Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting transcription factors in cancer — from undruggable to reality

Abstract

Mutated or dysregulated transcription factors represent a unique class of drug targets that mediate aberrant gene expression, including blockade of differentiation and cell death gene expression programmes, hallmark properties of cancers. Transcription factor activity is altered in numerous cancer types via various direct mechanisms including chromosomal translocations, gene amplification or deletion, point mutations and alteration of expression, as well as indirectly through non-coding DNA mutations that affect transcription factor binding. Multiple approaches to target transcription factor activity have been demonstrated, preclinically and, in some cases, clinically, including inhibition of transcription factor–cofactor protein–protein interactions, inhibition of transcription factor–DNA binding and modulation of levels of transcription factor activity by altering levels of ubiquitylation and subsequent proteasome degradation or by inhibition of regulators of transcription factor expression. In addition, several new approaches to targeting transcription factors have recently emerged including modulation of auto-inhibition, proteolysis targeting chimaeras (PROTACs), use of cysteine reactive inhibitors, targeting intrinsically disordered regions of transcription factors and combinations of transcription factor inhibitors with kinase inhibitors to block the development of resistance. These innovations in drug development hold great promise to yield agents with unique properties that are likely to impact future cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Targeting transcription factor drivers in cancer.
Fig. 2: Targeting oestrogen receptor function.
Fig. 3: Examples of protein–protein interaction inhibitors targeting transcription factors.
Fig. 4: Approaches to modulate transcription factor stability by way of regulating ubiquitylation.
Fig. 5: The mechanism of action of a proteolysis targeting chimaera.

Similar content being viewed by others

References

  1. Darnell, J. E. Jr. Transcription factors as targets for cancer therapy. Nat. Rev. Cancer 2, 740–749 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Lee, T. I. & Young, R. A. Transcriptional regulation and its misregulation in disease. Cell 152, 1237–1251 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arkin, M. R., Tang, Y. & Wells, J. A. Small-molecule inhibitors of protein–protein interactions: progressing toward the reality. Chem. Biol. 21, 1102–1114 (2014). This comprehensive review illustrates the extraordinary progress that has been made in the development of protein–protein interaction inhibitors for use in a wide variety of disease settings.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Silvian, L. F. et al. Small molecule inhibition of the TNF family cytokine CD40 ligand through a subunit fracture mechanism. ACS Chem. Biol. 6, 636–647 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Illendula, A. et al. Small molecule inhibitor of CBFβ–RUNX binding for RUNX transcription factor driven cancers. EBioMedicine 8, 117–131 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tovar, C. et al. MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Cancer Res. 73, 2587–2597 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Ding, Q. et al. Discovery of RG7388, a potent and selective p53–MDM2 inhibitor in clinical development. J. Med. Chem. 56, 5979–5983 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004). This paper describes the development and evaluation of the first MDM2–p53 inhibitor of the Nutlin class.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, Z. et al. Discovery of potent and selective spiroindolinone MDM2 inhibitor, RO8994, for cancer therapy. Bioorg. Med. Chem. 22, 4001–4009 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Zhao, Y. et al. A potent small-molecule inhibitor of the MDM2–p53 interaction (MI-888) achieved complete and durable tumor regression in mice. J. Med. Chem. 56, 5553–5561 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Miyazaki, M. et al. Lead optimization of novel p53–MDM2 interaction inhibitors possessing dihydroimidazothiazole scaffold. Bioorg. Med. Chem. Lett. 23, 728–732 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Tisato, V., Voltan, R., Gonelli, A., Secchiero, P. & Zauli, G. MDM2/X inhibitors under clinical evaluation: perspectives for the management of hematological malignancies and pediatric cancer. J. Hematol. Oncol. 10, 133 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gehling, V. S. et al. Discovery, design, ond Optimization of isoxazole azepine BET inhibitors. ACS Med. Chem. Lett. 4, 835–840 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mirguet, O. et al. Discovery of epigenetic regulator I-BET762: lead optimization to afford a clinical candidate inhibitor of the BET bromodomains. J. Med. Chem. 56, 7501–7515 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Xu, Y. & Vakoc, C. R. Targeting cancer cells with BET bromodomain inhibitors. Cold Spring Harb. Perspect. Med. 7, a026674 (2017).

  17. Helin, K. & Dhanak, D. Chromatin proteins and modifications as drug targets. Nature 502, 480–488 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Look, A. T. Oncogenic transcription factors in the human acute leukemias. Science 278, 1059–1064 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Alcalay, M. et al. Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J. Clin. Invest. 112, 1751–1761 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martens, J. H. & Stunnenberg, H. G. The molecular signature of oncofusion proteins in acute myeloid leukemia. FEBS Lett. 584, 2662–2669 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Di Croce, L. Chromatin modifying activity of leukaemia associated fusion proteins. Hum. Mol. Genet. 14, Spec No 1, R77-R84 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. Kottaridis, P. D. et al. Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood 100, 2393–2398 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Shih, L. Y. et al. Cooperating mutations of receptor tyrosine kinases and Ras genes in childhood core-binding factor acute myeloid leukemia and a comparative analysis on paired diagnosis and relapse samples. Leukemia 22, 303–307 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Nakano, Y. et al. Molecular evolution of acute myeloid leukaemia in relapse: unstable N-ras and FLT3 genes compared with p53 gene. Br. J. Haematol. 104, 659–664 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Tomlins, S. A. et al. ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur. Urol. 56, 275–286 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Clark, J. P. & Cooper, C. S. ETS gene fusions in prostate cancer. Nat. Rev. Urol. 6, 429–439 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, Y. et al. ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss. Nat. Med. 19, 1023–1029 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chi, P. et al. ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours. Nature 467, 849–853 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jane-Valbuena, J. et al. An oncogenic role for ETV1 in melanoma. Cancer Res. 70, 2075–2084 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Scheitz, C. J., Lee, T. S., McDermitt, D. J. & Tumbar, T. Defining a tissue stem cell-driven Runx1/Stat3 signalling axis in epithelial cancer. EMBO J. 31, 4124–4139 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Morita, K. et al. Genetic regulation of the RUNX transcription factor family has antitumor effects. J. Clin. Invest. 127, 2815–2828 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chuang, L. S., Ito, K. & Ito, Y. Roles of RUNX in solid tumors. Adv. Exp. Med. Biol. 962, 299–320 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Koehler, A. N. A complex task? Direct modulation of transcription factors with small molecules. Curr. Opin. Chem. Biol. 14, 331–340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Majmudar, C. Y. & Mapp, A. K. Chemical approaches to transcriptional regulation. Curr. Opin. Chem. Biol. 9, 467–474 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Arndt, H. D. Small molecule modulators of transcription. Angew. Chem. 45, 4552–4560 (2006).

    Article  CAS  Google Scholar 

  39. Berg, T. Inhibition of transcription factors with small organic molecules. Curr. Opin. Chem. Biol. 12, 464–471 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Bhagwat, A. S. & Vakoc, C. R. Targeting transcription factors in cancer. Trends Cancer 1, 53–65 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Burris, T. P. et al. Nuclear receptors and their selective pharmacologic modulators. Pharmacol. Rev. 65, 710–778 (2013).

    Article  PubMed  CAS  Google Scholar 

  42. de The, H. Differentiation therapy revisited. Nat. Rev. Cancer 18, 117–127 (2018).

    Article  PubMed  CAS  Google Scholar 

  43. Mangelsdorf, D. J. et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Robinson-Rechavi, M., Escriva Garcia, H. & Laudet, V. The nuclear receptor superfamily. J. Cell Sci. 116, 585–586 (2003).

    Article  PubMed  Google Scholar 

  45. Pawlak, M., Lefebvre, P. & Staels, B. General molecular biology and architecture of nuclear receptors. Curr. Top. Med. Chem. 12, 486–504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Patel, H. K. & Bihani, T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol. Ther. 186, 1–24 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Shiau, A. K. et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95, 927–937 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Romano, A. et al. Identification of novel ER-α target genes in breast cancer cells: gene- and cell-selective co-regulator recruitment at target promoters determines the response to 17β-estradiol and tamoxifen. Mol. Cell Endocrinol. 314, 90–100 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Shang, Y. & Brown, M. Molecular determinants for the tissue specificity of SERMs. Science 295, 2465–2468 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Dai, C., Heemers, H. & Sharifi, N. Androgen signaling in prostate cancer. Cold Spring Harb. Perspect. Med. 7, a030452 (2017).

  52. Crona, D. J., Milowsky, M. I. & Whang, Y. E. Androgen receptor targeting drugs in castration-resistant prostate cancer and mechanisms of resistance. Clin. Pharmacol. Ther. 98, 582–589 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Efstathiou, E. et al. Molecular characterization of enzalutamide-treated bone metastatic castration-resistant prostate cancer. Eur. Urol. 67, 53–60 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Nevedomskaya, E., Baumgart, S. J. & Haendler, B. Recent advances in prostate cancer treatment and drug discovery. Int. J. Mol. Sci. 19 (2018).

  55. Gu, T. L., Goetz, T. L., Graves, B. J. & Speck, N. A. Auto-inhibition and partner proteins, core-binding factor beta (CBFβ) and Ets-1, modulate DNA binding by CBFα2 (AML1). Mol. Cell. Biol. 20, 91–103 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goetz, T. L., Gu, T. L., Speck, N. A. & Graves, B. J. Auto-inhibition of Ets-1 is counteracted by DNA binding cooperativity with core-binding factor α2. Mol. Cell. Biol. 20, 81–α90 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shrivastava, T. et al. Structural basis of Ets1 activation by Runx1. Leukemia 28, 2040–2048 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hollenhorst, P. C., Shah, A. A., Hopkins, C. & Graves, B. J. Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family. Genes Dev. 21, 1882–1894 (2007).

    CAS  Google Scholar 

  59. Slany, R. K. When epigenetics kills: MLL fusion proteins in leukemia. Hematol. Oncol. 23, 1–9 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Cox, M. C. et al. Chromosomal aberration of the 11q23 locus in acute leukemia and frequency of MLL gene translocation: results in 378 adult patients. Am. J. Clin. Pathol. 122, 298–306 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Popovic, R. & Zeleznik-Le, N. J. MLL: how complex does it get? J. Cell. Biochem. 95, 234–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Dimartino, J. F. & Cleary, M. L. MLL rearrangements in haematological malignancies: lessons from clinical and biological studies. Br. J. Haematol. 106, 614–626 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Yokoyama, A. et al. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 123, 207–218 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Caslini, C. et al. Interaction of MLL amino terminal sequences with menin is required for transformation. Cancer Res. 67, 7275–7283 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cierpicki, T. et al. Structure of the MLL CXXC domain–DNA complex and its functional role in MLL–AF9 leukemia. Nat. Struct. Mol. Biol. 17, 62–68 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Grembecka, J. et al. Menin–MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat. Chem. Biol. 8, 277–284 (2012). This paper describes the development and demonstration of on-target activity of the first inhibitors of the menin–MLL fusion protein interaction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. He, S. et al. High-affinity small-molecule inhibitors of the menin–mixed lineage leukemia (MLL) interaction closely mimic a natural protein–protein interaction. J. Med. Chem. 57, 1543–1556 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Borkin, D. et al. Property focused structure-based optimization of small molecule inhibitors of the protein–protein interaction between menin and mixed lineage leukemia (MLL). J. Med. Chem. 59, 892–913 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Borkin, D. et al. Pharmacologic inhibition of the menin–MLL interaction blocks progression of MLL leukemia in vivo. Cancer Cell 27, 589–602 (2015). This paper demonstrates efficacy of meninMLL inhibitors in a mouse model of MLL fusion-positive leukaemia as well as with primary MLL fusion-positive leukaemia patient samples.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Borkin, D. et al. Complexity of blocking bivalent protein–protein interactions: development of a highly potent inhibitor of the menin–mixed-lineage leukemia interaction. J. Med. Chem. 61, 4832–4850 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, P. et al. Fusion between transcription factor CBFβ/PEBP2β and a myosin heavy chain in acute myeloid leukemia. Science 261, 1041–1044 (1993).

    Article  CAS  PubMed  Google Scholar 

  72. Castilla, L. H. et al. Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFB–MYH11. Cell 87, 687–696 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Mandoli, A. et al. CBFB–MYH11/RUNX1 together with a compendium of hematopoietic regulators, chromatin modifiers and basal transcription factors occupies self-renewal genes in inv(16) acute myeloid leukemia. Leukemia 28, 770–778 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Illendula, A. et al. Chemical biology. A small-molecule inhibitor of the aberrant transcription factor CBFβ–SMMHC delays leukemia in mice. Science 347, 779–784 (2015). This study describes the development of the first inhibitor of the interaction between CBFβSMMHC and RUNX, and also demonstrates efficacy of the inhibitor in a mouse model of CBFβSMMHC-positive leukaemia and with primary inv(16) leukaemia patient samples.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pulikkan, J. A. et al. CBFβ–SMMHC inhibition triggers apoptosis by disrupting MYC chromatin dynamics in acute myeloid leukemia. Cell 174, 172–186 (2018). This study describes the mechanism leading to reduced MYC expression seen with the CBFβSMMHC inhibitor, which occurs via altered occupancy of BAF and PRC complexes at specific enhancers of MYC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Choi, A. et al. RUNX1 is required for oncogenic Myb and Myc enhancer activity in T-cell acute lymphoblastic leukemia. Blood 130, 1722–1733 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhou, N. et al. RUNX proteins desensitize multiple myeloma to lenalidomide via protecting IKZFs from degradation. Leukemia 33, 2006–2021 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mill, C. P. et al. RUNX1 targeted therapy for AML expressing somatic or germline mutation in RUNX1. Blood 134, 59–73 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chimge, N. O. & Frenkel, B. The RUNX family in breast cancer: relationships with estrogen signaling. Oncogene 32, 2121–2130 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. McDonald, L. et al. RUNX2 correlates with subtype-specific breast cancer in a human tissue microarray, and ectopic expression of Runx2 perturbs differentiation in the mouse mammary gland. Dis. Model. Mechanisms 7, 525–534 (2014).

    CAS  Google Scholar 

  81. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

    Article  CAS  Google Scholar 

  82. Ciriello, G., Cerami, E., Sander, C. & Schultz, N. Mutual exclusivity analysis identifies oncogenic network modules. Genome Res. 22, 398–406 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Carlton, A. L. et al. Small molecule inhibition of the CBFβ/RUNX interaction decreases ovarian cancer growth and migration through alterations in genes related to epithelial-to-mesenchymal transition. Gynecol. Oncol. 149, 350–360 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Geng, F., Wenzel, S. & Tansey, W. P. Ubiquitin and proteasomes in transcription. Annu. Rev. Biochem. 81, 177–201 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mukouyama, Y. et al. The AML1 transcription factor functions to develop and maintain hematogenic precursor cells in the embryonic aorta–gonad–mesonephros region. Dev. Biol. 220, 27–36 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Venkatachalam, S. et al. Retention of wild-type p53 in tumors from p53 heterozygous mice: reduction of p53 dosage can promote cancer formation. EMBO J. 17, 4657–4667 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xie, Y. et al. Reduced Erg dosage impairs survival of hematopoietic stem and progenitor cells. Stem Cells 35, 1773–1785 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xu, X. et al. Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene 19, 1868–1874 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Senft, D., Qi, J. & Ronai, Z. A. Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat. Rev. Cancer 18, 69–88 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Buetow, L. & Huang, D. T. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 17, 626–642 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zheng, N. & Shabek, N. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86, 129–157 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Buckley, D. L. et al. Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction. J. Am. Chem. Soc. 134, 4465–4468 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Buckley, D. L. et al. Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1a. Angew. Chem. Int. Ed. 51, 11463–11467 (2012).

    Article  CAS  Google Scholar 

  94. Kaelin, W. G. Jr. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat. Rev. Cancer 8, 865–873 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2014). This paper describes the elucidation of the mechanism of action of the drug lenalidomide, which enhances binding of cereblon to IKZF to increase ubiquitination and proteasome destruction of IKZF.

    Article  CAS  PubMed  Google Scholar 

  96. Ouchida, A. T. et al. USP10 regulates the stability of the EMT-transcription factor Slug/SNAI2. Biochem. Biophys. Res. Commun. 502, 429–434 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Wu, Y. et al. Dub3 inhibition suppresses breast cancer invasion and metastasis by promoting Snail1 degradation. Nat. Commun. 8, 14228 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lin, Y. et al. Stabilization of the transcription factors slug and twist by the deubiquitinase dub3 is a key requirement for tumor metastasis. Oncotarget 8, 75127–75140 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kim, D. et al. Deubiquitinating enzyme USP22 positively regulates c-Myc stability and tumorigenic activity in mammalian and breast cancer cells. J. Cell. Physiol. 232, 3664–3676 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Tomlins, S. A. et al. Role of the TMPRSS2–ERG gene fusion in prostate cancer. Neoplasia 10, 177–188 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Carver, B. S. et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat. Genet. 41, 619–624 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Carver, B. S. et al. ETS rearrangements and prostate cancer initiation. Nature 457, E1; discussion E2–E3 (2009).

    Article  CAS  Google Scholar 

  103. Wang, S. et al. Ablation of the oncogenic transcription factor ERG by deubiquitinase inhibition in prostate cancer. Proc. Natl Acad. Sci. USA 111, 4251–4256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, S. et al. The ubiquitin ligase TRIM25 targets ERG for degradation in prostate cancer. Oncotarget 7, 64921–64931 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kapuria, V. et al. Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res. 70, 9265–9276 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Hainaut, P. & Hollstein, M. p53 and human cancer: the first ten thousand mutations. Adv. Cancer Res. 77, 81–137 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Harris, S. L. & Levine, A. J. The p53 pathway: positive and negative feedback loops. Oncogene 24, 2899–2908 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Vousden, K. H. & Lane, D. P. p53 in health and disease. Nat. Rev. Mol. Cell Biol. 8, 275–283 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Freedman, D. A., Wu, L. & Levine, A. J. Functions of the MDM2 oncoprotein. Cell. Mol. Life Sci. 55, 96–107 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Bond, G. L., Hu, W. & Levine, A. J. MDM2 is a central node in the p53 pathway: 12 years and counting. Curr. Cancer Drug Targets 5, 3–8 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Wu, X., Bayle, J. H., Olson, D. & Levine, A. J. The p53–mdm-2 autoregulatory feedback loop. Genes Dev. 7, 1126–1132 (1993).

    Article  CAS  PubMed  Google Scholar 

  113. Momand, J., Jung, D., Wilczynski, S. & Niland, J. The MDM2 gene amplification database. Nucleic Acids Res. 26, 3453–3459 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fotouhi, N. & Graves, B. Small molecule inhibitors of p53/MDM2 interaction. Curr. Top. Med. Chem. 5, 159–165 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Lai, A. C. et al. Modular PROTAC design for the degradation of oncogenic BCR–ABL. Angew. Chem. 55, 807–810 (2016).

    Article  CAS  Google Scholar 

  116. Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015). This study demonstrates the catalytic behaviour of small-molecule PROTACs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Winter, G. E. et al. DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376–1381 (2015). This paper describes the development of a PROTAC targeting BRD4, its mechanism of action via proteasome-mediated reduction in the BRD4 level and its in vivo efficacy in a mouse model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Burslem, G. M. et al. The advantages of targeted protein degradation over inhibition: an RTK case study. Cell Chem. Biol. 25, 67–77 e63 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. Lai, A. C. & Crews, C. M. Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16, 101–114 (2017). This work is a comprehensive review of PROTACs by one of the original developers of this approach.

    Article  CAS  PubMed  Google Scholar 

  120. Akhtar, M. S. et al. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol. Cell 34, 387–393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Drapkin, R., Le Roy, G., Cho, H., Akoulitchev, S. & Reinberg, D. Human cyclin-dependent kinase-activating kinase exists in three distinct complexes. Proc. Natl Acad. Sci. USA 93, 6488–6493 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Glover-Cutter, K. et al. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol. Cell. Biol. 29, 5455–5464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kwiatkowski, N. et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 511, 616–620 (2014). This paper describes the development of a CDK7 inhibitor, its mechanism of action via changes in the level of the transcription factor RUNX1 and its in vivo efficacy in a mouse model of T-ALL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chipumuro, E. et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 159, 1126–1139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Christensen, C. L. et al. Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Cancer Cell 26, 909–922 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ahuja, N., Sharma, A. R. & Baylin, S. B. Epigenetic therapeutics: a new weapon in the war against cancer. Annu. Rev Med 67, 73–89 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bennett, R. L. & Licht, J. D. Targeting epigenetics in cancer. Annu. Rev. Pharmacol. Toxicol. 58, 187–207 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Mohammad, H. P., Barbash, O. & Creasy, C. L. Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat. Med. 25, 403–418 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Stathis, A. & Bertoni, F. BET proteins as targets for anticancer treatment. Cancer Discov. 8, 24–36 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Stonestrom, A. J. et al. Functions of BET proteins in erythroid gene expression. Blood 125, 2825–2834 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Roe, J. S., Mercan, F., Rivera, K., Pappin, D. J. & Vakoc, C. R. BET bromodomain inhibition suppresses the function of hematopoietic transcription factors in acute myeloid leukemia. Mol. Cell 58, 1028–1039 (2015). This paper describes the effects of a BRD4 bromodomain inhibitor on binding of BRD4 to specific haematopoietic transcription factors as well as the inhibition of the activity of these transcription factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lamonica, J. M. et al. Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes. Proc. Natl Acad. Sci. USA 108, E159–E168 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Shi, J. et al. Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell 25, 210–225 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. French, C. A. Small-molecule targeting of BET proteins in cancer. Adv. Cancer Res. 131, 21–58 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Loven, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Horiuchi, D., Anderton, B. & Goga, A. Taking on challenging targets: making MYC druggable. Am. Soc. Clin. Oncol. Educ. Book, e497-e502, https://doi.org/10.14694/EdBook_AM.2014.34.e497 (2014).

    Article  Google Scholar 

  138. Carabet, L. A., Rennie, P. S. & Cherkasov, A. Therapeutic inhibition of MYC in cancer. Structural bases and computer-aided drug discovery approaches. Int. J. Mol. Sci. 20, E120 (2018).

    Article  PubMed  CAS  Google Scholar 

  139. Castell, A. et al. A selective high affinity MYC-binding compound inhibits MYC:MAX interaction and MYC-dependent tumor cell proliferation. Sci. Rep. 8, (10064 (2018).

    Google Scholar 

  140. Struntz, N. B. et al. Stabilization of the Max homodimer with a small molecule attenuates Myc-driven transcription. Cell Chem. Biol. 26, 711–723 e714 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Doroshow, D. B., Eder, J. P. & LoRusso, P. M. BET inhibitors: a novel epigenetic approach. Ann. Oncol. 28, 1776–1787 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Leung, C. H., Chan, D. S., Ma, V. P. & Ma, D. L. DNA-binding small molecules as inhibitors of transcription factors. Med. Res. Rev. 33, 823–846 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Gniazdowski, M., Denny, W. A., Nelson, S. M. & Czyz, M. Transcription factors as targets for DNA-interacting drugs. Curr. Med. Chem. 10, 909–924 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Gniazdowski, M., Denny, W. A., Nelson, S. M. & Czyz, M. Effects of anticancer drugs on transcription factor–DNA interactions. Expert Opin. Ther. Targets 9, 471–489 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Dervan, P. B. Molecular recognition of DNA by small molecules. Bioorg. Med. Chem. 9, 2215–2235 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Trauger, J. W., Baird, E. E. & Dervan, P. B. Recognition of DNA by designed ligands at subnanomolar concentrations. Nature 382, 559–561 (1996).

    Article  CAS  PubMed  Google Scholar 

  147. Best, T. P., Edelson, B. S., Nickols, N. G. & Dervan, P. B. Nuclear localization of pyrrole–imidazole polyamide–fluorescein conjugates in cell culture. Proc. Natl Acad. Sci. USA 100, 12063–12068 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Antony-Debre, I. et al. Pharmacological inhibition of the transcription factor PU.1 in leukemia. J. Clin. Invest. 127, 4297–4313 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Chen, Y. N. et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 535, 148–152 (2016). This study describes the development of an inhibitor of SHP2 based on stabilization of the auto-inhibited state of SHP2.

    Article  CAS  PubMed  Google Scholar 

  150. Graves, B. J. et al. Autoinhibition as a transcriptional regulatory mechanism. Cold Spring Harb. Symp. Quant. Biol. 63, 621–629 (1998).

    Article  CAS  PubMed  Google Scholar 

  151. Pufall, M. A. & Graves, B. J. Autoinhibitory domains: modular effectors of cellular regulation. Annu. Rev. Cell Dev. Biol. 18, 421–462 (2002).

    Article  CAS  PubMed  Google Scholar 

  152. Hollenhorst, P. C., McIntosh, L. P. & Graves, B. J. Genomic and biochemical insights into the specificity of ETS transcription factors. Annu. Rev. Biochem. 80, 437–471 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lanning, B. R. et al. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat. Chem. Biol. 10, 760–767 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Keating, G. M. Afatinib: a review of its use in the treatment of advanced non-small cell lung cancer. Drugs 74, 207–221 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Dungo, R. T. & Keating, G. M. Afatinib: first global approval. Drugs 73, 1503–1515 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Cramer, P., Hallek, M. & Eichhorst, B. State-of-the-art treatment and novel agents in chronic lymphocytic leukemia. Oncol. Res. Treat. 39, 25–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Shlomai, J. Redox control of protein–DNA interactions: from molecular mechanisms to significance in signal transduction, gene expression, and DNA replication. Antioxid. Redox Signal. 13, 1429–1476 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Akamatsu, Y. et al. Redox regulation of the DNA binding activity in transcription factor PEBP2. The roles of two conserved cysteine residues. J. Biol. Chem. 272, 14497–14500 (1997).

    Article  CAS  PubMed  Google Scholar 

  159. DeHart, C. J., Chahal, J. S., Flint, S. J. & Perlman, D. H. Extensive post-translational modification of active and inactivated forms of endogenous p53. Mol. Cell. Proteom. 13, 1–17 (2014).

    Article  CAS  Google Scholar 

  160. Blumenthal, E. et al. Covalent modifications of RUNX proteins: structure affects function. Adv. Exp. Med. Biol. 962, 33–44 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Uversky, V. N. Intrinsic disorder, protein–protein interactions, and disease. Adv. Protein Chem. Struct. Biol. 110, 85–121 (2018).

    Article  PubMed  CAS  Google Scholar 

  162. Dunker, A. K., Brown, C. J., Lawson, J. D., Iakoucheva, L. M. & Obradovic, Z. Intrinsic disorder and protein function. Biochemistry 41, 6573–6582 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Dyson, H. J. & Wright, P. E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Iakoucheva, L. M., Brown, C. J., Lawson, J. D., Obradovic, Z. & Dunker, A. K. Intrinsic disorder in cell-signaling and cancer-associated proteins. J. Mol. Biol. 323, 573–584 (2002).

    Article  CAS  PubMed  Google Scholar 

  165. Dyson, H. J. & Wright, P. E. Role of intrinsic protein disorder in the function and interactions of the transcriptional coactivators CREB-binding protein (CBP) and p300. J. Biol. Chem. 291, 6714–p6722 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Leach, B. I. et al. Leukemia fusion target AF9 is an intrinsically disordered transcriptional regulator that recruits multiple partners via coupled folding and binding. Structure 21, 176–183 (2013). This paper provides an example of an intrinsically disordered region that mediates specific cofactor binding to the leukaemia fusion protein MLL–AF9.

    Article  CAS  PubMed  Google Scholar 

  167. Kuntimaddi, A. et al. Degree of recruitment of DOT1L to MLL–AF9 defines level of H3K79 di- and tri-methylation on target genes and transformation potential. Cell Rep. 11, 808–820 (2015). This paper provides an example of the binding of a cofactor (DOT1L) to an intrinsically disordered region (the AF9 portion of the MLL–AF9 fusion protein) that is essential for leukaemia development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lokken, A. A. et al. Importance of a specific amino acid pairing for murine MLL leukemias driven by MLLT1/3 or AFF1/4. Leukemia Res. 38, 1309–1315 (2014).

    Article  CAS  Google Scholar 

  169. Zhang, Y., Cao, H. & Liu, Z. Binding cavities and druggability of intrinsically disordered proteins. Protein Sci. 24, 688–705 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Berg, T. et al. Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc. Natl Acad. Sci. USA 99, 3830–3835 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Shi, J., Stover, J. S., Whitby, L. R., Vogt, P. K. & Boger, D. L. Small molecule inhibitors of Myc/Max dimerization and Myc-induced cell transformation. Bioorg. Med. Chem. Lett. 19, 6038–6041 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Erkizan, H. V. et al. A small molecule blocking oncogenic protein EWS–FLI1 interaction with RNA helicase A inhibits growth of Ewing's sarcoma. Nat. Med. 15, 750–756 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhang, Z. et al. Chemical perturbation of an intrinsically disordered region of TFIID distinguishes two modes of transcription initiation. eLife 4, e07777 (2015).

  174. Srinivasan, R. S. et al. The synthetic peptide PFWT disrupts AF4–AF9 protein complexes and induces apoptosis in t(4;11) leukemia cells. Leukemia 18, 1364–1372 (2004).

    Article  CAS  PubMed  Google Scholar 

  175. Jin, F., Yu, C., Lai, L. & Liu, Z. Ligand clouds around protein clouds: a scenario of ligand binding with intrinsically disordered proteins. PLOS Comp. Biol. 9, e1003249 (2013).

    Article  Google Scholar 

  176. Cohen-Solal, K. A., Kaufman, H. L. & Lasfar, A. Transcription factors as critical players in melanoma invasiveness, drug resistance, and opportunities for therapeutic drug development. Pigment. Cell Melanoma Res. 31, 241–252 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. Garcia-Alonso, L. et al. Transcription factor activities enhance markers of drug sensitivity in cancer. Cancer Res. 78, 769–780 (2018).

    Article  CAS  PubMed  Google Scholar 

  178. Zecena, H. et al. Systems biology analysis of mitogen activated protein kinase inhibitor resistance in malignant melanoma. BMC Syst. Biol. 12, 33 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Yao, S., Fan, L. Y. & Lam, E. W. The FOXO3–FOXM1 axis: a key cancer drug target and a modulator of cancer drug resistance. Semin. Cancer Biol. 50, 77–89 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Barabe, F., Kennedy, J. A., Hope, K. J. & Dick, J. E. Modeling the initiation and progression of human acute leukemia in mice. Science 316, 600–604 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9. Nature 442, 818–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. Kuo, Y. H. et al. Cbfβ–SMMHC induces distinct abnormal myeloid progenitors able to develop acute myeloid leukemia. Cancer Cell 9, 57–68 (2006).

    Article  CAS  PubMed  Google Scholar 

  183. Bell, R. J. et al. Cancer. The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science 348, 1036–1039 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Makowski, M. M. et al. An interaction proteomics survey of transcription factor binding at recurrent TERT promoter mutations. Proteomics 16, 417–426 (2016).

    Article  CAS  PubMed  Google Scholar 

  185. Ptasinska, A. et al. Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding. Leukemia 26, 1829–1841 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zhang, H. et al. KLF8 involves in TGF-β-induced EMT and promotes invasion and migration in gastric cancer cells. J. Cancer Res. Clin. Oncol. 139, 1033–1042 (2013).

    Article  CAS  PubMed  Google Scholar 

  187. Micalizzi, D. S. et al. The Six1 homeoprotein induces human mammary carcinoma cells to undergo epithelial–mesenchymal transition and metastasis in mice through increasing TGF-β signaling. J. Clin. Invest. 119, 2678–2690 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Pratap, J. et al. The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol. Cell. Biol. 25, 8581–8591 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Chimge, N. O. et al. Regulation of breast cancer metastasis by Runx2 and estrogen signaling: the role of SNAI2. Breast Cancer Res. 13, R127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Mendoza-Villanueva, D., Deng, W., Lopez-Camacho, C. & Shore, P. The Runx transcriptional co-activator, CBFβ, is essential for invasion of breast cancer cells. Mol. Cancer 9, 171 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Baniwal, S. K. et al. Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis. Mol. Cancer 9, 258 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Little, G. H. et al. Differential effects of RUNX2 on the androgen receptor in prostate cancer: synergistic stimulation of a gene set exemplified by SNAI2 and subsequent invasiveness. Cancer Res. 74, 2857–2868 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Little, G. H. et al. Genome-wide Runx2 occupancy in prostate cancer cells suggests a role in regulating secretion. Nucleic Acids Res. 40, 3538–3547 (2012).

    Article  CAS  PubMed  Google Scholar 

  194. de The, H., Pandolfi, P. P. & Chen, Z. Acute promyelocytic leukemia: a paradigm for oncoprotein-targeted cure. Cancer Cell 32, 552–560 (2017).

    Article  PubMed  CAS  Google Scholar 

  195. Matkar, S. et al. An epigenetic pathway regulates sensitivity of breast cancer cells to HER2 inhibition via FOXO/c-Myc axis. Cancer Cell 28, 472–485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hirade, T. et al. Internal tandem duplication of FLT3 deregulates proliferation and differentiation and confers resistance to the FLT3 inhibitor AC220 by up-regulating RUNX1 expression in hematopoietic cells. Int. J. Hematol. 103, 95–106 (2016).

    Article  CAS  PubMed  Google Scholar 

  197. Cauchy, P. et al. Chronic FLT3–ITD signaling in acute myeloid leukemia is connected to a specific chromatin signature. Cell Rep. 12, 821–836 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Boregowda, R. K. et al. The transcription factor RUNX2 regulates receptor tyrosine kinase expression in melanoma. Oncotarget 7, 29689–29707 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Sanda, T. et al. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell 22, 209–221 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Morita, K. et al. Autonomous feedback loop of RUNX1–p53–CBFB in acute myeloid leukemia cells. Sci. Rep. 7, 16604 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Tetsu, O. & McCormick, F. ETS-targeted therapy: can it substitute for MEK inhibitors? Clin. Transl. Med. 6, 16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Rakhra, K. et al. CD4(+) T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell 18, 485–498 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Xu, Y. et al. Translation control of the immune checkpoint in cancer and its therapeutic targeting. Nat. Med. 25, 301–311 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Cerezo, M. et al. Translational control of tumor immune escape via the eIF4F–STAT1–PD-L1 axis in melanoma. Nat. Med. 24, 1877–1886 (2018).

    Article  CAS  PubMed  Google Scholar 

  205. Elias, S. et al. Immune evasion by oncogenic proteins of acute myeloid leukemia. Blood 123, 1535–1543 (2014).

    Article  CAS  PubMed  Google Scholar 

  206. US National Library of Medicine. ClinicalTrials.gov, http://www.clinicaltrials.gov/ct2/show/NCT02633059 (2015).

  207. US National Library of Medicine. ClinicalTrials.gov, http://www.clinicaltrials.gov/ct2/show/NCT03287245 (2017).

  208. US National Library of Medicine. ClinicalTrials.gov, http://www.clinicaltrials.gov/ct2/show/NCT02670044 (2016).

  209. US National Library of Medicine. ClinicalTrials.gov, http://www.clinicaltrials.gov/ct2/show/NCT03135262 (2017).

  210. US National Library of Medicine. ClinicalTrials.gov, http://www.clinicaltrials.gov/ct2/show/NCT03566485 (2018).

  211. US National Library of Medicine. ClinicalTrials.gov, http://www.clinicaltrials.gov/ct2/show/NCT03850535 (2019).

  212. US National Library of Medicine. ClinicalTrials.gov, http://www.clinicaltrials.gov/ct2/show/NCT02890069 (2016).

  213. US National Library of Medicine. ClinicalTrials.gov, http://www.clinicaltrials.gov/ct2/show/NCT02780128 (2016).

  214. US National Library of Medicine. ClinicalTrials.gov, http://www.clinicaltrials.gov/ct2/show/NCT02601378 (2016).

  215. US National Library of Medicine. ClinicalTrials.gov, http://www.clinicaltrials.gov/ct2/show/NCT03888612 (2019).

  216. US National Library of Medicine. ClinicalTrials.gov, http://www.clinicaltrials.gov/ct2/show/NCT03134638 (2019).

  217. US National Library of Medicine. ClinicalTrials.gov, http://www.clinicaltrials.gov/ct2/show/NCT02959437 (2016).

  218. US National Library of Medicine. ClinicalTrials.gov, http://www.clinicaltrials.gov/ct2/show/NCT02711137 (2016).

  219. US National Library of Medicine. ClinicalTrials.gov, http://www.clinicaltrials.gov/ct2/show/NCT02419417 (2015).

Download references

Acknowledgements

The author thanks the many outstanding trainees in the laboratory over the years who facilitated the work and whose many stimulating discussions guided the composition of this Review, and D. Brautigan at University of Virginia, USA, for helping produce a readable meaningful scientific review. Apologies to those whose important contributions have not been highlighted owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Bushweller.

Ethics declarations

Competing Interests

J.H.B. has a licensing agreement with Systems Oncology for the CBFβ–SMMHC inhibitor AI-10-49 (LeuSO).

Additional information

Peer review information

Nature Reviews Cancer thanks A. Koehler, D. Tenen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Hotspot residues

Specific amino acids on a protein–protein interaction surface that contribute the most energy to the binding of the two proteins.

Interaction energy

The energy, typically measured in kilocalories per mole, associated with the binding of two species to one another (protein–protein, protein–nucleic acid, protein–small molecule).

Allosteric modulation

Acting by binding at a site distinct from the primary site of activity of a protein, for example, at a site distinct from the active site of an enzyme.

Epigenetic reader

A protein that binds to peptide elements, typically from histones or transcription factors, that have specific post-translational modifications, for example, methylation, acetylation or phosphorylation.

Epigenetic writer

A protein that adds specific post-translational modifications, including methylation and acetylation, to peptide elements in histones and transcription factors.

Bioavailability

The proportion of a drug that enters the circulation after administration and can have an active effect.

Castration-resistant prostate cancer

(CRPC). Prostate cancer that progresses despite androgen depletion therapy.

Absorption, distribution, metabolism, excretion, toxicity

(ADMET). Important properties of drugs that determine their efficacy.

Definitive haematopoiesis

Blood cell development involving haematopoietic stem cells that differentiate to produce all of the lineages of the haematopoietic system. In contrast to primitive (embryonic) haematopoiesis, this process occurs later in development.

Nuclear magnetic resonance (NMR) spectroscopy

A technique that relies on energy differences of nuclear spins in a magnetic field that is used for determining protein 3D structure, protein dynamics and drug binding to proteins

Deubiquitinases

(DUBs). Enzymes that remove ubiquitin from proteins.

Michael acceptor

A chemical moiety that can react with amino acid side chains in a protein to form a covalent bond with the protein

K d

The equilibrium dissociation constant, a measure of the affinity of binding of two molecules to one another.

DNA minor groove

Along with the major groove, the minor groove makes up the 3D structure of DNA and provides contacts to bind proteins or small molecules.

Chemoproteomics

The use of proteomics approaches, typically based on functionalized chemical probes in conjunction with mass spectrometry, to identify the targets of action of molecules in cells.

pK a

The negative log of the equilibrium association constant, used for characterizing the acidity of exchangeable protons on the side chains of amino acids in proteins.

X-ray crystallography

A technique that utilizes the diffraction of X-rays to determine the 3D structure of proteins and nucleic acids.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bushweller, J.H. Targeting transcription factors in cancer — from undruggable to reality. Nat Rev Cancer 19, 611–624 (2019). https://doi.org/10.1038/s41568-019-0196-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-019-0196-7

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer