. 135, 9200–9203 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Albrecht, T. R., Grütter, P., Horne, D. & Rugar, D. Frequency modulation detection using highQ cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668–673 (1991).

    Article  Google Scholar 

  31. Morita, S., Giessibl, F. J., Meyer, E. & Wiesendanger, R. (eds) Noncontact Atomic Force Microscopy Vol. 3 (Springer, 2015).

    Book  Google Scholar 

  32. Hölscher, H., Langkat, S. M., Schwarz, A. & Wiesendanger, R. Measurement of three-dimensional force fields with atomic resolution using dynamic force spectroscopy. Appl. Phys. Lett. 81, 4428–4430 (2002).

    Article  CAS  Google Scholar 

  33. Sader, J. E. & Jarvis, S. P. Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl. Phys. Lett. 84, 1801–1803 (2004).

    Article  CAS  Google Scholar 

  34. Giessibl, F. J. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Appl. Phys. Lett. 73, 3956–3958 (1999).

    Article  Google Scholar 

  35. Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003).

    Article  CAS  Google Scholar 

  36. Giessibl, F. J., Bielefeldt, H., Hembacher, S. & Mannhart, J. Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy. Appl. Surf. Sci. 140, 352–357 (1999).

    Article  CAS  Google Scholar 

  37. Moreno, C., Stetsovych, O., Shimizu, T. K. & Custance, O. Imaging three-dimensional surface objects with submolecular resolution by atomic force microscopy. Nano Lett. 15, 2257–2262 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Iwata, K. et al. Chemical structure imaging of a single molecule by atomic force microscopy at room temperature. Nat. Commun. 6, 7766 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Moll, N., Gross, L., Mohn, F., Curioni, A. & Meyer, G. The mechanisms underlying the enhanced resolution of atomic force microscopy with functionalized tips. New J. Phys. 12, 125020 (2010).

    Article  CAS  Google Scholar 

  40. Mohn, F., Gross, L., Moll, N. & Meyer, G. Imaging the charge distribution within a single molecule. Nat. Nanotechnol. 7, 227–231 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Bartels, L., Meyer, G. & Rieder, K.-H. Controlled vertical manipulation of single CO molecules with the scanning tunneling microscope: a route to chemical contrast. Appl. Phys. Lett. 71, 213–215 (1997).

    Article  CAS  Google Scholar 

  42. Gross, L. et al. Bond-order discrimination by atomic force microscopy. Science 337, 1326–1329 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Hapala, P. et al. The mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014).

    Article  CAS  Google Scholar 

  44. Pavlicˇek, N. et al. Atomic force microscopy reveals bistable configurations of dibenzo[a,h]thianthrene and their interconversion pathway. Phys. Rev. Lett. 108, 086101 (2012).

    Article  CAS  Google Scholar 

  45. Hämäläinen, S. K. et al. Intermolecular contrast in atomic force microscopy images without intermolecular bonds. Phys. Rev. Lett. 113, 186102 (2014).

    Article  PubMed  CAS  Google Scholar 

  46. Weymouth, A. J., Hofmann, T. & Giessibl, F. J. Quantifying molecular stiffness and interaction with lateral force microscopy. Science 343, 1120–1122 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Ellner, M. et al. The electric field of CO tips and its relevance for atomic force microscopy. Nano Lett. 16, 1974–1980 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Neu, M. et al. Image correction for atomic force microscopy images with functionalized tips. Phys. Rev. B 89, 205407 (2014).

    Article  CAS  Google Scholar 

  49. Mönig, H. et al. Submolecular imaging by noncontact atomic force microscopy with an oxygen atom rigidly connected to a metallic probe. ACS Nano 10, 1201–1209 (2015).

    Article  PubMed  CAS  Google Scholar 

  50. Pavlicˇek, N., Swart, I., Niedenführ, J., Meyer, G. & Repp, J. Symmetry dependence of vibration-assisted tunneling. Phys. Rev. Lett. 110, 136101 (2013).

    Article  CAS  Google Scholar 

  51. Gross, L. et al. High-resolution molecular orbital imaging using a p-wave STM tip. Phys. Rev. Lett. 107, 086101 (2011).

    Article  PubMed  CAS  Google Scholar 

  52. Temirov, R., Soubatch, S., Neucheva, O., Lassise, A. C. & Tautz, F. S. A novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy. New J. Phys. 10, 053012 (2008).

    Article  CAS  Google Scholar 

  53. Kichin, G., Weiss, C., Wagner, C., Tautz, F. S. & Temirov, R. Single molecule and single atom sensors for atomic resolution imaging of chemically complex surfaces. J. Am. Chem. Soc. 133, 16847–16851 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Stipe, B., Rezaei, M. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Lee, H. J. & Ho, W. Single-bond formation and characterization with a scanning tunneling microscope. Science 286, 1719–1722 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Lauhon, L. & Ho, W. Single-molecule chemistry and vibrational spectroscopy: pyridine and benzene on Cu(001). J. Phys. Chem. A 104, 2463–2467 (2000).

    Article  CAS  Google Scholar 

  57. Chiang, C.-l., Xu, C., Han, Z. & Ho, W. Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe. Science 344, 885–888 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Nonnenmacher, M., O'Boyle, M. P. & Wickramasinghe, H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921–2923 (1991).

    Article  Google Scholar 

  59. Barth, C., Foster, A. S., Henry, C. R. & Shluger, A. L. Recent trends in surface characterization and chemistry with high-resolution scanning force methods. Adv. Mater. 23, 477–501 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Sadewasser, S. & Glatzel, T. (eds) Kelvin Probe Force Microscopy (Springer, 2011).

    Google Scholar 

  61. Gross, L. et al. Measuring the charge state of an adatom with noncontact atomic force microscopy. Science 324, 1428–1431 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Leoni, T. et al. Controlling the charge state of a single redox molecular switch. Phys. Rev. Lett. 106, 216103 (2011).

    Article  PubMed  CAS  Google Scholar 

  63. Steurer, W. et al. Toggling the local electric field with an embedded adatom switch. Nano Lett. 15, 5564–5568 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Schuler, B. et al. Contrast formation in kelvin probe force microscopy of single π-conjugated molecules. Nano Lett. 14, 3342–3346 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Gross, L. et al. Investigating atomic contrast in atomic force microscopy and Kelvin probe force microscopy on ionic systems using functionalized tips. Phys. Rev. B 90, 155455 (2014).

    Article  CAS  Google Scholar 

  66. Bartels, L., Meyer, G. & Rieder, K.-H. Basic steps of lateral manipulation of single atoms and diatomic clusters with a scanning tunneling microscope tip. Phys. Rev. Lett. 79, 697–700 (1997).

    Article  CAS  Google Scholar 

  67. Moresco, F. et al. Recording intramolecular mechanics during the manipulation of a large molecule. Phys. Rev. Lett. 87, 088302 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Ternes, M., Lutz, C. P., Hirjibehedin, C. F., Giessibl, F. J. & Heinrich, A. J. The force needed to move an atom on a surface. Science 319, 1066–1069 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Jung, T. A., Schlittler, R. R., Gimzewski, J. K., Tang, H. & Joachim, C. Controlled room-temperature positioning of individual molecules: molecular flexure and motion. Science 271, 181–184 (1996).

    Article  CAS  Google Scholar 

  70. Moresco, F. et al. Conformational changes of single molecules induced by scanning tunneling microscopy manipulation: a route to molecular switching. Phys. Rev. Lett. 86, 672–675 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Loppacher, C. et al. Direct determination of the energy required to operate a single molecule switch. Phys. Rev. Lett. 90, 066107 (2003).

    Article  PubMed  CAS  Google Scholar 

  72. Grill, L. et al. Exploring the interatomic forces between tip and single molecules during STM manipulation. Nano Lett. 6, 2685–2689 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Pawlak, R. et al. Directed rotations of single porphyrin molecules controlled by localized force spectroscopy. ACS Nano 6, 6318–6324 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Ladenthin, J. N. et al. Force-induced tautomerization in a single molecule. Nat. Chem. 8, 935–940 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Kim, Y., Komeda, T. & Kawai, M. Single-molecule reaction and characterization by vibrational excitation. Phys. Rev. Lett. 89, 126104 (2002).

    Article  PubMed  CAS  Google Scholar 

  76. Qiu, X., Nazin, G. & Ho, W. Vibronic states in single molecule electron transport. Phys. Rev. Lett. 92, 206102 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Huang, K., Leung, L., Lim, T., Ning, Z. & Polanyi, J. C. Single-electron induces double-reaction by charge delocalization. J. Am. Chem. Soc. 135, 6220–6225 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Huang, K., Leung, L., Lim, T., Ning, Z. & Polanyi, J. C. Vibrational excitation induces double reaction. ACS Nano 8, 12468–12475 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Schendel, V. et al. Remotely controlled isomer selective molecular switching. Nano Lett. 16, 93–97 (2015).

    Article  PubMed  CAS  Google Scholar 

  80. Ladenthin, J. N. et al. Hot carrier-induced tautomerization within a single porphycene molecule on Cu(111). ACS Nano 9, 7287–7295 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Auwärter, W. et al. A surface-anchored molecular four-level conductance switch based on single proton transfer. Nat. Nanotechnol. 7, 41–46 (2012).

    Article  CAS  Google Scholar 

  82. Kumagai, T. et al. Controlling intramolecular hydrogen transfer in a porphycene molecule with single atoms or molecules located nearby. Nat. Chem. 6, 41–46 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Bennewitz, R. et al. Ultrathin films of NaCl on Cu(111): a LEED and dynamic force microscopy study. Surf. Sci. 438, 289–296 (1999).

    Article  CAS  Google Scholar 

  84. Hanssen, K. O. et al. A combined atomic force microscopy and computational approach for structural elucidation of breitfussin A and B, highly modified halogenated dipeptides from the Arctic hydrozoan Thuiaria breitfussi. Angew. Chem. Int. Ed. 51, 12238–12241 (2012).

    Article  CAS  Google Scholar 

  85. Schuler, B. et al. From perylene to a 22-ring aromatic hydrocarbon in one-pot. Angew. Chem. Int. Ed. 126, 9150–9152 (2014).

    Article  Google Scholar 

  86. Schuler, B., Meyer, G., Peña, D., Mullins, O. C. & Gross, L. Unraveling the molecular structures of asphaltenes by atomic force microscopy. J. Am. Chem. Soc. 137, 9870–9876 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. van der Lit, J. et al. Suppression of electron–vibron coupling in graphene nanoribbons contacted via a single atom. Nat. Commun. 4, 2023 (2013).

    Article  PubMed  CAS  Google Scholar 

  88. Dienel, T. et al. Resolving atomic connectivity in graphene nanostructure junctions. Nano Lett. 15, 5185–5190 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Zhao, A. et al. Controlling the Kondo effect of an adsorbed magnetic ion through its chemical bonding. Science 309, 1542–1544 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. van der Lit, J., Jacobse, P. H., Vanmaekelbergh, D. & Swart, I. Bending and buckling of narrow armchair graphene nanoribbons via STM manipulation. New J. Phys. 17, 053013 (2015).

    Article  CAS  Google Scholar 

  91. Blanksby, S. J. & Ellison, G. B. Bond dissociation energies of organic molecules. Acc. Chem. Res. 36, 255–263 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Leung, L., Lim, T., Ning, Z. & Polanyi, J. C. Localized reaction at a smooth metal surface: p-diiodobenzene at Cu(110). J. Am. Chem. Soc. 134, 9320–9326 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Rauschenbach, S. et al. Electrospray ion beam deposition: soft-landing and fragmentation of functional molecules at solid surfaces. ACS Nano 3, 2901–2910 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Hamann, C. et al. Ultrahigh vacuum deposition of organic molecules by electrospray ionization. Rev. Sci. Instrum. 82, 033903 (2011).

    Article  PubMed  CAS  Google Scholar 

  95. Deng, Z. et al. A close look at proteins: submolecular resolution of two-and three-dimensionally folded cytochrome C at surfaces. Nano Lett. 12, 2452–2458 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Mohn, F., Gross, L. & Meyer, G. Measuring the short-range force field above a single molecule with atomic resolution. Appl. Phys. Lett. 99, 053106 (2011).

    Article  CAS  Google Scholar 

  97. Schuler, B., Mohn, F., Gross, L., Meyer, G. & Jaspars, M. in Modern NMR Approaches to the Structure Elucidation of Natural Products Vol. 1 (eds Williams, A., Martin, G. & Rovnyak, D. ) 306–318 (Royal Society of Chemistry, 2015).

    Google Scholar 

Download references

Acknowledgements

The authors thank B. Schuler, N. Moll, Z. Majzik, S. Fatayer, G. Meyer, D. Peña and R. Allenspach for discussions. They acknowledge financial support from the European Research Council Consolidator Grant AMSEL (agreement no. 682144), the European Research Council Advanced Grant CEMAS (agreement no. 291194), the European Union project PAMS (agreement no. 610446) and the Initial Training Network QTea (agreement no. 317485).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Gross.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavliček, N., Gross, L. Generation, manipulation and characterization of molecules by atomic force microscopy. Nat Rev Chem 1, 0005 (2017). https://doi.org/10.1038/s41570-016-0005

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41570-016-0005

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing