Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intense few-cycle visible pulses directly generated via nonlinear fibre mode mixing

Abstract

Extremely short, high-energy pulses are essential in modern ultrafast science. In a seminal paper in 19961, Nisoli and co-workers demonstrated the first intense pulse compression employing a gas-filled hollow-core fibre. Despite the huge body of scientific work on this technology stemming from ultrafast and attosecond research, here we identify an unexplored few-cycle visible-light generation mechanism, which relies on the nonlinear mixing of hollow-core fibre modes. Using a commercially available ytterbium laser, we generate 4.6 fs, 20 μJ pulses centred at around 600 nm (~2 cycles, ~4 GW peak power), ~40 times shorter than the input 175 fs, 1 mJ pulses at 1,035 nm. Our approach thus directly projects few-hundred-femtosecond-long infrared pulses into the single-cycle regime at visible frequencies, without the need for additional post-compression. As a powerful application of our findings, we present a compact, multicolour pump–probe set-up with a temporal resolution of a few optical cycles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sketch of the generation mechanism, output energy and spectra.
Fig. 2: VIS pulse formation.
Fig. 3: Comparison between numerical and experimental results.
Fig. 4: Few-cycle IR pump/VIS probe set-up.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The computer code used in this study is available from the corresponding authors upon reasonable request.

References

  1. Nisoli, M. et al. Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett. 68, 2793–2795 (1996).

    Article  ADS  Google Scholar 

  2. Zewail, A. H. Laser femtochemistry. Science 242, 1645–1653 (1988).

    Article  ADS  Google Scholar 

  3. Oliver, T. A. A. Recent advances in multidimensional ultrafast spectroscopy. R. Soc. Open Sci. 5, 171425 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  4. Wirth, A. et al. Synthesized light transients. Science 334, 195–200 (2011).

    Article  ADS  Google Scholar 

  5. Hooker, S. M. Developments in laser-driven plasma accelerators. Nat. Photon. 7, 775–782 (2013).

    Article  ADS  Google Scholar 

  6. Cerullo, G. et al. Photosynthetic light harvesting by carotenoids: detection of an intermediate excited state. Science 298, 2395–2398 (2002).

    Article  ADS  Google Scholar 

  7. Schoenlein, R. W. et al. The first step in vision: femtosecond isomerization of rhodopsin. Science 254, 412–415 (1991).

    Article  ADS  Google Scholar 

  8. Chemla, D. S. & Shah, J. Many-body and correlation effects in semiconductors. Nature 411, 549–557 (2001).

    Article  ADS  Google Scholar 

  9. Fork, R. L. et al. Compression of optical pulses to six femtoseconds by using cubic phase compensation. Opt. Lett. 12, 483–485 (1987).

    Article  ADS  Google Scholar 

  10. Bohman, S. et al. Generation of 5.0fs, 5.0mJ pulses at 1kHz using hollow-fiber pulse compression. Opt. Lett. 35, 1887–1889 (2010).

    Article  ADS  Google Scholar 

  11. Jeong, Y.-G. et al. Direct compression of 170-fs 50-cycle pulses down to 1.5 cycles with 70% transmission. Sci. Rep. 8, 11794 (2018).

    Article  ADS  Google Scholar 

  12. Nisoli, M. et al. Toward a terawatt-scale sub-10-fs laser technology. IEEE J. Sel. Topics Quantum Electron. 4, 414–419 (1998).

    Article  ADS  Google Scholar 

  13. Robinson, J. S. et al. The generation of intense, transform-limited laser pulses with tunable duration from 6 to 30 fs in a differentially pumped hollow fibre. Appl. Phys. B 85, 525–529 (2006).

    Article  ADS  Google Scholar 

  14. Silva, F. et al. Strategies for achieving intense single-cycle pulses with in-line post-compression setups. Opt. Lett. 43, 337–340 (2018).

    Article  ADS  Google Scholar 

  15. Cardin, V. et al. 0.42 TW 2-cycle pulses at 1.8 μm via hollow-core fiber compression. Appl. Phys. Lett. 107, 181101 (2015).

    Article  ADS  Google Scholar 

  16. Böhle, F. et al. Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers. Laser Phys. Lett. 11, 095401 (2014).

    Article  ADS  Google Scholar 

  17. Cerullo, G. et al. Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible. Opt. Lett. 23, 1283–1285 (1998).

    Article  ADS  Google Scholar 

  18. Baltuška, A. et al. Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control. Opt. Lett. 27, 306–308 (2002).

    Article  ADS  Google Scholar 

  19. Odhner, J. H. & Levis, R. J. High-energy noncollinear optical parametric amplifier producing 4 fs pulses in the visible seeded by a gas-phase filament. Opt. Lett. 40, 3814–3817 (2015).

    Article  ADS  Google Scholar 

  20. Harth, A. et al. Two-color pumped OPCPA system emitting spectra spanning 15 octaves from VIS to NIR. Opt. Express 20, 3076–3081 (2012).

    Article  ADS  Google Scholar 

  21. Brahms, C. et al. Infrared attosecond field transients and UV to IR few-femtosecond pulses generated by high-energy soliton self-compression. Phys. Rev. Res. 2, 043037 (2020).

    Article  Google Scholar 

  22. Travers, J. C. et al. High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres. Nat. Photon. 13, 547–554 (2019).

    Article  ADS  Google Scholar 

  23. Liu, J. et al. Generation of stable sub-10 fs pulses at 400 nm in a hollow fiber for UV pump-probe experiment. Opt. Express 18, 4664–4672 (2010).

    Article  ADS  Google Scholar 

  24. Matsubara, E. et al. Generation of 2.6 fs optical pulses using induced-phase modulation in a gas-filled hollow fiber. J. Opt. Soc. Am. B 24, 985–989 (2007).

    Article  ADS  Google Scholar 

  25. Russell, P. S. J. et al. Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nat. Photon. 8, 278–286 (2014).

    Article  ADS  Google Scholar 

  26. Alfano, R. R. The Supercontinuum Laser Source: The Ultimate White Light 2nd edn (Springer, 2016).

  27. Wright, L. G. et al. Controllable spatiotemporal nonlinear effects in multimode fibres. Nat. Photon. 9, 306–310 (2015).

    Article  ADS  Google Scholar 

  28. Krupa, K. et al. Multimode nonlinear fiber optics, a spatiotemporal avenue. APL Photonics 4, 110901 (2019).

    Article  ADS  Google Scholar 

  29. Marcatili, E. A. J. & Schmeltzer, R. A. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst. Tech. J. 43, 1783–1809 (1964).

    Article  Google Scholar 

  30. Brown, J. M. et al. Analysis of the angular spectrum for ultrashort laser pulses. J. Opt. Soc. Am. B 36, A105–A111 (2019).

    Article  Google Scholar 

  31. Ratner, J. et al. Coherent artifact in modern pulse measurements. Opt. Lett. 37, 2874–2876 (2012).

    Article  ADS  Google Scholar 

  32. Manzoni, C. et al. Two-color pump-probe system broadly tunable over the visible and the near infrared with sub-30 fs temporal resolution. Rev. Sci. Instrum. 77, 023103 (2006).

    Article  ADS  Google Scholar 

  33. Schmidt, B. E. et al. Highly stable, 54 mJ Yb-InnoSlab laser platform at 0.5 kW average power. Opt. Express 25, 17549–17555 (2017).

    Article  ADS  Google Scholar 

  34. Nagy, T. et al. Generation of three-cycle multi-millijoule laser pulses at 318 W average power. Optica 6, 1423–1424 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Natural Sciences and Engineering Research Council of Canada (NSERC) (Collaborative Research and Development (CRD) and Discovery Grants) and Prompt, Québec. J.M.B. acknowledges support from the Air Force Office of Scientific Research under MURI award no. FA9550-16-1-0013. R.M. is affiliated to IFFS as an adjoint faculty.

Author information

Authors and Affiliations

Authors

Contributions

R.P. performed the experiments with the support of Y.-G.J., A.R. and L.Z. J.M.B. performed the numerical simulations. A.C., M.B.G. and J.C.T. supervised the numerical simulations. B.E.S. and L.R. conceived the study and supervised its realization. R.M. and F.L. provided technical support. All the authors discussed the experimental results and helped with the preparation of the manuscript.

Corresponding authors

Correspondence to R. Piccoli, B. E. Schmidt or L. Razzari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Daniele Faccio and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–23 and description of the numerical model.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piccoli, R., Brown, J.M., Jeong, YG. et al. Intense few-cycle visible pulses directly generated via nonlinear fibre mode mixing. Nat. Photon. 15, 884–889 (2021). https://doi.org/10.1038/s41566-021-00888-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00888-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing