Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transient receptor potential channels in cardiac health and disease

Abstract

Transient receptor potential (TRP) channels are nonselective cationic channels that are generally Ca2+ permeable and have a heterogeneous expression in the heart. In the myocardium, TRP channels participate in several physiological functions, such as modulation of action potential waveform, pacemaking, conduction, inotropy, lusitropy, Ca2+ and Mg2+ handling, store-operated Ca2+ entry, embryonic development, mitochondrial function and adaptive remodelling. Moreover, TRP channels are also involved in various pathological mechanisms, such as arrhythmias, ischaemia–reperfusion injuries, Ca2+-handling defects, fibrosis, maladaptive remodelling, inherited cardiopathies and cell death. In this Review, we present the current knowledge of the roles of TRP channels in different cardiac regions (sinus node, atria, ventricles and Purkinje fibres) and cells types (cardiomyocytes and fibroblasts) and discuss their contribution to pathophysiological mechanisms, which will help to identify the best candidates for new therapeutic targets among the cardiac TRP family.

Key points

  • Transient receptor potential (TRP) channels show heterogeneous expression between cardiac regions (sinus node, atria, Purkinje fibres and ventricles) and cell types (myocytes or fibroblasts).

  • TRP channels are important in major physiological processes in the heart, such as regulation of Ca2+ homeostasis, contractility, pacemaking, conduction, modulation of the action potential, embryonic development and mitochondrial function.

  • Cardiac pathologies are often associated with remodelling of TRP channel expression.

  • TRP channel remodelling participates in the progression of cardiac diseases.

  • Targeting TRP channels might be an interesting therapeutic strategy for cardiac pathologies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Roles of TRP channels in the sinoatrial node.
Fig. 2: Roles of TRPA and TRPV channels in ventricular cardiomyocytes.
Fig. 3: Roles of TRPC channels in ventricular cardiomyocytes.
Fig. 4: Roles of TRPM and TRPP channels in ventricular cardiomyocytes.
Fig. 5: Roles of TRP channels in cardiac fibroblasts.

Similar content being viewed by others

References

  1. Montell, C. & Rubin, G. M. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2, 1313–1323 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Madej, M. G. & Ziegler, C. M. Dawning of a new era in TRP channel structural biology by cryo-electron microscopy. Pflugers Arch. 470, 213–225 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Guo, J. et al. Structures of the calcium-activated, non-selective cation channel TRPM4. Nature 552, 205–209 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yin, Y. et al. Structure of the cold- and menthol-sensing ion channel TRPM8. Science 359, 237–241 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Benemei, S., Patacchini, R., Trevisani, M. & Geppetti, P. TRP channels. Curr. Opin. Pharmacol. 22, 18–23 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Yue, Z. et al. Role of TRP channels in the cardiovascular system. Am. J. Physiol. Heart Circ. Physiol. 308, H157–H182 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Hofmann, L. et al. The S4–S5 linker — gearbox of TRP channel gating. Cell Calcium 67, 156–165 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Clapham, D. E. TRP channels as cellular sensors. Nature 426, 517–524 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Avila-Medina, J. et al. The complex role of store operated calcium entry pathways and related proteins in the function of cardiac, skeletal and vascular smooth muscle cells. Front. Physiol. 9, 257 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vennekens, R. Recent insights on the role of TRP channels in cardiac muscle. Curr. Opin. Physiol. 1, 172–184 (2018).

    Article  Google Scholar 

  11. Runnels, L. W. TRPM6 and TRPM7: a Mul-TRP-PLIK-cation of channel functions. Curr. Pharm. Biotechnol. 12, 42–53 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Du, J., Xie, J. & Yue, L. Intracellular calcium activates TRPM2 and its alternative spliced isoforms. Proc. Natl Acad. Sci. USA 106, 7239–7244 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guinamard, R., Salle, L. & Simard, C. The non-selective monovalent cationic channels TRPM4 and TRPM5. Adv. Exp. Med. Biol. 704, 147–171 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Lakatta, E. G., Maltsev, V. A. & Vinogradova, T. M. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ. Res. 106, 659–673 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yanni, J. et al. Changes in ion channel gene expression underlying heart failure-induced sinoatrial node dysfunction. Circ. Heart Fail. 4, 496–508 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Ju, Y. K. et al. Store-operated Ca2+ influx and expression of TRPC genes in mouse sinoatrial node. Circ. Res. 100, 1605–1614 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Sabourin, J., Robin, E. & Raddatz, E. A key role of TRPC channels in the regulation of electromechanical activity of the developing heart. Cardiovasc. Res. 92, 226–236 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Ju, Y. K. et al. The involvement of TRPC3 channels in sinoatrial arrhythmias. Front. Physiol. 6, 86 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hofmann, T. et al. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397, 259–263 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Doleschal, B. et al. TRPC3 contributes to regulation of cardiac contractility and arrhythmogenesis by dynamic interaction with NCX1. Cardiovasc. Res. 106, 163–173 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qi, Z. et al. TRPC3 regulates the automaticity of embryonic stem cell-derived cardiomyocytes. Int. J. Cardiol. 203, 169–181 (2016).

    Article  PubMed  Google Scholar 

  22. Demion, M., Bois, P., Launay, P. & Guinamard, R. TRPM4, a Ca2+-activated nonselective cation channel in mouse sino-atrial node cells. Cardiovasc. Res. 73, 531–538 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Sasse, P. et al. Intracellular Ca2+ oscillations, a potential pacemaking mechanism in early embryonic heart cells. J. Gen. Physiol. 130, 133–144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guo, J., Ono, K. & Noma, A. Monovalent cation conductance of the sustained inward current in rabbit sinoatrial node cells. Pflugers Arch. 433, 209–211 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Guinamard, R., Hof, T. & Del Negro, C. A. The TRPM4 channel inhibitor 9-phenanthrol. Br. J. Pharmacol. 171, 1600–1613 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hof, T., Simard, C., Rouet, R., Salle, L. & Guinamard, R. Implication of the TRPM4 nonselective cation channel in mammalian sinus rhythm. Heart Rhythm 10, 1683–1689 (2013).

    Article  PubMed  Google Scholar 

  27. Hu, Y. et al. Uncovering the arrhythmogenic potential of TRPM4 activation in atrial-derived HL-1 cells using novel recording and numerical approaches. Cardiovasc. Res. 113, 1243–1255 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. DiFrancesco, D. The role of the funny current in pacemaker activity. Circ. Res. 106, 434–446 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Sah, R. et al. Ion channel-kinase TRPM7 is required for maintaining cardiac automaticity. Proc. Natl Acad. Sci. USA 110, E3037–E3046 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, Y. H. et al. Functional transient receptor potential canonical type 1 channels in human atrial myocytes. Pflugers Arch. 465, 1439–1449 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Guinamard, R. et al. Functional characterization of a Ca2+-activated non-selective cation channel in human atrial cardiomyocytes. J. Physiol. 558, 75–83 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, Y. H. et al. Evidence for functional expression of TRPM7 channels in human atrial myocytes. Basic Res. Cardiol. 107, 282 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Macianskiene, R., Almanaityte, M., Jekabsone, A. & Mubagwa, K. Modulation of human cardiac TRPM7 current by extracellular acidic pH depends upon extracellular concentrations of divalent cations. PLOS ONE 12, e0170923 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Simard, C., Hof, T., Keddache, Z., Launay, P. & Guinamard, R. The TRPM4 non-selective cation channel contributes to the mammalian atrial action potential. J. Mol. Cell. Cardiol. 59, 11–19 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Demion, M. et al. Trpm4 gene invalidation leads to cardiac hypertrophy and electrophysiological alterations. PLOS ONE 9, e115256 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Guinamard, R. et al. TRPM4 in cardiac electrical activity. Cardiovasc. Res. 108, 21–30 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Odnoshivkina, U. G. et al. β2-adrenoceptor agonist-evoked reactive oxygen species generation in mouse atria: implication in delayed inotropic effect. Eur. J. Pharmacol. 765, 140–153 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Chevalier, M. et al. Transcriptomic analyses of murine ventricular cardiomyocytes. Sci. Data 5, 180170 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pazienza, V. et al. The TRPA1 channel is a cardiac target of mIGF-1/SIRT1 signaling. Am. J. Physiol. Heart Circ. Physiol. 307, H939–H944 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Lu, Y., Piplani, H., McAllister, S. L., Hurt, C. M. & Gross, E. R. Transient receptor potential ankyrin 1 activation within the cardiac myocyte limits ischemia-reperfusion injury in rodents. Anesthesiology 125, 1171–1180 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Andrei, S. R., Sinharoy, P., Bratz, I. N. & Damron, D. S. TRPA1 is functionally co-expressed with TRPV1 in cardiac muscle: co-localization at Z-discs, costameres and intercalated discs. Channels 10, 395–409 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bodkin, J. V. et al. Investigating the potential role of TRPA1 in locomotion and cardiovascular control during hypertension. Pharmacol. Res. Perspect. 2, e00052 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Andrei, S. R. et al. TRPA1 ion channel stimulation enhances cardiomyocyte contractile function via a CaMKII-dependent pathway. Channels 11, 587–603 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Camacho Londono, J. E. et al. A background Ca2+ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling. Eur. Heart J. 36, 2257–2266 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Miller, B. A. et al. The second member of transient receptor potential-melastatin channel family protects hearts from ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 304, H1010–H1022 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hoffman, N. E. et al. Ca2+ entry via Trpm2 is essential for cardiac myocyte bioenergetics maintenance. Am. J. Physiol. Heart Circ. Physiol. 308, H637–H650 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hof, T. et al. TRPM4 non-selective cation channels influence action potentials in rabbit Purkinje fibres. J. Physiol. 594, 295–306 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Guinamard, R., Demion, M., Magaud, C., Potreau, D. & Bois, P. Functional expression of the TRPM4 cationic current in ventricular cardiomyocytes from spontaneously hypertensive rats. Hypertension 48, 587–594 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Guinamard, R., Rahmati, M., Lenfant, J. & Bois, P. Characterization of a Ca2+-activated nonselective cation channel during dedifferentiation of cultured rat ventricular cardiomyocytes. J. Membr. Biol. 188, 127–135 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Mathar, I. et al. Increased beta-adrenergic inotropy in ventricular myocardium from Trpm4 −/− mice. Circ. Res. 114, 283–294 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Gueffier, M. et al. The TRPM4 channel is functionally important for the beneficial cardiac remodeling induced by endurance training. J. Muscle Res. Cell. Motil. 38, 3–16 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Kecskes, M. et al. The Ca2+-activated cation channel TRPM4 is a negative regulator of angiotensin II-induced cardiac hypertrophy. Basic Res. Cardiol. 110, 43 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Saito, Y. et al. TRPM4 mutation in patients with ventricular noncompaction and cardiac conduction disease. Circ. Genom. Precis. Med. 11, e002103 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Gwanyanya, A., Sipido, K. R., Vereecke, J. & Mubagwa, K. ATP and PIP2 dependence of the magnesium-inhibited, TRPM7-like cation channel in cardiac myocytes. Am. J. Physiol. Cell. Physiol. 291, C627–C635 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Sah, R. et al. Timing of myocardial Trpm7 deletion during cardiogenesis variably disrupts adult ventricular function, conduction, and repolarization. Circulation 128, 101–114 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Rubinstein, J. et al. Novel role of transient receptor potential vanilloid 2 in the regulation of cardiac performance. Am. J. Physiol. Heart Circ. Physiol. 306, H574–H584 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Aguettaz, E. et al. Axial stretch-dependent cation entry in dystrophic cardiomyopathy: involvement of several TRPs channels. Cell Calcium 59, 145–155 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aguettaz, E., Bois, P., Cognard, C. & Sebille, S. Stretch-activated TRPV2 channels: role in mediating cardiopathies. Prog. Biophys. Mol. Biol. 130, 273–280 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Katanosaka, Y. et al. TRPV2 is critical for the maintenance of cardiac structure and function in mice. Nat. Commun. 5, 3932 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Zhao, Y. et al. Unusual localization and translocation of TRPV4 protein in cultured ventricular myocytes of the neonatal rat. Eur. J. Histochem. 56, e32 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hu, L., Ma, J., Zhang, P. & Zheng, J. Extracellular hypotonicity induces disturbance of sodium currents in rat ventricular myocytes. Physiol. Res. 58, 807–815 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Li, J. et al. Role of transient receptor potential vanilloid 4 in the effect of osmotic pressure on myocardial contractility in rat. Sheng Li Xue Bao 60, 181–188 (2008).

    CAS  PubMed  Google Scholar 

  63. Heckel, E. et al. Oscillatory flow modulates mechanosensitive klf2a expression through trpv4 and trpp2 during heart valve development. Curr. Biol. 25, 1354–1361 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Fick, G. M., Johnson, A. M., Hammond, W. S. & Gabow, P. A. Causes of death in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 5, 2048–2056 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Paavola, J. et al. Polycystin-2 mutations lead to impaired calcium cycling in the heart and predispose to dilated cardiomyopathy. J. Mol. Cell. Cardiol. 58, 199–208 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Volk, T., Schwoerer, A. P., Thiessen, S., Schultz, J. H. & Ehmke, H. A polycystin-2-like large conductance cation channel in rat left ventricular myocytes. Cardiovasc. Res. 58, 76–88 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Anyatonwu, G. I., Estrada, M., Tian, X., Somlo, S. & Ehrlich, B. E. Regulation of ryanodine receptor-dependent calcium signaling by polycystin-2. Proc. Natl Acad. Sci. USA 104, 6454–6459 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kuo, I. Y. et al. Decreased polycystin 2 expression alters calcium-contraction coupling and changes beta-adrenergic signaling pathways. Proc. Natl Acad. Sci. USA 111, 16604–16609 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Haissaguerre, M., Vigmond, E., Stuyvers, B., Hocini, M. & Bernus, O. Ventricular arrhythmias and the His-Purkinje system. Nat. Rev. Cardiol. 13, 155–166 (2016).

    Article  PubMed  Google Scholar 

  70. Hirose, M., Stuyvers, B. D., Dun, W., ter Keurs, H. E. & Boyden, P. A. Function of Ca2+ release channels in Purkinje cells that survive in the infarcted canine heart: a mechanism for triggered Purkinje ectopy. Circ. Arrhythm. Electrophysiol. 1, 387–395 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Huang, H. et al. TRPC1 expression and distribution in rat hearts. Eur. J. Histochem. 53, e26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu, H. et al. Gain-of-function mutations in TRPM4 cause autosomal dominant isolated cardiac conduction disease. Circ. Cardiovasc. Genet. 3, 374–385 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Kruse, M. et al. Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J. Clin. Invest. 119, 2737–2744 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lighthouse, J. K. & Small, E. M. Transcriptional control of cardiac fibroblast plasticity. J. Mol. Cell. Cardiol. 91, 52–60 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Thodeti, C. K., Paruchuri, S. & Meszaros, J. G. A. TRP to cardiac fibroblast differentiation. Channels 7, 211–214 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hinz, B. Formation and function of the myofibroblast during tissue repair. J. Invest. Dermatol. 127, 526–537 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Davis, J., Burr, A. R., Davis, G. F., Birnbaumer, L. & Molkentin, J. D. A. TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in vivo. Dev. Cell 23, 705–715 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nattel, S. & Dobrev, D. The multidimensional role of calcium in atrial fibrillation pathophysiology: mechanistic insights and therapeutic opportunities. Eur. Heart J. 33, 1870–1877 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Nattel, S. & Dobrev, D. Electrophysiological and molecular mechanisms of paroxysmal atrial fibrillation. Nat. Rev. Cardiol. 13, 575–590 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Macianskiene, R., Martisiene, I., Zablockaite, D. & Gendviliene, V. Characterization of Mg2+-regulated TRPM7-like current in human atrial myocytes. J. Biomed. Sci. 19, 75 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ohba, T. et al. Upregulation of TRPC1 in the development of cardiac hypertrophy. J. Mol. Cell. Cardiol. 42, 498–507 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Han, J. W. et al. Resistance to pathologic cardiac hypertrophy and reduced expression of CaV1.2 in Trpc3-depleted mice. Mol. Cell. Biochem. 421, 55–65 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. Seo, K. et al. Combined TRPC3 and TRPC6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy. Proc. Natl Acad. Sci. USA 111, 1551–1556 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Swaminathan, P. D., Purohit, A., Hund, T. J. & Anderson, M. E. Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circ. Res. 110, 1661–1677 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bush, E. W. et al. Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J. Biol. Chem. 281, 33487–33496 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Oguri, G. et al. Effects of methylglyoxal on human cardiac fibroblast: roles of transient receptor potential ankyrin 1 (TRPA1) channels. Am. J. Physiol. Heart Circ. Physiol. 307, H1339–H1352 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Adapala, R. K. et al. TRPV4 channels mediate cardiac fibroblast differentiation by integrating mechanical and soluble signals. J. Mol. Cell. Cardiol. 54, 45–52 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Wu, X., Eder, P., Chang, B. & Molkentin, J. D. TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc. Natl Acad. Sci. USA 107, 7000–7005 (2010).

    Article  CAS  Google Scholar 

  89. Goel, M., Zuo, C. D., Sinkins, W. G. & Schilling, W. P. TRPC3 channels colocalize with Na+/Ca2+ exchanger and Na+ pump in axial component of transverse-axial tubular system of rat ventricle. Am. J. Physiol. Heart Circ. Physiol. 292, H874–H883 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Kitajima, N. et al. TRPC3-mediated Ca2+ influx contributes to Rac1-mediated production of reactive oxygen species in MLP-deficient mouse hearts. Biochem. Biophys. Res. Commun. 409, 108–113 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Wagner, S. et al. NADPH oxidase 2 mediates angiotensin II-dependent cellular arrhythmias via PKA and CaMKII. J. Mol. Cell. Cardiol. 75, 206–215 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Morine, K. J. et al. Endoglin selectively modulates transient receptor potential channel expression in left and right heart failure. Cardiovasc. Pathol. 25, 478–482 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ohba, T. et al. Regulatory role of neuron-restrictive silencing factor in expression of TRPC1. Biochem. Biophys. Res. Commun. 351, 764–770 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Nakayama, H., Wilkin, B. J., Bodi, I. & Molkentin, J. D. Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB J. 20, 1660–1670 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Brenner, J. S. & Dolmetsch, R. E. TrpC3 regulates hypertrophy-associated gene expression without affecting myocyte beating or cell size. PLOS ONE 2, e802 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Koitabashi, N. et al. Cyclic GMP/PKG-dependent inhibition of TRPC6 channel activity and expression negatively regulates cardiomyocyte NFAT activation: novel mechanism of cardiac stress modulation by PDE5 inhibition. J. Mol. Cell. Cardiol. 48, 713–724 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Onohara, N. et al. TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J. 25, 5305–5316 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kuwahara, K. et al. TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J. Clin. Invest. 116, 3114–3126 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Koch, S. E. et al. Transient receptor potential vanilloid 2 function regulates cardiac hypertrophy via stretch-induced activation. J. Hypertens. 35, 602–611 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Miller, B. A. et al. TRPM2 channels protect against cardiac ischemia-reperfusion injury: role of mitochondria. J. Biol. Chem. 289, 7615–7629 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jacobs, G. et al. Enhanced β-adrenergic cardiac reserve in Trpm4 -/- mice with ischaemic heart failure. Cardiovasc. Res. 105, 330–339 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Wang, J., Takahashi, K., Piao, H., Qu, P. & Naruse, K. 9-Phenanthrol, a TRPM4 inhibitor, protects isolated rat hearts from ischemia-reperfusion injury. PLOS ONE 8, e70587 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Piao, H. et al. Transient receptor potential melastatin-4 is involved in hypoxia-reoxygenation injury in the cardiomyocytes. PLOS ONE 10, e0121703 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Simard, C., Salle, L., Rouet, R. & Guinamard, R. Transient receptor potential melastatin 4 inhibitor 9-phenanthrol abolishes arrhythmias induced by hypoxia and re-oxygenation in mouse ventricle. Br. J. Pharmacol. 165, 2354–2364 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nilius, B., Prenen, J., Voets, T. & Droogmans, G. Intracellular nucleotides and polyamines inhibit the Ca2+-activated cation channel TRPM4b. Pflugers Arch. 448, 70–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Carmeliet, E. Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol. Rev. 79, 917–1017 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Ortega, A. et al. TRPM7 is down-regulated in both left atria and left ventricle of ischaemic cardiomyopathy patients and highly related to changes in ventricular function. ESC Heart Fail. 3, 220–224 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Vemula, P., Gautam, B., Abela, G. S. & Wang, D. H. Myocardial ischemia/reperfusion injury: potential of TRPV1 agonists as cardioprotective agents. Cardiovasc. Hematol. Disord. Drug Targets 14, 71–78 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Randhawa, P. K. & Jaggi, A. S. TRPV1 and TRPV4 channels: potential therapeutic targets for ischemic conditioning-induced cardioprotection. Eur. J. Pharmacol. 746, 180–185 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Wang, L. & Wang, D. H. TRPV1 gene knockout impairs postischemic recovery in isolated perfused heart in mice. Circulation 112, 3617–3623 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Huang, W., Rubinstein, J., Prieto, A. R., Thang, L. V. & Wang, D. H. Transient receptor potential vanilloid gene deletion exacerbates inflammation and atypical cardiac remodeling after myocardial infarction. Hypertension 53, 243–250 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Dong, Q. et al. Blockage of transient receptor potential vanilloid 4 alleviates myocardial ischemia/reperfusion injury in mice. Sci. Rep. 7, 42678 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Syam, N. et al. Variants of transient receptor potential melastatin member 4 in childhood atrioventricular block. J. Am. Heart Assoc. 5, e001625 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Liu, H. et al. Molecular genetics and functional anomalies in a series of 248 Brugada cases with 11 mutations in the TRPM4 channel. PLOS ONE 8, e54131 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hof, T. et al. TRPM4 non-selective cation channel variants in long QT syndrome. BMC Med. Genet. 18, 31 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Xian, W. et al. Aberrant deactivation-induced gain of function in TRPM4 mutant is associated with human cardiac conduction block. Cell Rep. 24, 724–731 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Arking, D. E. et al. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nat. Genet. 46, 826–836 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Eder, P. et al. Phospholipase C-dependent control of cardiac calcium homeostasis involves a TRPC3-NCX1 signaling complex. Cardiovasc. Res. 73, 111–119 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Kitajima, N. et al. TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling. Sci. Rep. 6, 37001 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yue, Z., Zhang, Y., Xie, J., Jiang, J. & Yue, L. Transient receptor potential (TRP) channels and cardiac fibrosis. Curr. Top. Med. Chem. 13, 270–282 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Numaga-Tomita, T. et al. TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis. Sci. Rep. 6, 39383 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Oda, S. et al. TRPC6 counteracts TRPC3-Nox2 protein complex leading to attenuation of hyperglycemia-induced heart failure in mice. Sci. Rep. 7, 7511 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Ikeda, K. et al. Roles of transient receptor potential canonical (TRPC) channels and reverse-mode Na+/Ca2+ exchanger on cell proliferation in human cardiac fibroblasts: effects of transforming growth factor β1. Cell Calcium 54, 213–225 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Harada, M. et al. Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation 126, 2051–2064 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hatano, N., Itoh, Y. & Muraki, K. Cardiac fibroblasts have functional TRPV4 activated by 4α-phorbol 12,13-didecanoate. Life Sci. 85, 808–814 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Du, J. et al. TRPM7-mediated Ca2+ signals confer fibrogenesis in human atrial fibrillation. Circ. Res. 106, 992–1003 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nakatani, Y. et al. Tranilast prevents atrial remodeling and development of atrial fibrillation in a canine model of atrial tachycardia and left ventricular dysfunction. J. Am. Coll. Cardiol. 61, 582–588 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Guo, J. L. et al. Transient receptor potential melastatin 7 (TRPM7) contributes to H2O2-induced cardiac fibrosis via mediating Ca2+ influx and extracellular signal-regulated kinase 1/2 (ERK1/2) activation in cardiac fibroblasts. J. Pharmacol. Sci. 125, 184–192 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Yu, Y. et al. TRPM7 is involved in angiotensin II induced cardiac fibrosis development by mediating calcium and magnesium influx. Cell Calcium 55, 252–260 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Li, S. et al. TRPM7 channels mediate the functional changes in cardiac fibroblasts induced by angiotensin II. Int. J. Mol. Med. 39, 1291–1298 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Shimauchi, T. et al. TRPC3-Nox2 complex mediates doxorubicin-induced myocardial atrophy. JCI Insight 2, e93358 (2017).

    Article  PubMed Central  Google Scholar 

  132. Ozhathil, L. C. et al. Identification of potent and selective small molecule inhibitors of the cation channel TRPM4. Br. J. Pharmacol. 175, 2504–2519 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rubaiy, H. N. et al. Picomolar, selective, and subtype-specific small-molecule inhibition of TRPC1/4/5 channels. J. Biol. Chem. 292, 8158–8173 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Koch, S. E. et al. Probenecid: novel use as a non-injurious positive inotrope acting via cardiac TRPV2 stimulation. J. Mol. Cell. Cardiol. 53, 134–144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Iwata, Y. et al. Blockade of sarcolemmal TRPV2 accumulation inhibits progression of dilated cardiomyopathy. Cardiovasc. Res. 99, 760–768 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Matsumura, T. et al. A pilot study of tranilast for cardiomyopathy of muscular dystrophy. Intern. Med. 57, 311–318 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Sheth, K. N. et al. Safety and efficacy of intravenous glyburide on brain swelling after large hemispheric infarction (GAMES-RP): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 15, 1160–1169 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Okada, T. et al. Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca2+-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J. Biol. Chem. 274, 27359–27370 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Bobkov, Y. V., Corey, E. A. & Ache, B. W. The pore properties of human nociceptor channel TRPA1 evaluated in single channel recordings. Biochim. Biophys. Acta 1808, 1120–1128 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Gees, M., Colsoul, B. & Nilius, B. The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb. Perspect. Biol. 2, a003962 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dominguez-Rodriguez, A. et al. Proarrhythmic effect of sustained EPAC activation on TRPC3/4 in rat ventricular cardiomyocytes. J. Mol. Cell. Cardiol. 87, 74–78 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Wang, Y., Chen, M. S., Liu, H. C., Xiao, J. H. & Wang, J. L. The relationship between frequency dependence of action potential duration and the expression of TRPC3 in rabbit ventricular myocardium. Cell Physiol. Biochem. 33, 646–656 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Dyachenko, V., Husse, B., Rueckschloss, U. & Isenberg, G. Mechanical deformation of ventricular myocytes modulates both TRPC6 and Kir2.3 channels. Cell Calcium 45, 38–54 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Xie, J. et al. Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat. Commun. 3, 1238 (2012).

    Article  PubMed  CAS  Google Scholar 

  145. Demir, T. et al. Evaluation of TRPM (transient receptor potential melastatin) genes expressions in myocardial ischemia and reperfusion. Mol. Biol. Rep. 41, 2845–2849 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Takahashi, K., Sakamoto, K. & Kimura, J. Hypoxic stress induces transient receptor potential melastatin 2 (TRPM2) channel expression in adult rat cardiac fibroblasts. J. Pharmacol. Sci. 118, 186–197 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Kuster, D. W. et al. MicroRNA transcriptome profiling in cardiac tissue of hypertrophic cardiomyopathy patients with MYBPC3 mutations. J. Mol. Cell. Cardiol. 65, 59–66 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Zhainazarov, A. B. Ca2+-activated nonselective cation channels in rat neonatal atrial myocytes. J. Membr. Biol. 193, 91–98 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Fonfria, E. et al. Tissue distribution profiles of the human TRPM cation channel family. J. Recept. Signal Transduct. Res. 26, 159–178 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Rose, R. A., Hatano, N., Ohya, S., Imaizumi, Y. & Giles, W. R. C-type natriuretic peptide activates a non-selective cation current in acutely isolated rat cardiac fibroblasts via natriuretic peptide C receptor-mediated signalling. J. Physiol. 580, 255–274 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhou, Y., Yi, X., Wang, T. & Li, M. Effects of angiotensin II on transient receptor potential melastatin 7 channel function in cardiac fibroblasts. Exp. Ther. Med. 9, 2008–2012 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Giehl, E. et al. Polycystin 2-dependent cardio-protective mechanisms revealed by cardiac stress. Pflugers Arch. 469, 1507–1517 (2017).

    Article  CAS  Google Scholar 

  153. Basora, N. et al. Tissue and cellular localization of a novel polycystic kidney disease-like gene product, polycystin-L. J. Am. Soc. Nephrol. 13, 293–301 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Dvorakova, M. & Kummer, W. Transient expression of vanilloid receptor subtype 1 in rat cardiomyocytes during development. Histochem. Cell Biol. 116, 223–225 (2001).

    Article  CAS  PubMed  Google Scholar 

  155. Zhong, B. & Wang, D. H. Protease-activated receptor 2-mediated protection of myocardial ischemia-reperfusion injury: role of transient receptor potential vanilloid receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1681–R1690 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Gao, F. et al. TRPV1 activation attenuates high-salt diet-induced cardiac hypertrophy and fibrosis through PPAR-δ upregulation. PPAR Res. 2014, 491963 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Sexton, A., McDonald, M., Cayla, C., Thiemermann, C. & Ahluwalia, A. 12-Lipoxygenase-derived eicosanoids protect against myocardial ischemia/reperfusion injury via activation of neuronal TRPV1. FASEB J. 21, 2695–2703 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Buckley, C. L. & Stokes, A. J. Mice lacking functional TRPV1 are protected from pressure overload cardiac hypertrophy. Channels 5, 367–374 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Horton, J. S., Buckley, C. L. & Stokes, A. J. Successful TRPV1 antagonist treatment for cardiac hypertrophy and heart failure in mice. Channels 7, 17–22 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lang, H. et al. Activation of TRPV1 attenuates high salt-induced cardiac hypertrophy through improvement of mitochondrial function. Br. J. Pharmacol. 172, 5548–5558 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wu, Q. F. et al. Activation of transient receptor potential vanilloid 4 involves in hypoxia/reoxygenation injury in cardiomyocytes. Cell Death Dis. 8, e2828 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ohba, T. et al. Stromal interaction molecule 1 haploinsufficiency causes maladaptive response to pressure overload. PLOS ONE 12, e0187950 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Satoh, S. et al. Transient receptor potential (TRP) protein 7 acts as a G protein-activated Ca2+ channel mediating angiotensin II-induced myocardial apoptosis. Mol. Cell. Biochem. 294, 205–215 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Iwata, Y. et al. A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factor-regulated channel. J. Cell Biol. 161, 957–967 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

L.S. and R.G. are supported by a grant from “Région Normandie”. The authors acknowledge R. Coronel (IHU-Liryc, Bordeaux Université, France, and Academic Medical Center, University of Amsterdam, Netherlands) for helpful advice and R. Walton (IHU-Liryc, Bordeaux Université, France) for English editing of the manuscript.

Reviewer information

Nature Reviews Cardiology thanks M. Nishida and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

T.H., S.C. and R.G. wrote the manuscript, and all authors researched data for the article, discussed its content and reviewed and edited it before submission.

Corresponding author

Correspondence to Romain Guinamard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hof, T., Chaigne, S., Récalde, A. et al. Transient receptor potential channels in cardiac health and disease. Nat Rev Cardiol 16, 344–360 (2019). https://doi.org/10.1038/s41569-018-0145-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-018-0145-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing