Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia

Abstract

Remarkable progress has been made in the development of new therapies for cancer, dramatically changing the landscape of treatment approaches for several malignancies and continuing to increase patient survival. Accordingly, adverse effects of cancer therapies that interfere with the continuation of best-possible care, induce life-threatening risks or lead to long-term morbidity are gaining increasing importance. Cardiovascular toxic effects of cancer therapeutics and radiation therapy are the epitome of such concerns, and proper knowledge, interpretation and management are needed and have to be placed within the context of the overall care of individual patients with cancer. Furthermore, the cardiotoxicity spectrum has broadened to include myocarditis with immune checkpoint inhibitors and cardiac dysfunction in the setting of cytokine release syndrome with chimeric antigen receptor T cell therapy. An increase in the incidence of arrhythmias related to inflammation such as atrial fibrillation can also be expected, in addition to the broadening set of cancer therapeutics that can induce prolongation of the corrected QT interval. Therefore, cardiologists of today have to be familiar not only with the cardiotoxicity associated with traditional cancer therapies, such as anthracycline, trastuzumab or radiation therapy, but even more so with an ever-increasing repertoire of therapeutics. This Review provides this information, summarizing the latest developments at the juncture of cardiology, oncology and haematology.

Key points

  • Cancer therapy has evolved from the administration of chemical compounds and radiation therapy to the use of targeted agents and immunotherapies.

  • Along with these developments, the cardiovascular toxicity spectrum of cancer therapies has been changing but cardiac toxicity remains of greatest concern.

  • Inflammatory and immune mechanisms have to be taken into account when considering cardiotoxicity in patients receiving immune checkpoint inhibitor or chimeric antigen receptor T cell therapies.

  • With the newer cancer therapies, atrial fibrillation is emerging as the most relevant and practically challenging arrhythmia in patients with cancer.

  • Corrected QT interval prolongation, ventricular arrhythmias and cardiac arrest can also occur with many of the newer targeted agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Outline of cardiovascular toxic effects associated with cancer therapies.
Fig. 2: Timeline of cancer therapy development.
Fig. 3: Main elements in the treatment of patients with cancer and atrial fibrillation.

Similar content being viewed by others

References

  1. Global Burden of Disease Cancer Collaboration. The global burden of cancer 2013. JAMA Oncol. 1, 505–527 (2015).

    PubMed Central  Google Scholar 

  2. Bluethmann, S. M., Mariotto, A. B. & Rowland, J. H. Anticipating the “silver tsunami”: prevalence trajectories and comorbidity burden among older cancer survivors in the United States. Cancer Epidemiol. Biomarkers Prev. 25, 1029–1036 (2016).

    PubMed  PubMed Central  Google Scholar 

  3. Ewer, M. S. & Ewer, S. M. Cardiotoxicity of anticancer treatments: what the cardiologist needs to know. Nat. Rev. Cardiol. 7, 564–575 (2010).

    PubMed  Google Scholar 

  4. Ewer, M. S. & Ewer, S. M. Cardiotoxicity of anticancer treatments. Nat. Rev. Cardiol. 12, 547–558 (2015).

    CAS  PubMed  Google Scholar 

  5. Herrmann, J. Vascular toxic effects of cancer therapies. Nat. Rev. Cardiol. https://doi.org/10.1038/s41569-020-0347-2 (2020).

    Article  PubMed  Google Scholar 

  6. Gianni, L. et al. Anthracycline cardiotoxicity: from bench to bedside. J. Clin. Oncol. 26, 3777–3784 (2008).

    PubMed  PubMed Central  Google Scholar 

  7. Herrmann, J. et al. Evaluation and management of patients with heart disease and cancer: cardio-oncology. Mayo Clin. Proc. 89, 1287–1306 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Bristow, M. R. et al. Early anthracycline cardiotoxicity. Am. J. Med. 65, 823–832 (1978).

    CAS  PubMed  Google Scholar 

  9. Bristow, M. R., Billingham, M. E., Mason, J. W. & Daniels, J. R. Clinical spectrum of anthracycline antibiotic cardiotoxicity. Cancer Treat. Rep. 62, 873–879 (1978).

    CAS  PubMed  Google Scholar 

  10. Ferrans, V. J. Overview of cardiac pathology in relation to anthracycline cardiotoxicity. Cancer Treat. Rep. 62, 955–961 (1978).

    CAS  PubMed  Google Scholar 

  11. Berry, G. J. & Jorden, M. Pathology of radiation and anthracycline cardiotoxicity. Pediatr. Blood Cancer 44, 630–637 (2005).

    PubMed  Google Scholar 

  12. Ewer, M. S. et al. A comparison of cardiac biopsy grades and ejection fraction estimations in patients receiving Adriamycin. J. Clin. Oncol. 2, 112–117 (1984).

    CAS  PubMed  Google Scholar 

  13. Nousiainen, T., Jantunen, E., Vanninen, E. & Hartikainen, J. Early decline in left ventricular ejection fraction predicts doxorubicin cardiotoxicity in lymphoma patients. Br. J. Cancer 86, 1697–1700 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Felker, G. M. et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N. Engl. J. Med. 342, 1077–1084 (2000).

    CAS  PubMed  Google Scholar 

  15. Mazur, M. et al. Burden of cardiac arrhythmias in patients with anthracycline-related cardiomyopathy. JACC Clin. Electrophysiol. 3, 139–150 (2017).

    PubMed  Google Scholar 

  16. Kremer, L. C., van der Pal, H. J., Offringa, M., van Dalen, E. C. & Voute, P. A. Frequency and risk factors of subclinical cardiotoxicity after anthracycline therapy in children: a systematic review. Ann. Oncol. 13, 819–829 (2002).

    CAS  PubMed  Google Scholar 

  17. Zhang, S. et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med. 18, 1639–1642 (2012).

    PubMed  Google Scholar 

  18. Chen, B., Peng, X., Pentassuglia, L., Lim, C. C. & Sawyer, D. B. Molecular and cellular mechanisms of anthracycline cardiotoxicity. Cardiovasc. Toxicol. 7, 114–121 (2007).

    CAS  PubMed  Google Scholar 

  19. Varga, Z. V., Ferdinandy, P., Liaudet, L. & Pacher, P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am. J. Physiol. Heart Circ. Physiol 309, H1453–H1467 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ichikawa, Y. et al. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J. Clin. Invest. 124, 617–630 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lebrecht, D., Setzer, B., Ketelsen, U. P., Haberstroh, J. & Walker, U. A. Time-dependent and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic doxorubicin cardiomyopathy. Circulation 108, 2423–2429 (2003).

    CAS  PubMed  Google Scholar 

  22. De Angelis, A. et al. Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation 121, 276–292 (2010).

    PubMed  Google Scholar 

  23. Piegari, E. et al. Doxorubicin induces senescence and impairs function of human cardiac progenitor cells. Basic Res. Cardiol. 108, 334 (2013).

    PubMed  Google Scholar 

  24. Ali, M. K., Ewer, M. S., Gibbs, H. R., Swafford, J. & Graff, K. L. Late doxorubicin-associated cardiotoxicity in children. The possible role of intercurrent viral infection. Cancer 74, 182–188 (1994).

    CAS  PubMed  Google Scholar 

  25. Carter, P. et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl Acad. Sci. USA 89, 4285–4289 (1992).

    CAS  PubMed  Google Scholar 

  26. Moasser, M. M. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26, 6469–6487 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Moasser, M. M. & Krop, I. E. The evolving landscape of HER2 targeting in breast cancer. JAMA Oncol. 1, 1154–1161 (2015).

    PubMed  Google Scholar 

  28. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    CAS  PubMed  Google Scholar 

  29. Farolfi, A. et al. Trastuzumab-induced cardiotoxicity in early breast cancer patients: a retrospective study of possible risk and protective factors. Heart 99, 634–639 (2013).

    CAS  PubMed  Google Scholar 

  30. Nowsheen, S. et al. Trastuzumab in female breast cancer patients with reduced left ventricular ejection fraction. J. Am. Heart Assoc. 7, e008637 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ewer, M. S. & Lippman, S. M. Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. J. Clin. Oncol. 23, 2900–2902 (2005).

    CAS  PubMed  Google Scholar 

  32. Ewer, M. S. et al. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J. Clin. Oncol. 23, 7820–7826 (2005).

    CAS  PubMed  Google Scholar 

  33. Tan, T. C. et al. Time trends of left ventricular ejection fraction and myocardial deformation indices in a cohort of women with breast cancer treated with anthracyclines, taxanes, and trastuzumab. J. Am. Soc. Echocardiogr. 28, 509–514 (2015).

    PubMed  Google Scholar 

  34. Yu, A. F. et al. Trastuzumab interruption and treatment-induced cardiotoxicity in early HER2-positive breast cancer. Breast Cancer Res. Treat. 149, 489–495 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Guarneri, V. et al. Long-term cardiac tolerability of trastuzumab in metastatic breast cancer: the M.D. Anderson Cancer Center experience. J. Clin. Oncol. 24, 4107–4115 (2006).

    CAS  PubMed  Google Scholar 

  36. Cardinale, D. et al. Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J. Clin. Oncol. 28, 3910–3916 (2010).

    CAS  PubMed  Google Scholar 

  37. ElZarrad, M. K. et al. Trastuzumab alters the expression of genes essential for cardiac function and induces ultrastructural changes of cardiomyocytes in mice. PLoS One 8, e79543 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. de Azambuja, E. et al. Trastuzumab-associated cardiac events at 8 years of median follow-up in the Herceptin Adjuvant trial (BIG 1-01). J. Clin. Oncol. 32, 2159–2165 (2014).

    PubMed  Google Scholar 

  39. Chen, J. et al. Incidence of heart failure or cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J. Am. Coll. Cardiol. 60, 2504–2512 (2012).

    CAS  PubMed  Google Scholar 

  40. Bowles, E. J. et al. Risk of heart failure in breast cancer patients after anthracycline and trastuzumab treatment: a retrospective cohort study. J. Natl Cancer Inst. 104, 1293–1305 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Baselga, J. et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N. Engl. J. Med. 366, 109–119 (2012).

    CAS  PubMed  Google Scholar 

  42. Swain, S. M. et al. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N. Engl. J. Med. 372, 724–734 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Piccart-Gebhart, M. et al. Adjuvant lapatinib and trastuzumab for early human epidermal growth factor receptor 2-positive breast cancer: results from the randomized phase III Adjuvant Lapatinib and/or Trastuzumab Treatment Optimization trial. J. Clin. Oncol. 34, 1034–1042 (2016).

    CAS  PubMed  Google Scholar 

  44. Watanabe, H. et al. Congestive heart failure during osimertinib treatment for epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC). Intern. Med. 56, 2195–2197 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. Bhullar, K. S. et al. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol. Cancer 17, 48 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. Thompson, P. A., Kantarjian, H. M. & Cortes, J. E. Diagnosis and treatment of chronic myeloid leukemia in 2015. Mayo Clin. Proc. 90, 1440–1454 (2015).

    PubMed  PubMed Central  Google Scholar 

  47. Kerkela, R. et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat. Med. 12, 908–916 (2006).

    PubMed  Google Scholar 

  48. Herman, E. H. et al. A multifaceted evaluation of imatinib-induced cardiotoxicity in the rat. Toxicol. Pathol. 39, 1091–1106 (2011).

    CAS  PubMed  Google Scholar 

  49. Wolf, A. et al. Imatinib does not induce cardiotoxicity at clinically relevant concentrations in preclinical studies. Leuk. Res. 34, 1180–1188 (2010).

    CAS  PubMed  Google Scholar 

  50. Ribeiro, A. L. et al. An evaluation of the cardiotoxicity of imatinib mesylate. Leuk. Res. 32, 1809–1814 (2008).

    CAS  PubMed  Google Scholar 

  51. Estabragh, Z. R. et al. A prospective evaluation of cardiac function in patients with chronic myeloid leukaemia treated with imatinib. Leuk. Res. 35, 49–51 (2011).

    CAS  PubMed  Google Scholar 

  52. Force, T., Krause, D. S. & Van Etten, R. A. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat. Rev. Cancer 7, 332–344 (2007).

    CAS  PubMed  Google Scholar 

  53. Greineder, C. F., Kohnstamm, S. & Ky, B. Heart failure associated with sunitinib: lessons learned from animal models. Curr. Hypertens. Rep. 13, 436–441 (2011).

    CAS  PubMed  Google Scholar 

  54. Hasinoff, B. B., Patel, D. & O’Hara, K. A. Mechanisms of myocyte cytotoxicity induced by the multiple receptor tyrosine kinase inhibitor sunitinib. Mol. Pharmacol. 74, 1722–1728 (2008).

    CAS  PubMed  Google Scholar 

  55. Hasinoff, B. B. & Patel, D. The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro. Toxicol. Appl. Pharmacol. 249, 132–139 (2010).

    CAS  PubMed  Google Scholar 

  56. Hasinoff, B. B. The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity. Toxicol. Appl. Pharmacol. 244, 190–195 (2010).

    CAS  PubMed  Google Scholar 

  57. Will, Y. et al. Effect of the multitargeted tyrosine kinase inhibitors imatinib, dasatinib, sunitinib, and sorafenib on mitochondrial function in isolated rat heart mitochondria and H9c2 cells. Toxicol. Sci. 106, 153–161 (2008).

    CAS  PubMed  Google Scholar 

  58. Jacob, F. et al. Analysis of tyrosine kinase inhibitor-mediated decline in contractile force in rat engineered heart tissue. PLoS One 11, e0145937 (2016).

    PubMed  PubMed Central  Google Scholar 

  59. Lamore, S. D. et al. Deconvoluting kinase inhibitor induced cardiotoxicity. Toxicol. Sci. 158, 213–226 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Stuhlmiller, T. J. et al. Kinome and transcriptome profiling reveal broad and distinct activities of erlotinib, sunitinib, and sorafenib in the mouse heart and suggest cardiotoxicity from combined signal transducer and activator of transcription and epidermal growth factor receptor inhibition. J. Am. Heart Assoc. 6, e006635 (2017).

    PubMed  PubMed Central  Google Scholar 

  61. Sharma, A. et al. High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells. Sci. Transl Med. 9, eaaf2584 (2017).

    PubMed  PubMed Central  Google Scholar 

  62. Shim, J. V. et al. Mechanistic systems modeling to improve understanding and prediction of cardiotoxicity caused by targeted cancer therapeutics. Front. Physiol. 8, 651 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Brown, S. A., Sandhu, N. & Herrmann, J. Systems biology approaches to adverse drug effects: the example of cardio-oncology. Nat. Rev. Clin. Oncol. 12, 718–731 (2015).

    CAS  PubMed  Google Scholar 

  64. Brown, S. A., Nhola, L. & Herrmann, J. Cardiovascular toxicities of small molecule tyrosine kinase inhibitors: an opportunity for systems-based approaches. Clin. Pharmacol. Ther. 101, 65–80 (2017).

    PubMed  Google Scholar 

  65. Plana, J. C. et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 27, 911–939 (2014).

    PubMed  Google Scholar 

  66. Cardinale, D. et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 109, 2749–2754 (2004).

    CAS  PubMed  Google Scholar 

  67. Negishi, T., Thavendiranathan, P., Negishi, K. & Marwick, T. H. Rationale and design of the strain surveillance of chemotherapy for improving cardiovascular outcomes: the SUCCOUR trial. JACC Cardiovasc. Imaging 11, 1098–1105 (2018).

    PubMed  Google Scholar 

  68. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03879629 (2019)

  69. Yancy, C. W. et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J. Am. Coll. Cardiol. 70, 776–803 (2017).

    PubMed  Google Scholar 

  70. Yancy, C. W. et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 128, e240–e327 (2013).

    PubMed  Google Scholar 

  71. Curigliano, G. et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO clinical practice guidelines. Ann. Oncol. 23, vii155–vii166 (2012).

    PubMed  Google Scholar 

  72. Russell, R. R. et al. The role and clinical effectiveness of multimodality imaging in the management of cardiac complications of cancer and cancer therapy. J. Nucl. Cardiol. 23, 856–884 (2016).

    PubMed  Google Scholar 

  73. Chang, H. M., Okwuosa, T. M., Scarabelli, T., Moudgil, R. & Yeh, E. T. H. Cardiovascular complications of cancer therapy: best practices in diagnosis, prevention, and management: part 2. J. Am. Coll. Cardiol. 70, 2552–2565 (2017).

    PubMed  PubMed Central  Google Scholar 

  74. Alexander, J. et al. Serial assessment of doxorubicin cardiotoxicity with quantitative radionuclide angiocardiography. N. Engl. J. Med. 300, 278–283 (1979).

    CAS  PubMed  Google Scholar 

  75. Avila, M. S. et al. Carvedilol for prevention of chemotherapy-related cardiotoxicity: the CECCY trial. J. Am. Coll. Cardiol. 71, 2281–2290 (2018).

    CAS  PubMed  Google Scholar 

  76. Urbanek, K. et al. Cardioprotection by targeting the pool of resident and extracardiac progenitors. Curr. Drug Targets 16, 884–894 (2015).

    CAS  PubMed  Google Scholar 

  77. Hamed, S. et al. Erythropoietin improves myocardial performance in doxorubicin-induced cardiomyopathy. Eur. Heart J. 27, 1876–1883 (2006).

    CAS  PubMed  Google Scholar 

  78. Hoch, M. et al. Erythropoietin preserves the endothelial differentiation capacity of cardiac progenitor cells and reduces heart failure during anticancer therapies. Cell Stem Cell 9, 131–143 (2011).

    CAS  PubMed  Google Scholar 

  79. Burridge, P. W. et al. Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat. Med. 22, 547–556 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen, I. Y., Matsa, E. & Wu, J. C. Induced pluripotent stem cells: at the heart of cardiovascular precision medicine. Nat. Rev. Cardiol. 13, 333–349 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Pituskin, E. et al. Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101-Breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J. Clin. Oncol. 35, 870–877 (2017).

    CAS  PubMed  Google Scholar 

  82. Boekhout, A. H. et al. Angiotensin II-receptor inhibition with candesartan to prevent trastuzumab-related cardiotoxic effects in patients with early breast cancer: a randomized clinical trial. JAMA Oncol. 2, 1030–1037 (2016).

    PubMed  Google Scholar 

  83. Nowsheen, S. et al. Trastuzumab in female breast cancer patients with reduced left ventricular ejection fraction. J. Am. Heart Assoc. 7, e008637 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Crone, S. A. et al. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat. Med. 8, 459–465 (2002).

    CAS  PubMed  Google Scholar 

  85. Herrmann, J., Herrmann, S. M. & Haddad, T. C. New-onset heart failure in association with severe hypertension during trastuzumab therapy. Mayo Clin. Proc. 89, 1734–1739 (2014).

    PubMed  Google Scholar 

  86. Gilchrist, S. C. et al. Cardio-oncology rehabilitation to manage cardiovascular outcomes in cancer patients and survivors: a scientific statement from the American Heart Association. Circulation 139, e997–e1012 (2019).

    PubMed  Google Scholar 

  87. Squires, R. W., Shultz, A. M. & Herrmann, J. Exercise training and cardiovascular health in cancer patients. Curr. Oncol. Rep. 20, 27 (2018).

    PubMed  Google Scholar 

  88. Cerny, J., Hassan, A., Smith, C. & Piperdi, B. Coronary vasospasm with myocardial stunning in a patient with colon cancer receiving adjuvant chemotherapy with FOLFOX regimen. Clin. Colorectal Cancer 8, 55–58 (2009).

    PubMed  Google Scholar 

  89. Basselin, C. et al. 5-Fluorouracil-induced Tako-Tsubo-like syndrome. Pharmacotherapy 31, 226 (2011).

    PubMed  Google Scholar 

  90. Gianni, M., Dentali, F. & Lonn, E. 5 flourouracil-induced apical ballooning syndrome: a case report. Blood Coagul. Fibrinolysis 20, 306–308 (2009).

    CAS  PubMed  Google Scholar 

  91. Grunwald, M. R., Howie, L. & Diaz, L. A. Jr. Takotsubo cardiomyopathy and fluorouracil: case report and review of the literature. J. Clin. Oncol. 30, e11–e14 (2012).

    PubMed  Google Scholar 

  92. Kobayashi, N. et al. A case of takotsubo cardiomyopathy during 5-fluorouracil treatment for rectal adenocarcinoma. J. Nippon Med. Sch. 76, 27–33 (2009).

    PubMed  Google Scholar 

  93. Ozturk, M. A., Ozveren, O., Cinar, V., Erdik, B. & Oyan, B. Takotsubo syndrome: an underdiagnosed complication of 5-fluorouracil mimicking acute myocardial infarction. Blood Coagul. Fibrinolysis 24, 90–94 (2013).

    CAS  PubMed  Google Scholar 

  94. S, Y. H., Tornvall, P., Tornerud, M. & Henareh, L. Capecitabine caused cardiogenic shock through induction of global takotsubo syndrome. Cardiovasc. Revasc. Med. 14, 57–61 (2013).

    Google Scholar 

  95. Stewart, T., Pavlakis, N. & Ward, M. Cardiotoxicity with 5-fluorouracil and capecitabine: more than just vasospastic angina. Intern. Med. J. 40, 303–307 (2010).

    CAS  PubMed  Google Scholar 

  96. Dechant, C. et al. Acute reversible heart failure caused by coronary vasoconstriction due to continuous 5-fluorouracil combination chemotherapy. Case Rep. Oncol. 5, 296–301 (2012).

    PubMed  PubMed Central  Google Scholar 

  97. Tsibiribi, P. et al. Cardiac lesions induced by 5-fluorouracil in the rabbit. Hum. Exp. Toxicol. 25, 305–309 (2006).

    CAS  PubMed  Google Scholar 

  98. Martin, M. et al. Lethal cardiac toxicity after cisplatin and 5-fluorouracil chemotherapy. Report of a case with necropsy study. Am. J. Clin. Oncol. 12, 229–234 (1989).

    CAS  PubMed  Google Scholar 

  99. Eskandari, M. R., Moghaddam, F., Shahraki, J. & Pourahmad, J. A comparison of cardiomyocyte cytotoxic mechanisms for 5-fluorouracil and its pro-drug capecitabine. Xenobiotica 45, 79–87 (2015).

    CAS  PubMed  Google Scholar 

  100. Focaccetti, C. et al. Effects of 5-fluorouracil on morphology, cell cycle, proliferation, apoptosis, autophagy and ROS production in endothelial cells and cardiomyocytes. PLoS One 10, e0115686 (2015).

    PubMed  PubMed Central  Google Scholar 

  101. Lamberti, M. et al. A mechanistic study on the cardiotoxicity of 5-fluorouracil in vitro and clinical and occupational perspectives. Toxicol. Lett. 227, 151–156 (2014).

    CAS  PubMed  Google Scholar 

  102. Lischke, J., Lang, C., Sawodny, O. & Feuer, R. Impairment of energy metabolism in cardiomyocytes caused by 5-FU catabolites can be compensated by administration of amino acids. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015, 5363–5366 (2015).

    PubMed  Google Scholar 

  103. Polk, A., Vistisen, K., Vaage-Nilsen, M. & Nielsen, D. L. A systematic review of the pathophysiology of 5-fluorouracil-induced cardiotoxicity. BMC Pharmacol. Toxicol. 15, 47 (2014).

    PubMed  PubMed Central  Google Scholar 

  104. Sara, J. D. et al. 5-fluorouracil and cardiotoxicity: a review. Ther. Adv. Med. Oncol. 10, 1758835918780140 (2018).

    PubMed  PubMed Central  Google Scholar 

  105. Arellano, M., Malet-Martino, M., Martino, R. & Gires, P. The anti-cancer drug 5-fluorouracil is metabolized by the isolated perfused rat liver and in rats into highly toxic fluoroacetate. Br. J. Cancer 77, 79–86 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Matsubara, I., Kamiya, J. & Imai, S. Cardiotoxic effects of 5-fluorouracil in the guinea pig. Jpn. J. Pharmacol. 30, 871–879 (1980).

    CAS  PubMed  Google Scholar 

  107. Diasio, R. B. The role of dihydropyrimidine dehydrogenase (DPD) modulation in 5-FU pharmacology. Oncology 12, 23–27 (1998).

    CAS  PubMed  Google Scholar 

  108. Papanastasopoulos, P. & Stebbing, J. Molecular basis of 5-fluorouracil-related toxicity: lessons from clinical practice. Anticancer Res. 34, 1531–1535 (2014).

    CAS  PubMed  Google Scholar 

  109. Franco, T. H., Khan, A., Joshi, V. & Thomas, B. Takotsubo cardiomyopathy in two men receiving bevacizumab for metastatic cancer. Ther. Clin. Risk Manag. 4, 1367–1370 (2008).

    PubMed  PubMed Central  Google Scholar 

  110. Numico, G. et al. Takotsubo syndrome in a patient treated with sunitinib for renal cancer. J. Clin. Oncol. 30, e218–e220 (2012).

    PubMed  Google Scholar 

  111. Touyz, R. M. & Herrmann, J. Cardiotoxicity with vascular endothelial growth factor inhibitor therapy. NPJ Precis. Oncol. 2, 13 (2018).

    PubMed  PubMed Central  Google Scholar 

  112. Baffert, F. et al. Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am. J. Physiol. Heart Circ. Physiol. 290, H547–H559 (2006).

    CAS  PubMed  Google Scholar 

  113. Kamba, T. et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am. J. Physiol. Heart Circ. Physiol 290, H560–H576 (2006).

    CAS  PubMed  Google Scholar 

  114. Lazarus, A. & Keshet, E. Vascular endothelial growth factor and vascular homeostasis. Proc. Am. Thorac. Soc. 8, 508–511 (2011).

    CAS  PubMed  Google Scholar 

  115. Maharaj, A. S. & D’Amore, P. A. Roles for VEGF in the adult. Microvasc. Res. 74, 100–113 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    CAS  PubMed  Google Scholar 

  117. Brudno, J. N. & Kochenderfer, J. N. Chimeric antigen receptor T-cell therapies for lymphoma. Nat. Rev. Clin. Oncol. 15, 31–46 (2018).

    CAS  PubMed  Google Scholar 

  118. Brichard, V. G. & Godechal, Q. MAGE-A3-specific anticancer immunotherapy in the clinical practice. Oncoimmunology 2, e25995 (2013).

    PubMed  PubMed Central  Google Scholar 

  119. Linette, G. P. et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122, 863–871 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Cameron, B. J. et al. Identification of a titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci. Transl Med. 5, 197ra103 (2013).

    PubMed  PubMed Central  Google Scholar 

  121. Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ahmed, N. et al. Human epidermal growth factor receptor 2 (HER2) -specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J. Clin. Oncol. 33, 1688–1696 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Brudno, J. N. & Kochenderfer, J. N. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood 127, 3321–3330 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Bonifant, C. L., Jackson, H. J., Brentjens, R. J. & Curran, K. J. Toxicity and management in CAR T-cell therapy. Mol. Ther. Oncolytics 3, 16011 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Neelapu, S. S. et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat. Rev. Clin. Oncol. 15, 47–62 (2018).

    CAS  PubMed  Google Scholar 

  126. Sato, R. & Nasu, M. A review of sepsis-induced cardiomyopathy. J. Intensive Care 3, 48 (2015).

    PubMed  PubMed Central  Google Scholar 

  127. Krishnagopalan, S., Kumar, A., Parrillo, J. E. & Kumar, A. Myocardial dysfunction in the patient with sepsis. Curr. Opin. Crit. Care 8, 376–388 (2002).

    PubMed  Google Scholar 

  128. Vallabhajosyula, S. et al. New-onset heart failure and mortality in hospital survivors of sepsis-related left ventricular dysfunction. Shock 49, 144–149 (2018).

    PubMed  PubMed Central  Google Scholar 

  129. Court, O., Kumar, A., Parrillo, J. E. & Kumar, A. Clinical review: myocardial depression in sepsis and septic shock. Crit. Care 6, 500–508 (2002).

    PubMed  PubMed Central  Google Scholar 

  130. Morelli, A. et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA 310, 1683–1691 (2013).

    PubMed  Google Scholar 

  131. Kumar, A. et al. Cardiovascular response to dobutamine stress predicts outcome in severe sepsis and septic shock. Crit. Care 12, R35 (2008).

    PubMed  PubMed Central  Google Scholar 

  132. Przepiorka, D. et al. FDA approval: blinatumomab. Clin. Cancer Res. 21, 4035–4039 (2015).

    CAS  PubMed  Google Scholar 

  133. Slaney, C. Y., Wang, P., Darcy, P. K. & Kershaw, M. H. CARs versus BiTEs: a comparison between T cell-redirection strategies for cancer treatment. Cancer Discov. 8, 924–934 (2018).

    CAS  PubMed  Google Scholar 

  134. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Boutros, C. et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat. Rev. Clin. Oncol. 13, 473–486 (2016).

    CAS  PubMed  Google Scholar 

  136. Sury, K., Perazella, M. A. & Shirali, A. C. Cardiorenal complications of immune checkpoint inhibitors. Nat. Rev. Nephrol. 14, 571–588 (2018).

    CAS  PubMed  Google Scholar 

  137. Yang, S. & Asnani, A. Cardiotoxicities associated with immune checkpoint inhibitors. Curr. Probl. Cancer 42, 422–432 (2018).

    PubMed  Google Scholar 

  138. Ederhy, S. et al. Takotsubo-like syndrome in cancer patients treated with immune checkpoint inhibitors. JACC Cardiovasc. Imaging 11, 1187–1190 (2018).

    PubMed  Google Scholar 

  139. Giza, D. E. et al. Stress-induced cardiomyopathy in cancer patients. Am. J. Cardiol. 120, 2284–2288 (2017).

    PubMed  Google Scholar 

  140. Ogawa, Y. Paradigm shift in radiation biology/radiation oncology-exploitation of the “H2O2 effect” for radiotherapy using low-LET (linear energy transfer) radiation such as X-rays and high-energy electrons. Cancers 8, 28 (2016).

    PubMed Central  Google Scholar 

  141. Saiki, H. et al. Risk of heart failure with preserved ejection fraction in older women after contemporary radiotherapy for breast cancer. Circulation 135, 1388–1396 (2017).

    PubMed  PubMed Central  Google Scholar 

  142. Heselich, A. et al. High LET radiation shows no major cellular and functional effects on primary cardiomyocytes in vitro. Life Sci. Space Res. 16, 93–100 (2018).

    Google Scholar 

  143. Hughson, R. L., Helm, A. & Durante, M. Heart in space: effect of the extraterrestrial environment on the cardiovascular system. Nat. Rev. Cardiol. 15, 167–180 (2018).

    PubMed  Google Scholar 

  144. Fajardo, L. F. & Stewart, J. R. Experimental radiation-induced heart disease. I. Light microscopic studies. Am. J. Pathol. 59, 299–316 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Khan, M. Y. Radiation-induced cardiomyopathy. I. An electron microscopic study of cardiac muscle cells. Am. J. Pathol. 73, 131–146 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Fajardo, L. F. & Stewart, J. R. Capillary injury preceding radiation-induced myocardial fibrosis. Radiology 101, 429–433 (1971).

    CAS  PubMed  Google Scholar 

  147. Stewart, F. A., Seemann, I., Hoving, S. & Russell, N. S. Understanding radiation-induced cardiovascular damage and strategies for intervention. Clin. Oncol. 25, 617–624 (2013).

    CAS  Google Scholar 

  148. Cuomo, J. R. et al. How to prevent and manage radiation-induced coronary artery disease. Heart 104, 1647–1653 (2018).

    PubMed  PubMed Central  Google Scholar 

  149. Taunk, N. K., Haffty, B. G., Kostis, J. B. & Goyal, S. Radiation-induced heart disease: pathologic abnormalities and putative mechanisms. Front. Oncol. 5, 39 (2015).

    PubMed  PubMed Central  Google Scholar 

  150. Cosset, J. M. et al. Pericarditis and myocardial infarctions after Hodgkin’s disease therapy. Int. J. Radiat. Oncol. Biol. Phys. 21, 447–449 (1991).

    CAS  PubMed  Google Scholar 

  151. Jensen, S. A. & Sorensen, J. B. Risk factors and prevention of cardiotoxicity induced by 5-fluorouracil or capecitabine. Cancer Chemother. Pharmacol. 58, 487–493 (2006).

    CAS  PubMed  Google Scholar 

  152. Meyer, C. C., Calis, K. A., Burke, L. B., Walawander, C. A. & Grasela, T. H. Symptomatic cardiotoxicity associated with 5-fluorouracil. Pharmacotherapy 17, 729–736 (1997).

    CAS  PubMed  Google Scholar 

  153. Clasen, S. C. et al. Fluoropyrimidine-induced cardiac toxicity: challenging the current paradigm. J. Gastrointest. Oncol. 8, 970–979 (2017).

    PubMed  PubMed Central  Google Scholar 

  154. Ma, W. W. et al. Emergency use of uridine triacetate for the prevention and treatment of life-threatening 5-fluorouracil and capecitabine toxicity. Cancer 123, 345–356 (2017).

    CAS  PubMed  Google Scholar 

  155. Truitt, R. et al. Increased afterload augments sunitinib-induced cardiotoxicity in an engineered cardiac microtissue model. JACC Basic Transl Sci. 3, 265–276 (2018).

    PubMed  PubMed Central  Google Scholar 

  156. Touyz, R. M., Herrmann, S. M. S. & Herrmann, J. Vascular toxicities with VEGF inhibitor therapies-focus on hypertension and arterial thrombotic events. J. Am. Soc. Hypertens. 12, 409–425 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Chu, T. F. et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet 370, 2011–2019 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Di Lorenzo, G. et al. Cardiovascular toxicity following sunitinib therapy in metastatic renal cell carcinoma: a multicenter analysis. Ann. Oncol. 20, 1535–1542 (2009).

    PubMed  Google Scholar 

  159. Abdel-Qadir, H., Ethier, J. L., Lee, D. S., Thavendiranathan, P. & Amir, E. Cardiovascular toxicity of angiogenesis inhibitors in treatment of malignancy: a systematic review and meta-analysis. Cancer Treat. Rev. 53, 120–127 (2017).

    CAS  PubMed  Google Scholar 

  160. Annane, D. et al. A global perspective on vasoactive agents in shock. Intensive Care Med. 44, 833–846 (2018).

    CAS  PubMed  Google Scholar 

  161. Donis, N., Oury, C., Moonen, M. & Lancellotti, P. Treating cardiovascular complications of radiotherapy: a role for new pharmacotherapies. Expert Opin. Pharmacother. 19, 431–442 (2018).

    CAS  PubMed  Google Scholar 

  162. Lancellotti, P. et al. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 26, 1013–1032 (2013).

    PubMed  Google Scholar 

  163. Iliescu, C. A. et al. SCAI expert consensus statement: evaluation, management, and special considerations of cardio-oncology patients in the cardiac catheterization laboratory (endorsed by the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencionista). Catheter. Cardiovasc. Interv. 87, E202–E223 (2016).

    PubMed  Google Scholar 

  164. Appelbaum, F. et al. Acute lethal carditis caused by high-dose combination chemotherapy. A unique clinical and pathological entity. Lancet 1, 58–62 (1976).

    CAS  PubMed  Google Scholar 

  165. O’Connell, T. X. & Berenbaum, M. C. Cardiac and pulmonary effects of high doses of cyclophosphamide and isophosphamide. Cancer Res. 34, 1586–1591 (1974).

    CAS  PubMed  Google Scholar 

  166. Dhesi, S. et al. Cyclophosphamide-induced cardiomyopathy: a case report, review, and recommendations for management. J. Investig. Med. High Impact Case Rep. 1, 2324709613480346 (2013).

    PubMed  PubMed Central  Google Scholar 

  167. Bianchini, G. & Gianni, L. The immune system and response to HER2-targeted treatment in breast cancer. Lancet Oncol. 15, e58–e68 (2014).

    CAS  PubMed  Google Scholar 

  168. Yousif, N. G. & Al-Amran, F. G. Novel Toll-like receptor-4 deficiency attenuates trastuzumab (Herceptin) induced cardiac injury in mice. BMC Cardiovasc. Disord. 11, 62 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Asawaeer, M., Barton, D., Radio, S. & Chatzizisis, Y. S. Tyrosine kinase inhibitor-induced acute myocarditis, myositis, and cardiogenic shock. Methodist Debakey Cardiovasc. J. 14, e5–e6 (2018).

    PubMed  PubMed Central  Google Scholar 

  170. Palmieri, D. J. & Carlino, M. S. Immune checkpoint inhibitor toxicity. Curr. Oncol. Rep. 20, 72 (2018).

    PubMed  Google Scholar 

  171. Puzanov, I. et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J. Immunother. Cancer 5, 95 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Spain, L., Diem, S. & Larkin, J. Management of toxicities of immune checkpoint inhibitors. Cancer Treat. Rev. 44, 51–60 (2016).

    CAS  PubMed  Google Scholar 

  173. Eigentler, T. K. et al. Diagnosis, monitoring and management of immune-related adverse drug reactions of anti-PD-1 antibody therapy. Cancer Treat. Rev. 45, 7–18 (2016).

    CAS  PubMed  Google Scholar 

  174. Wang, D. Y. et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 4, 1721–1728 (2018).

    PubMed  PubMed Central  Google Scholar 

  175. Lyon, A. R., Yousaf, N., Battisti, N. M. L., Moslehi, J. & Larkin, J. Immune checkpoint inhibitors and cardiovascular toxicity. Lancet Oncol. 19, e447–e458 (2018).

    CAS  PubMed  Google Scholar 

  176. Mir, H. et al. Cardiac complications associated with checkpoint inhibition: a systematic review of the literature in an important emerging area. Can. J. Cardiol. 34, 1059–1068 (2018).

    PubMed  Google Scholar 

  177. Escudier, M. et al. Clinical features, management, and outcomes of immune checkpoint inhibitor-related cardiotoxicity. Circulation 136, 2085–2087 (2017).

    PubMed  Google Scholar 

  178. Johnson, D. B. et al. Fulminant myocarditis with combination immune checkpoint blockade. N. Engl. J. Med. 375, 1749–1755 (2016).

    PubMed  PubMed Central  Google Scholar 

  179. Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291, 319–322 (2001).

    CAS  PubMed  Google Scholar 

  180. Okazaki, T. et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat. Med. 9, 1477–1483 (2003).

    CAS  PubMed  Google Scholar 

  181. Grabie, N. et al. Endothelial programmed death-1 ligand 1 (PD-L1) regulates CD8+ T-cell mediated injury in the heart. Circulation 116, 2062–2071 (2007).

    CAS  PubMed  Google Scholar 

  182. Lichtman, A. H. The heart of the matter: protection of the myocardium from T cells. J. Autoimmun. 45, 90–96 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Rodig, N. et al. Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis. Eur. J. Immunol. 33, 3117–3126 (2003).

    CAS  PubMed  Google Scholar 

  184. Tarrio, M. L., Grabie, N., Bu, D. X., Sharpe, A. H. & Lichtman, A. H. PD-1 protects against inflammation and myocyte damage in T cell-mediated myocarditis. J. Immunol. 188, 4876–4884 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Baban, B., Liu, J. Y., Qin, X., Weintraub, N. L. & Mozaffari, M. S. Upregulation of programmed death-1 and Its ligand in cardiac injury models: interaction with GADD153. PLoS One 10, e0124059 (2015).

    PubMed  PubMed Central  Google Scholar 

  186. Varricchi, G., Galdiero, M. R. & Tocchetti, C. G. Cardiac toxicity of immune checkpoint inhibitors: cardio-oncology meets immunology. Circulation 136, 1989–1992 (2017).

    PubMed  Google Scholar 

  187. Freilich, M. et al. Recovery from anthracycline cardiomyopathy after long-term support with a continuous flow left ventricular assist device. J. Heart Lung Transpl. 28, 101–103 (2009).

    Google Scholar 

  188. Arangalage, D. et al. Survival after fulminant myocarditis induced by immune-checkpoint inhibitors. Ann. Intern. Med. 167, 683–684 (2017).

    PubMed  Google Scholar 

  189. Mahajan, V. S. & Jarolim, P. How to interpret elevated cardiac troponin levels. Circulation 124, 2350–2354 (2011).

    PubMed  Google Scholar 

  190. Mahmood, S. S. et al. Myocarditis in patients treated with immune checkpoint inhibitors. J. Am. Coll. Cardiol. 71, 1755–1764 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. O’Regan, D. P. & Cook, S. A. Myocarditis or myocardial infarction? MRI can help. Heart 97, 1283 (2011).

    PubMed  Google Scholar 

  192. Miller, E. J. & Culver, D. A. Establishing an evidence-based method to diagnose cardiac sarcoidosis: the complementary use of cardiac magnetic resonance imaging and FDG-PET. Circ. Cardiovasc. Imaging 11, e007408 (2018).

    PubMed  Google Scholar 

  193. Wang, D. Y., Okoye, G. D., Neilan, T. G., Johnson, D. B. & Moslehi, J. J. Cardiovascular toxicities associated with cancer immunotherapies. Curr. Cardiol. Rep. 19, 21 (2017).

    PubMed  Google Scholar 

  194. Salem, J. E. et al. Abatacept for severe immune checkpoint inhibitor-associated myocarditis. N. Engl. J. Med. 380, 2377–2379 (2019).

    PubMed  Google Scholar 

  195. Arbuck, S. G. et al. A reassessment of cardiac toxicity associated with Taxol. J. Natl Cancer Inst. Monogr. 15, 117–130 (1993).

    Google Scholar 

  196. Pai, V. B. & Nahata, M. C. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf. 22, 263–302 (2000).

    CAS  PubMed  Google Scholar 

  197. Tamargo, J., Caballero, R. & Delpon, E. Cancer chemotherapy and cardiac arrhythmias: a review. Drug Saf. 38, 129–152 (2015).

    CAS  PubMed  Google Scholar 

  198. Ghiaseddin, A. et al. Phase II study of bevacizumab and vorinostat for patients with recurrent World Health Organization grade 4 malignant glioma. Oncologist 23, 157–e121 (2018).

    CAS  PubMed  Google Scholar 

  199. Lele, A. V., Clutter, S., Price, E. & De Ruyter, M. L. Severe hypothyroidism presenting as myxedema coma in the postoperative period in a patient taking sunitinib: case report and review of literature. J. Clin. Anesth. 25, 47–51 (2013).

    PubMed  Google Scholar 

  200. Herrmann, J. Tyrosine kinase inhibitors and vascular toxicity: impetus for a classification system? Curr. Oncol. Rep. 18, 33 (2016).

    PubMed  Google Scholar 

  201. Mathur, K., Saini, A., Ellenbogen, K. A. & Shepard, R. K. Profound sinoatrial arrest associated with Ibrutinib. Case Rep. Oncol. Med. 2017, 7304021 (2017).

    PubMed  PubMed Central  Google Scholar 

  202. Cooper, L. T. Jr. Myocarditis. N. Engl. J. Med. 360, 1526–1538 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Kaplan, B. M., Miller, A. J., Bharati, S., Lev, M. & Martin Grais, I. Complete AV block following mediastinal radiation therapy: electrocardiographic and pathologic correlation and review of the world literature. J. Interv. Card. Electrophysiol. 1, 175–188 (1997).

    CAS  PubMed  Google Scholar 

  204. Orzan, F. et al. Associated cardiac lesions in patients with radiation-induced complete heart block. Int. J. Cardiol. 39, 151–156 (1993).

    CAS  PubMed  Google Scholar 

  205. Tzivoni, D., Ratzkowski, E., Biran, S., Brook, J. G. & Stern, S. Complete heart block following therapeutic irradiation of the left side of the chest. Chest 71, 231–234 (1977).

    CAS  PubMed  Google Scholar 

  206. Cohen, S. I., Bharati, S., Glass, J. & Lev, M. Radiotherapy as a cause of complete atrioventricular block in Hodgkin’s disease. An electrophysiological-pathological correlation. Arch. Intern. Med. 141, 676–679 (1981).

    CAS  PubMed  Google Scholar 

  207. Santoro, F. et al. Late calcification of the mitral-aortic junction causing transient complete atrio-ventricular block after mediastinal radiation of Hodgkin lymphoma: multimodal visualization. Int. J. Cardiol. 155, e49–e50 (2012).

    PubMed  Google Scholar 

  208. Nair, C. K. et al. Conduction defects and mitral annulus calcification. Br. Heart J. 44, 162–167 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Barbey, J. T., Pezzullo, J. C. & Soignet, S. L. Effect of arsenic trioxide on QT interval in patients with advanced malignancies. J. Clin. Oncol. 21, 3609–3615 (2003).

    CAS  PubMed  Google Scholar 

  210. Roboz, G. J. et al. Prevalence, management, and clinical consequences of QT interval prolongation during treatment with arsenic trioxide. J. Clin. Oncol. 32, 3723–3728 (2014).

    CAS  PubMed  Google Scholar 

  211. Duan, J. et al. Anticancer drugs-related QTc prolongation, torsade de pointes and sudden death: current evidence and future research perspectives. Oncotarget 9, 25738–25749 (2018).

    PubMed  PubMed Central  Google Scholar 

  212. Porta-Sanchez, A. et al. Incidence, diagnosis, and management of QT prolongation induced by cancer therapies: a systematic review. J. Am. Heart Assoc. 6, e007724 (2017).

    PubMed  PubMed Central  Google Scholar 

  213. Cheng, C., Woronow, D., Nayernama, A., Wroblewski, T. & Jones, S. C. Ibrutinib-associated ventricular arrhythmia in the FDA adverse event reporting system. Leuk. Lymphoma 59, 3016–3017 (2018).

    PubMed  Google Scholar 

  214. Tomcsanyi, J., Matrai, Z. & Tomcsanyi, K. Ventricular tachycardia caused by ibrutinib. J. Emerg. Med. 53, e27 (2017).

    PubMed  Google Scholar 

  215. Lampson, B. L. et al. Ventricular arrhythmias and sudden death in patients taking ibrutinib. Blood 129, 2581–2584 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Beyer, A., Ganti, B., Majkrzak, A. & Theyyunni, N. A perfect storm: tyrosine kinase inhibitor-associated polymorphic ventricular tachycardia. J. Emerg. Med. 52, e123–e127 (2017).

    PubMed  Google Scholar 

  217. Wallace, N., Wong, E., Cooper, D. & Chao, H. A case of new-onset cardiomyopathy and ventricular tachycardia in a patient receiving ibrutinib for relapsed mantle cell lymphoma. Clin. Case Rep. 4, 1120–1121 (2016).

    PubMed  PubMed Central  Google Scholar 

  218. Tomcsanyi, J., Nenyei, Z., Matrai, Z. & Bozsik, B. Ibrutinib, an approved tyrosine kinase inhibitor as a potential cause of recurrent polymorphic ventricular tachycardia. JACC Clin. Electrophysiol. 2, 847–849 (2016).

    PubMed  Google Scholar 

  219. Tuomi, J. M., Xenocostas, A. & Jones, D. L. Increased susceptibility for atrial and ventricular cardiac arrhythmias in mice treated with a single high dose of ibrutinib. Can. J. Cardiol. 34, 337–341 (2018).

    PubMed  Google Scholar 

  220. Thill, M. & Schmidt, M. Management of adverse events during cyclin-dependent kinase 4/6 (CDK4/6) inhibitor-based treatment in breast cancer. Ther. Adv. Med. Oncol. 10, 1758835918793326 (2018).

    PubMed  PubMed Central  Google Scholar 

  221. US Food and Drug Administration. Package insert Kisqali (ribociclib) tablets prescribing information (FDA, 2018).

  222. Shah, A. et al. FDA approval: ribociclib for the treatment of postmenopausal women with hormone receptor-positive, HER2-negative advanced or metastatic breast cancer. Clin. Cancer Res. 24, 2999–3004 (2018).

    CAS  PubMed  Google Scholar 

  223. Bellet, M. et al. Palbociclib and ribociclib in breast cancer: consensus workshop on the management of concomitant medication. Ther. Adv. Med. Oncol. 11, 1758835919833867 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Cuculich, P. S. et al. Noninvasive cardiac radiation for ablation of ventricular tachycardia. N. Engl. J. Med. 377, 2325–2336 (2017).

    PubMed  PubMed Central  Google Scholar 

  225. Larsen, R. L. et al. Electrocardiographic changes and arrhythmias after cancer therapy in children and young adults. Am. J. Cardiol. 70, 73–77 (1992).

    CAS  PubMed  Google Scholar 

  226. Al-Khatib, S. M. et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 72, e91–e220 (2018).

    PubMed  Google Scholar 

  227. Conen, D. et al. Risk of malignant cancer among women with new-onset atrial fibrillation. JAMA Cardiol. 1, 389–396 (2016).

    PubMed  PubMed Central  Google Scholar 

  228. Wallis, C. J. D. et al. Association between use of antithrombotic medication and hematuria-related complications. JAMA 318, 1260–1271 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Sekiguchi, H. et al. Cancer antigen-125 plasma level as a biomarker of new-onset atrial fibrillation in postmenopausal women. Heart 103, 1368–1373 (2017).

    PubMed  PubMed Central  Google Scholar 

  230. Farmakis, D., Parissis, J. & Filippatos, G. Insights into onco-cardiology: atrial fibrillation in cancer. J. Am. Coll. Cardiol. 63, 945–953 (2014).

    PubMed  Google Scholar 

  231. Feliz, V. et al. Melphalan-induced supraventricular tachycardia: incidence and risk factors. Clin. Cardiol. 34, 356–359 (2011).

    PubMed  PubMed Central  Google Scholar 

  232. Zhao, D. et al. Atrial fibrillation following treatment with paclitaxel: a case report. Biomed. Rep. 9, 540–544 (2018).

    PubMed  PubMed Central  Google Scholar 

  233. Shanafelt, T. D. et al. Atrial fibrillation in patients with chronic lymphocytic leukemia (CLL). Leuk. Lymphoma 58, 1630–1639 (2017).

    CAS  PubMed  Google Scholar 

  234. Leong, D. P. et al. The risk of atrial fibrillation with ibrutinib use: a systematic review and meta-analysis. Blood 128, 138–140 (2016).

    CAS  PubMed  Google Scholar 

  235. Yun, S., Vincelette, N. D., Acharya, U. & Abraham, I. Risk of atrial fibrillation and bleeding diathesis associated with ibrutinib treatment: a systematic review and pooled analysis of four randomized controlled trials. Clin. Lymphoma Myeloma Leuk. 17, 31–37 e13 (2017).

    PubMed  Google Scholar 

  236. Visentin, A. et al. A scoring system to predict the risk of atrial fibrillation in chronic lymphocytic leukemia. Hematol. Oncol. 37, 508–512 (2019).

    PubMed  Google Scholar 

  237. Archibald, W. et al. Atrial fibrillation (AF) in patients with CLL treated with ibrutinib: assessing prediction models and clinical outcomes. J. Clin. Oncol. 37, 7522–7522 (2019).

    Google Scholar 

  238. Wiczer, T. E. et al. Cumulative incidence, risk factors, and management of atrial fibrillation in patients receiving ibrutinib. Blood Adv. 1, 1739–1748 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Thompson, P. A. et al. Atrial fibrillation in CLL patients treated with ibrutinib. An international retrospective study. Br. J. Haematol. 175, 462–466 (2016).

    CAS  PubMed  Google Scholar 

  240. Pretorius, L. et al. Reduced phosphoinositide 3-kinase (p110alpha) activation increases the susceptibility to atrial fibrillation. Am. J. Pathol. 175, 998–1009 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Ganatra, S. et al. Ibrutinib-associated atrial fibrillation. JACC Clin. Electrophysiol. 4, 1491–1500 (2018).

    PubMed  Google Scholar 

  242. Patel, V. et al. Comparison of acalabrutinib, a selective bruton tyrosine kinase inhibitor, with Ibrutinib in chronic lymphocytic leukemia cells. Clin. Cancer Res. 23, 3734–3743 (2017).

    CAS  PubMed  Google Scholar 

  243. Owen, C., Berinstein, N. L., Christofides, A. & Sehn, L. H. Review of Bruton tyrosine kinase inhibitors for the treatment of relapsed or refractory mantle cell lymphoma. Curr. Oncol. 26, e233–e240 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Boos, C. J., Anderson, R. A. & Lip, G. Y. Is atrial fibrillation an inflammatory disorder? Eur. Heart J. 27, 136–149 (2006).

    PubMed  Google Scholar 

  245. Pastori, D. et al. Inflammation and the risk of atrial high-rate episodes (AHREs) in patients with cardiac implantable electronic devices. Clin. Res. Cardiol. 107, 772–777 (2018).

    PubMed  PubMed Central  Google Scholar 

  246. Hu, Y. F., Chen, Y. J., Lin, Y. J. & Chen, S. A. Inflammation and the pathogenesis of atrial fibrillation. Nat. Rev. Cardiol. 12, 230–243 (2015).

    CAS  PubMed  Google Scholar 

  247. Aviles, R. J. et al. Inflammation as a risk factor for atrial fibrillation. Circulation 108, 3006–3010 (2003).

    PubMed  Google Scholar 

  248. Davila, M. L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl Med. 6, 224ra225 (2014).

    Google Scholar 

  249. Palla, A. R., Kennedy, D., Mosharraf, H. & Doll, D. Autoimmune hemolytic anemia as a complication of nivolumab therapy. Case Rep. Oncol. 9, 691–697 (2016).

    PubMed  PubMed Central  Google Scholar 

  250. Dein, E. et al. Two cases of sinusitis induced by immune checkpoint inhibition. J. Immunother. 40, 312–314 (2017).

    PubMed  PubMed Central  Google Scholar 

  251. Vaidya, V. et al. Atrial fibrillation after thoracic radiotherapy for cancer: examining differences in clinical characteristics at time of diagnosis compared with the general population. J. Am. Coll. Cardiol. 65, A318 (2015).

    Google Scholar 

  252. Zei, P. C. & Soltys, S. Ablative radiotherapy as a noninvasive alternative to catheter ablation for cardiac arrhythmias. Curr. Cardiol. Rep. 19, 79 (2017).

    PubMed  PubMed Central  Google Scholar 

  253. Vrontikis, A. et al. Proposed algorithm for managing Ibrutinib-related atrial fibrillation. Oncology 30, 970–974, 980-971, C973 (2016).

    PubMed  Google Scholar 

  254. Aguilar, C. Ibrutinib-related bleeding: pathogenesis, clinical implications and management. Blood Coagul. Fibrinolysis 29, 481–487 (2018).

    CAS  PubMed  Google Scholar 

  255. Busygina, K. et al. Oral Bruton tyrosine kinase inhibitors selectively block atherosclerotic plaque-triggered thrombus formation in humans. Blood 131, 2605–2616 (2018).

    CAS  PubMed  Google Scholar 

  256. Shatzel, J. J. et al. Ibrutinib-associated bleeding: pathogenesis, management and risk reduction strategies. J. Thromb. Haemost. 15, 835–847 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Laube, E. S. et al. Rivaroxaban for stroke prevention in patients with nonvalvular atrial fibrillation and active cancer. Am. J. Cardiol. 120, 213–217 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Melloni, C. et al. Efficacy and safety of apixaban versus warfarin in patients with atrial fibrillation and a history of cancer: insights from the Aristotle trial. Am. J. Med. 130, 1440–1448.e1 (2017).

    CAS  PubMed  Google Scholar 

  259. Russo, V. et al. Use of non-vitamin k antagonist oral anticoagulants in atrial fibrillation patients with malignancy: clinical practice experience in a single institution and literature review. Semin. Thromb. Hemost. 44, 370–376 (2018).

    CAS  PubMed  Google Scholar 

  260. Shah, S. et al. Comparative effectiveness of direct oral anticoagulants and warfarin in patients with cancer and atrial fibrillation. Blood Adv. 2, 200–209 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Vedovati, M. C. et al. Patients with cancer and atrial fibrillation treated with doacs: a prospective cohort study. Int. J. Cardiol. 269, 152–157 (2018).

    PubMed  Google Scholar 

  262. Xiang, E. et al. Anticoagulation prescribing patterns in patients with cancer. J. Thromb. Thrombolysis 45, 89–98 (2018).

    CAS  PubMed  Google Scholar 

  263. Mulligan, S. P., Ward, C. M., Whalley, D. & Hilmer, S. N. Atrial fibrillation, anticoagulant stroke prophylaxis and bleeding risk with ibrutinib therapy for chronic lymphocytic leukaemia and lymphoproliferative disorders. Br. J. Haematol. 175, 359–364 (2016).

    CAS  PubMed  Google Scholar 

  264. Ahn, I. E. et al. Depth and durability of response to ibrutinib in CLL: 5-year follow-up of a phase 2 study. Blood 131, 2357–2366 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Lee, Y. J. et al. Bleeding risk and major adverse events in patients with cancer on oral anticoagulation therapy. Int. J. Cardiol. 203, 372–378 (2016).

    PubMed  Google Scholar 

  266. Friberg, L., Skeppholm, M. & Terent, A. Benefit of anticoagulation unlikely in patients with atrial fibrillation and a CHA2DS2-VASc score of 1. J. Am. Coll. Cardiol. 65, 225–232 (2015).

    PubMed  Google Scholar 

  267. Hu, Y. F. et al. Incident thromboembolism and heart failure associated with new-onset atrial fibrillation in cancer patients. Int. J. Cardiol. 165, 355–357 (2013).

    PubMed  Google Scholar 

  268. D’Souza, M. et al. CHA2DS2-VASc score and risk of thromboembolism and bleeding in patients with atrial fibrillation and recent cancer. Eur. J. Prev. Cardiol. 25, 651–658 (2018).

    PubMed  Google Scholar 

  269. Hu, W. S. & Lin, C. L. Comparison of CHA2DS2-VASc, CHADS2 and HATCH scores for the prediction of new-onset atrial fibrillation in cancer patients: a nationwide cohort study of 760,339 study participants with competing risk analysis. Atherosclerosis 266, 205–211 (2017).

    CAS  PubMed  Google Scholar 

  270. Hu, W. S. & Lin, C. L. Impact of atrial fibrillation on the development of ischemic stroke among cancer patients classified by CHA2DS2-VASc score-a nationwide cohort study. Oncotarget 9, 7623–7630 (2018).

    PubMed  PubMed Central  Google Scholar 

  271. O’Neal, W. T. et al. Provider specialty, anticoagulation, and stroke risk in patients with atrial fibrillation and cancer. J. Am. Coll. Cardiol. 72, 1913–1922 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author receives support from the US National Institutes of Health (HL116952 and CA233610) and the Miami Heart Research Institute/Florida Heart Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg Herrmann.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Oncogenes

Oncogenes encode proteins that can transform cells into tumour cells. All but a few are derived from normal cellular genes (proto-oncogenes), and activation of a proto-oncogene into an oncogene generally involves a gain-of-function mutation.

Philadelphia chromosome

Named after the city in which it was discovered in 1960 as the first tumour-specific chromosomal change in the form of a shortened chromosome 22 as a result of a reciprocal translocation that leads to the oncogenic BCRABL1 gene fusion, which has a causal role in the malignant transformation of white blood cell precursors; the Philadelphia chromosome is found in 90% of patients with chronic myeloid leukaemia.

Endoplasmic reticulum stress response

Disruption of endoplasmic reticulum function leads to impairment of protein folding, accumulation of unfolded and misfolded proteins and risk of cell toxicity. The cell reacts to this endoplasmic reticulum stress by initiating the unfolded protein response to increase the capacity of the cell to handle and/or eliminate the accumulating unfolded or misfolded proteins or to initiate apoptosis.

Sentinel kinase theory

The theory that inhibition of one specific enzyme among all the enzymes that catalyse the transfer of a phosphate group from ATP onto a tyrosine, serine or threonine residue of a protein (kinome) is responsible for a specific action.

Cytokine release syndrome

(CRS). A systemic inflammatory response that can be triggered by a variety of factors such as infections, antibody-based immunotherapies and chimeric antigen receptor T cell therapy. CRS is caused by the rapid release of a large amount of cytokines into the circulation, leading to fever, nausea, headache, rash, tachycardia, hypotension and respiratory distress.

Bispecific T cell engager therapy

(BiTE therapy). BiTE antibody constructs are designed to create an immunologic synapse between an effector T cell and a tumour cell by simultaneously binding to the T cell activation molecule CD3 and a tumour-associated antigen, which is CD19 on B cells in the case of blinatumomab (approved for the treatment of B cell acute lymphoblastic leukaemia).

Cell senescence

A process defined as irreversible cell cycle arrest, driven by a variety of mechanisms, including telomere shortening, other forms of genotoxic stress, mitogens or inflammatory cytokines, that culminate in the activation of the tumour suppressor p53 and/or the cyclin-dependent kinase inhibitor p16.

Cardiovascular flow reserve

The capacity of the coronary vascular bed to increase blood flow maximally to the myocardium, often expressed as a ratio with regard to baseline blood flow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrmann, J. Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia. Nat Rev Cardiol 17, 474–502 (2020). https://doi.org/10.1038/s41569-020-0348-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-020-0348-1

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer