Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlling Cherenkov angles with resonance transition radiation

Abstract

Cherenkov radiation provides a valuable way to identify high-energy particles in a wide momentum range, through the relation between the particle velocity and the Cherenkov angle. However, since the Cherenkov angle depends only on the material’s permittivity, the material unavoidably sets a fundamental limit to the momentum coverage and sensitivity of Cherenkov detectors. For example, ring-imaging Cherenkov detectors must employ materials transparent to the frequency of interest as well as possessing permittivities close to unity to identify particles in the multi-gigaelectronvolt range, and thus are often limited to large gas chambers. It would be extremely important, albeit challenging, to lift this fundamental limit and control Cherenkov angles at will. Here we propose a new mechanism that uses the constructive interference of resonance transition radiation from photonic crystals to generate both forward and backward effective Cherenkov radiation. This mechanism can control the radiation angles in a flexible way with high sensitivity to any desired range of velocities. Photonic crystals thus overcome the material limit for Cherenkov detectors, enabling the use of transparent materials with arbitrary values of permittivity, and provide a promising versatile platform well suited for identification of particles at high energy with enhanced sensitivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Controlling Cherenkov angles with photonic crystals.
Fig. 2: Two conceptual schemes of controlling forward and backward Cherenkov angles with photonic crystals.
Fig. 3: Controlling Cherenkov angles with photonic crystals using the first scheme proposed.
Fig. 4: Controlling Cherenkov angles with photonic crystals using the second scheme proposed.

Similar content being viewed by others

References

  1. Cherenkov, P. A. Visible emission of clean liquids by action of gamma radiation. Dokl. Akad. Nauk SSSR 2, 451–454 (1934).

    Google Scholar 

  2. Frank, I. M. & Tamm, I. Dokl. Akad. Nauk SSSR 14, 109–114 (1937).

    Google Scholar 

  3. de Abajo, F. J. G. et al. Cherenkov effect as a probe of photonic nanostructures. Phys. Rev. Lett. 91, 143902 (2003).

    Article  ADS  Google Scholar 

  4. Adamo, G. et al. Light well: A tunable free-electron light source on a chip. Phys. Rev. Lett. 103, 113901 (2009).

    Article  ADS  Google Scholar 

  5. Cook, A. M. et al. Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide. Phys. Rev. Lett. 103, 095003 (2009).

    Article  ADS  Google Scholar 

  6. Liu, F. et al. Integrated Cherenkov radiation emitter eliminating the electron velocity threshold. Nat. Photon. 11, 289–292 (2017).

    Article  ADS  Google Scholar 

  7. Galbraith, W. & Jelley, J. V. Light pulses from the night sky associated with cosmic rays. Nature 171, 349–350 (1953).

    Article  ADS  Google Scholar 

  8. Ypsilantis, T. & Seguinot, J. Theory of ring imaging Cherenkov counters. Nucl. Instrum. Meth. A 343, 30–51 (1994).

    Article  ADS  Google Scholar 

  9. Adam, I. et al. The DIRC particle identification system for the BaBar experiment. Nucl. Instrum. Meth. A 538, 281–357 (2005).

    Article  ADS  Google Scholar 

  10. Alves, A. A. Jr. et al. (LHCb Collaboration) The LHCb detector at the LHC. J. Instrum. 3, S08005 (2008).

    Google Scholar 

  11. Adinolfi, M. et al. (LHCb RICH Collaboration) Performance of the LHCb RICH at the LHC. Eur. Phys. J. C 73, 2431 (2013).

    Article  ADS  Google Scholar 

  12. Abashian, A. et al. The Belle detector. Nucl. Instrum. Meth. A 478, 117–232 (2002).

    Article  ADS  Google Scholar 

  13. Palik, E. D. Handbook of Optical Constants of Solids. (Academic, New York, NY, 1985).

  14. Ginis, V., Danckaert, J., Veretennicoff, I. & Tassin, P. Controlling Cherenkov radiation with transformation-optical metamaterials. Phys. Rev. Lett. 113, 167402 (2014).

    Article  ADS  Google Scholar 

  15. Chamberlain, O., Segrè, E., Wiegand, C. & Ypsilantis, T. Observation of antiprotons. Phys. Rev. 100, 947–950 (1955).

    Article  ADS  Google Scholar 

  16. Aubert, J. J. et al. Experimental observation of a heavy particle. J. Phys. Rev. Lett. 33, 1404–1406 (1974).

    Article  ADS  Google Scholar 

  17. Liu, S. et al. Surface polariton Cherenkov light radiation source. Phys. Rev. Lett. 109, 153902 (2012).

    Article  ADS  Google Scholar 

  18. Wong, L. J., Kaminer, I., Ilic, O., Joannopoulos, J. D. & Soljačić, M. Towards graphene plasmon-based free-electron infrared to X-ray sources. Nat. Photon. 10, 46–52 (2016).

    Article  ADS  Google Scholar 

  19. Denis, T. et al. Coherent Cherenkov radiation and laser oscillation in a photonic crystal. Phys. Rev. A 94, 053852 (2016).

    Article  ADS  Google Scholar 

  20. Luo, C., Ibanescu, M., Johnson, S. G. & Joannopoulos, J. D. Cerenkov radiation in photonic crystals. Science 299, 368–371 (2003).

    Article  ADS  Google Scholar 

  21. Xi, S. et al. Experimental verification of reversed Cherenkov radiation in left-handed metamaterials. Phys. Rev. Lett. 103, 194801 (2009).

    Article  ADS  Google Scholar 

  22. de Abajo, F. J. G. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).

    Article  ADS  Google Scholar 

  23. Vorobev, V. V. & Tyukhtin, A. V. Nondivergent Cherenkov radiation in a wire metamaterial. Phys. Rev. Lett. 108, 184801 (2012).

    Article  ADS  Google Scholar 

  24. Ren, H., Deng, X., Zheng, Y., An, N. & Chen, X. Nonlinear Cherenkov radiation in an anomalous dispersive medium. Phys. Rev. Lett. 108, 223901 (2012).

    Article  ADS  Google Scholar 

  25. Genevet, P. et al. Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial. Nat. Nanotech. 10, 804–809 (2015).

    Article  ADS  Google Scholar 

  26. Shi, X. et al. Caustic graphene plasmons with Kelvin angle. Phys. Rev. B 92, 081404(R) (2015).

    Article  ADS  Google Scholar 

  27. Kaminer, I. et al. Quantum Čerenkov radiation: Spectral cutoffs and the role of spin and orbital angular momentum. Phys. Rev. X 6, 011006 (2016).

    Google Scholar 

  28. Hummelt, J. S. et al. Coherent Cherenkov-cyclotron radiation excited by an electron beam in a metamaterial waveguide. Phys. Rev. Lett. 117, 237701 (2016).

    Article  ADS  Google Scholar 

  29. Duan, Z. et al. Observation of the reversed Cherenkov radiation. Nat. Commun. 8, 14901 (2017).

    Article  ADS  Google Scholar 

  30. Joannopoulos, J., Johnson, S., Winn, J. & Meade, R. Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, NJ, 2011).

    MATH  Google Scholar 

  31. Zhang, Y. et al. Nonlinear Čerenkov radiation in nonlinear photonic crystal waveguides. Phys. Rev. Lett. 100, 163904 (2008).

    Article  ADS  Google Scholar 

  32. Andronic, A. & Wessels, J. P. Transition radiation detectors. Nucl. Instrum. Meth. A 666, 130–147 (2012).

    Article  ADS  Google Scholar 

  33. Jackson, J. D. Classical Electrodynamics (Wiley, Hoboken, NJ, 1999).

  34. Ginzburg, V. L. & Tsytovich, V. N. Transition Radiation and Transition Scattering (CRC, Boca Raton, FL, 1990).

  35. Ginzburg, V. L. & Tsytovich, V. N. Several problems of the theory of transition radiation and transition scattering. Phys. Rep. 49, 1–89 (1979).

    Article  ADS  Google Scholar 

  36. Smith, S. J. & Purcell, E. M. Visible light from localized surface charges moving across a grating. Phys. Rev. 92, 1069 (1953).

    Article  ADS  Google Scholar 

  37. Kaminer, I. et al. Spectrally and spatially resolved Smith–Purcell radiation in plasmonic crystals with short-range disorder. Phys. Rev. X 7, 011003 (2017).

    Google Scholar 

  38. Lin, X. et al. Splashing transients of 2D plasmons launched by swift electrons. Sci. Adv. 3, e1601192 (2017).

    Article  ADS  Google Scholar 

  39. Chen, H. & Chen, M. Flipping photons backward: reversed Cherenkov radiation. Mater. Today 14, 34–41 (2011).

    Article  Google Scholar 

  40. Dey, B. et al. Design and performance of the focusing DIRC detector. Nucl. Instrum. Meth. A 775, 112–131 (2015).

    Article  ADS  Google Scholar 

  41. Fang, A., Koschny, Th., Wegener, M. & Soukoulis, C. M. Self-consistent calculation of metamaterials with gain. Phys. Rev. B 79, 241104(R) (2009).

    Article  ADS  Google Scholar 

  42. Wuestner, S., Pusch, A., Tsakmakidis, K. L., Hamm, J. M. & Hess, O. Overcoming losses with gain in a negative refractive index metamaterial. Phys. Rev. Lett. 105, 127401 (2010).

    Article  ADS  Google Scholar 

  43. Wang, Y. T. et al. Gain-assisted hybrid-superlens hyperlens for nano imaging. Opt. Exp. 20, 22953–22960 (2012).

    Article  ADS  Google Scholar 

  44. Batson, P. E., Dellby, N. & Krivanek, O. L. Sub-ångstrom resolution using aberration corrected electron optics. Nature 418, 617–620 (2002).

    Article  ADS  Google Scholar 

  45. Kidger, M. J. Fundamental Optical Design (SPIE, Bellingham, WA, 2002).

  46. Liu, R. Y. F. et al. Forced assembly of polymer nanolayers thinner than the interphase. Macromolecules 38, 10721–10727 (2005).

    Article  ADS  Google Scholar 

  47. Pursiainena, O. L. J. et al. Compact strain-sensitive flexible photonic crystals for sensors. Appl. Phys. Lett. 87, 101902 (2005).

    Article  ADS  Google Scholar 

  48. Arsenault, A. C., Puzzo, D. P., Manners, I. & Ozin, G. A. Photonic-crystal full-colour displays. Nat. Photon. 1, 468–472 (2007).

    Article  ADS  Google Scholar 

  49. Sheinfux, H. H. et al. Observation of Anderson localization in disordered nanophotonic structures. Science 356, 953–956 (2017).

    Article  ADS  Google Scholar 

  50. Shen, Y. et al. Optical broadband angular selectivity. Science 343, 1499–1501 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (grants no. 61625502, 61574127 and 61601408), the ZJNSF (LY17F010008), the Top-Notch Young Talents Program of China, the Fundamental Research Funds for the Central Universities, the Innovation Joint Research Center for Cyber-Physical-Society System, Nanyang Technological University for NAP Start-Up Grant, the Singapore Ministry of Education (grants no. MOE2015-T2-1-070 and MOE2016-T3-1-006, and Tier 1 RG174/16 (S)) and the US Army Research Laboratory and the US Army Research Office through the Institute for Soldier Nanotechnologies (contract no. W911NF-18-2-0048 and W911NF-13-D-0001). I. Kaminer is an Azrieli Fellow, supported by the Azrieli Foundation, and was partially supported by the Seventh Framework Programme of the European Research Council (FP7-Marie Curie IOF) under grant no. 328853-MC-BSiCS.

Author information

Authors and Affiliations

Authors

Contributions

X.L., I.K. and S.E. initiated the idea; X.L. performed the calculation; X.L., S.E., Y.S., H.C., B.Z., J.D.J., M.S. and I.K. analysed data, interpreted detailed results and contributed extensively to the writing of the manuscript; I.K., S.E., H.C., B.Z., J.D.J. and M.S. supervised the project.

Corresponding author

Correspondence to Sajan Easo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publishers note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Text, Supplementary figures 1–19, References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Easo, S., Shen, Y. et al. Controlling Cherenkov angles with resonance transition radiation. Nature Phys 14, 816–821 (2018). https://doi.org/10.1038/s41567-018-0138-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0138-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing