Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Telecom-band quantum dot technologies for long-distance quantum networks

Abstract

A future quantum internet is expected to generate, distribute, store and process quantum bits (qubits) over the world by linking different quantum nodes via quantum states of light. To facilitate long-haul operations, quantum repeaters must operate at telecom wavelengths to take advantage of both the low-loss optical fibre network and the established technologies of modern optical communications. Semiconductor quantum dots have thus far shown exceptional performance as key elements for quantum repeaters, such as quantum light sources and spin–photon interfaces, but only in the near-infrared regime. Therefore, the development of high-performance telecom-band quantum dot devices is highly desirable for a future solid-state quantum internet based on fibre networks. In this Review, we present the physics and technological developments towards epitaxial quantum dot devices emitting in the telecom O- and C-bands for quantum networks, considering both advanced epitaxial growth for direct telecom emission and quantum frequency conversion for telecom-band down-conversion of near-infrared quantum dot devices. We also discuss the challenges and opportunities for future realization of telecom quantum dot devices with improved performance and expanded functionality through hybrid integration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global quantum networks connected by quantum states of light.
Fig. 2: Epitaxial growth for telecom QDs.
Fig. 3: Coupling telecom-band quantum light sources into single-mode fibres.
Fig. 4: Generating telecom-band single photons via quantum frequency conversion.
Fig. 5: Advanced telecom-band quantum photonic devices based on hybrid integrations.

Similar content being viewed by others

References

  1. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    CAS  Google Scholar 

  2. Simon, C. Towards a global quantum network. Nat. Photon. 11, 678–680 (2017).

    CAS  Google Scholar 

  3. Fröhlich, B. et al. A quantum access network. Nature 501, 69–72 (2013).

    Google Scholar 

  4. Riedmatten, Hde et al. Long distance quantum teleportation in a quantum relay configuration. Phys. Rev. Lett. 92, 047904 (2004).

    Google Scholar 

  5. Briegel, H. J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    CAS  Google Scholar 

  6. Azuma, K. et al. Quantum repeaters: from quantum networks to the quantum internet. Rev. Mod. Phys. (in the press); preprint at https://arxiv.org/abs/2212.10820 (2022).

  7. Chen, Y. A. et al. Memory-built-in quantum teleportation with photonic and atomic qubits. Nat. Phys. 4, 103–107 (2008).

    CAS  Google Scholar 

  8. Żukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. K. ‘Event-ready-detectors’ Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993).

    Google Scholar 

  9. Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nat. Photon. 3, 706–714 (2009).

    CAS  Google Scholar 

  10. Wei, S. H. et al. Towards real-world quantum networks: a review. Laser Photon. Rev. 16, 2100219 (2022).

    Google Scholar 

  11. Davidson, O., Yogev, O., Poem, E. & Firstenberg, O. Fast, noise-free atomic optical memory with 35% end-to-end efficiency. Commun. Phys. 6, 131 (2023).

    Google Scholar 

  12. van Loock, P. et al. Extending quantum links: modules for fiber- and memory-based quantum repeaters. Adv. Quantum Technol. 3, 1900141 (2020).

    Google Scholar 

  13. Azuma, K., Tamaki, K. & Lo, H.-K. All-photonic quantum repeaters. Nat. Commun. 6, 6787 (2015).

    CAS  Google Scholar 

  14. Ghatak, A. & Thyagarajan, K. An Introduction to Fiber Optics (Cambridge Univ. Press, 1998).

  15. Liao, S. K. et al. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat. Photon. 11, 509–513 (2017).

    CAS  Google Scholar 

  16. Matsui, Y. et al. Low-chirp isolator-free 65-GHz-bandwidth directly modulated lasers. Nat. Photon. 15, 59–63 (2021).

    CAS  Google Scholar 

  17. He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon. 13, 359–364 (2019).

    CAS  Google Scholar 

  18. Zhang, J., Itzler, M. A., Zbinden, H. & Pan, J. W. Advances in InGaAs/InP single-photon detector systems for quantum communication. Light. Sci. Appl. 4, e286 (2015).

    CAS  Google Scholar 

  19. Reddy, D. V., Nerem, R. R., Nam, S. W., Mirin, R. P. & Verma, V. B. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm. Optica 7, 1649–1653 (2020).

    Google Scholar 

  20. Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

    CAS  Google Scholar 

  21. Vajner, D. A., Rickert, L., Gao, T., Kaymazlar, K. & Heindel, T. Quantum communication using semiconductor quantum dots. Adv. Quantum Technol. 5, 2100116 (2022).

    Google Scholar 

  22. Bozzio, M. et al. Enhancing quantum cryptography with quantum dot single-photon sources. npj Quantum Inf. 8, 104 (2022).

    Google Scholar 

  23. Anderson, M. et al. Gigahertz-clocked teleportation of time-bin qubits with a quantum dot in the telecommunication C band. Phys. Rev. Appl. 13, 054052 (2020).

    CAS  Google Scholar 

  24. Liu, J. et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol. 14, 586–593 (2019).

    CAS  Google Scholar 

  25. Gao, W. B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoglu, A. Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).

    CAS  Google Scholar 

  26. Delteil, A. et al. Generation of heralded entanglement between distant hole spins. Nat. Phys. 12, 218–223 (2016).

    CAS  Google Scholar 

  27. Cogan, D., Su, Z. E., Kenneth, O. & Gershoni, D. Deterministic generation of indistinguishable photons in a cluster state. Nat. Photon. 17, 324–329 (2023).

    CAS  Google Scholar 

  28. Kettler, J. et al. Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm. Appl. Phys. B 122, 48 (2016).

    Google Scholar 

  29. Srocka, N. et al. Deterministically fabricated quantum dot single-photon source emitting indistinguishable photons in the telecom O-band. Appl. Phys. Lett. 116, 231104 (2020).

    CAS  Google Scholar 

  30. Orchard, J. R. et al. Silicon-based single quantum dot emission in the telecoms C-band. ACS Photon. 4, 1740–1746 (2017).

    CAS  Google Scholar 

  31. Portalupi, S. L., Jetter, M. & Michler, P. InAs quantum dots grown on metamorphic buffers as non-classical light sources at telecom C-band: a review. Semiconductor Sci. Technol. 34, 053001 (2019).

    CAS  Google Scholar 

  32. Nawrath, C. et al. Coherence and indistinguishability of highly pure single photons from non-resonantly and resonantly excited telecom C-band quantum dots. Appl. Phys. Lett. 115, 023103 (2019).

    Google Scholar 

  33. Zeuner, K. D. et al. On-demand generation of entangled photon pairs in the telecom C-band with InAs quantum dots. ACS Photon. 8, 2337–2344 (2021).

    CAS  Google Scholar 

  34. Chen, Z.-S. et al. Bright single-photon source at 1.3 μm based on InAs bilayer quantum dot in micropillar. Nanoscale Res. Lett. 12, 378 (2017).

    Google Scholar 

  35. Takemoto, K., Sakuma, Y., Hirose, S., Usuki, T. & Yokoyama, N. Observation of exciton transition in 1.3–1.55 μm band from single InAs/InP quantum dots in mesa structure. Jpn J. Appl. Phys. 43, L349 (2004).

    CAS  Google Scholar 

  36. Sobiesierski, Z. et al. As/P exchange on InP (001) studied by reflectance anisotropy spectroscopy. Appl. Phys. Lett. 70, 1423–1425 (1997).

    CAS  Google Scholar 

  37. Anantathanasarn, S., Nötzel, R., van Veldhoven, P. J., Eijkemans, T. J. & Wolter, J. H. Wavelength-tunable (1.55‐μm region) InAs quantum dots in InGaAsP∕InP (100) grown by metal-organic vapor-phase epitaxy. J. Appl. Phys. 98, 013503 (2005).

    Google Scholar 

  38. Leavitt, R. P. & Richardson, C. J. K. Pathway to achieving circular InAs quantum dots directly on (100) InP and to tuning their emission wavelengths toward 1.55 μm. J. Vac. Sci. Technol. B 33, 051202 (2015).

    Google Scholar 

  39. Gurioli, M., Wang, Z., Rastelli, A., Kuroda, T. & Sanguinetti, S. Droplet epitaxy of semiconductor nanostructures for quantum photonic devices. Nat. Mater. 18, 799–810 (2019).

    CAS  Google Scholar 

  40. Ha, N. et al. Single photon emission from droplet epitaxial quantum dots in the standard telecom window around a wavelength of 1.55 µm. Appl. Phys. Express 13, 025002 (2020).

    CAS  Google Scholar 

  41. Skiba-Szymanska, J. et al. Universal growth scheme for quantum dots with low fine-structure splitting at various emission wavelengths. Phys. Rev. Appl. 8, 014013 (2017).

    Google Scholar 

  42. Liu, X. et al. Vanishing fine-structure splittings in telecommunication-wavelength quantum dots grown on (111)A surfaces by droplet epitaxy. Phys. Rev. B 90, 081301 (2014).

    CAS  Google Scholar 

  43. Müller, T. et al. A quantum light-emitting diode for the standard telecom window around 1,550 nm. Nat. Commun. 9, 862 (2018).

    Google Scholar 

  44. Zhai, L. et al. Low-noise GaAs quantum dots for quantum photonics. Nat. Commun. 11, 8 (2020).

    Google Scholar 

  45. Chellu, A., Hilska, J., Penttinen, J.-P. & Hakkarainen, T. Highly uniform GaSb quantum dots with indirect–direct bandgap crossover at telecom range. APL Mater. 9, 051116 (2021).

    CAS  Google Scholar 

  46. Cao, X. et al. Local droplet etching on InAlAs/InP surfaces with InAl droplets. AIP Adv. 12, 055302 (2022).

    CAS  Google Scholar 

  47. Singh, R. & Bester, G. Nanowire quantum dots as an ideal source of entangled photon pairs. Phys. Rev. Lett. 103, 063601 (2009).

    Google Scholar 

  48. Haffouz, S. et al. Bright single InAsP quantum dots at telecom wavelengths in position-controlled InP nanowires: the role of the photonic waveguide. Nano Lett. 18, 3047–3052 (2018).

    CAS  Google Scholar 

  49. Zhang, J. et al. Planarized spatially-regular arrays of spectrally uniform single quantum dots as on-chip single photon sources for quantum optical circuits. APL Photon. 5, 116106 (2020).

    CAS  Google Scholar 

  50. Strittmatter, A. et al. Lateral positioning of InGaAs quantum dots using a buried stressor. Appl. Phys. Lett. 100, 093111 (2012).

    Google Scholar 

  51. Große, J., Helversen, M. V., Koulas-Simos, A., Hermann, M. & Reitzenstein, S. Development of site-controlled quantum dot arrays acting as scalable sources of indistinguishable photons. APL Photon. 5, 096107 (2020).

    Google Scholar 

  52. Kim, J.-H., Cai, T., Richardson, C. J. K., Leavitt, R. P. & Waks, E. Two-photon interference from a bright single-photon source at telecom wavelengths. Optica 3, 577–584 (2016).

    CAS  Google Scholar 

  53. Kolatschek, S. et al. Bright Purcell enhanced single-photon source in the telecom O-band based on a quantum dot in a circular Bragg grating. Nano Lett. 21, 7740–7745 (2021).

    CAS  Google Scholar 

  54. Holewa, P. et al. Scalable quantum photonic devices emitting indistinguishable photons in the telecom C-band. Preprint at https://arxiv.org/abs/2304.02515 (2023).

  55. Nawrath, C. et al. Bright source of Purcell-enhanced, triggered, single photons in the telecom C-band. Adv. Quantum Technol. 2023, 2300111 (2023).

    Google Scholar 

  56. Lee, C.-M. et al. Bright telecom-wavelength single photons based on a tapered nanobeam. Nano Lett. 21, 323–329 (2021).

    CAS  Google Scholar 

  57. Takemoto, K. et al. An optical horn structure for single-photon source using quantum dots at telecommunication wavelength. J. Appl. Phys. 101, 081720 (2007).

    Google Scholar 

  58. Yang, J. Z. et al. Quantum dot-based broadband optical antenna for efficient extraction of single photons in the telecom O-band. Opt. Express 28, 19457–19468 (2020).

    CAS  Google Scholar 

  59. Sartison, M. et al. Deterministic integration and optical characterization of telecom O-band quantum dots embedded into wet-chemically etched Gaussian-shaped microlenses. Appl. Phys. Lett. 113, 032103 (2018).

    Google Scholar 

  60. Musiał, A. et al. InP-based single-photon sources operating at telecom C-band with increased extraction efficiency. Appl. Phys. Lett. 118, 221101 (2021).

    Google Scholar 

  61. Schlehahn, A. et al. A stand-alone fiber-coupled single-photon source. Sci. Rep. 8, 1340 (2018).

    Google Scholar 

  62. Musiał, A. et al. Plug&Play fiber-coupled 73 kHz single-photon source operating in the telecom O-band. Adv. Quantum Technol. 3, 2000018 (2020).

    Google Scholar 

  63. Yariv, A. & Yeh, P. Photonics: Optical Electronics in Modern Communications (Oxford Univ. Press, 2007).

  64. Lee, C.-M. et al. A fiber-integrated nanobeam single photon source emitting at telecom wavelengths. Appl. Phys. Lett. 114, 171101 (2019).

    Google Scholar 

  65. Northeast, D. B. et al. Optical fibre-based single photon source using InAsP quantum dot nanowires and gradient-index lens collection. Sci. Rep. 11, 22878 (2021).

    CAS  Google Scholar 

  66. Ates, S. et al. Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation. Sci. Rep. 3, 1397 (2013).

    Google Scholar 

  67. Gröblacher, S., Hill, J. T., Safavi-Naeini, A. H., Chan, J. & Painter, O. Highly efficient coupling from an optical fiber to a nanoscale silicon optomechanical cavity. Appl. Phys. Lett. 103, 181104 (2013).

    Google Scholar 

  68. Gyger, S. et al. Metropolitan single-photon distribution at 1550 nm for random number generation. Appl. Phys. Lett. 121, 194003 (2022).

    CAS  Google Scholar 

  69. Xiang, Z.-H. et al. A tuneable telecom wavelength entangled light emitting diode deployed in an installed fibre network. Commun. Phys. 3, 121 (2020).

    Google Scholar 

  70. Anderson, M. et al. Quantum teleportation using highly coherent emission from telecom C-band quantum dots. npj Quantum Inf. 6, 14 (2020).

    Google Scholar 

  71. Takemoto, K. et al. Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors. Sci. Rep. 5, 14383 (2015).

    CAS  Google Scholar 

  72. Dusanowski, Ł. et al. Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths. Nat. Commun. 13, 748 (2022).

    CAS  Google Scholar 

  73. Rickert, L., Kupko, T., Rodt, S., Reitzenstein, S. & Heindel, T. Optimized designs for telecom-wavelength quantum light sources based on hybrid circular Bragg gratings. Opt. Express 27, 36824–36837 (2019).

    CAS  Google Scholar 

  74. Bremer, L. et al. Numerical optimization of single-mode fiber-coupled single-photon sources based on semiconductor quantum dots. Opt. Express 30, 15913–15928 (2022).

    CAS  Google Scholar 

  75. Barbiero, A. et al. Design study for an efficient semiconductor quantum light source operating in the telecom C-band based on an electrically-driven circular Bragg grating. Opt. Express 30, 10919–10928 (2022).

    CAS  Google Scholar 

  76. Wells, L. et al. Coherent light scattering from a telecom C-band quantum dot. Preprint at https://arxiv.org/abs/2205.07997 (2022).

  77. Wang, H. et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016).

    Google Scholar 

  78. Lettner, T. et al. Strain-controlled quantum dot fine structure for entangled photon generation at 1550 nm. Nano Lett. 21, 10501–10506 (2021).

    CAS  Google Scholar 

  79. Farrera, P., Heinze, G. & de Riedmatten, H. Entanglement between a photonic time-bin qubit and a collective atomic spin excitation. Phys. Rev. Lett. 120, 100501 (2018).

    CAS  Google Scholar 

  80. You, X. et al. Quantum interference between independent solid-state single-photon sources separated by 300 km fiber. Adv. Photon. 4, 066003 (2022).

    CAS  Google Scholar 

  81. Arenskötter, E. et al. Telecom quantum photonic interface for a 40Ca+ single-ion quantum memory. npj Quantum Inf. 9, 34 (2023).

    Google Scholar 

  82. Fejer, M. M. Nonlinear optical frequency conversion. Phys. Today 47, 25–32 (1994).

    CAS  Google Scholar 

  83. Da Lio, B. et al. A pure and indistinguishable single-photon source at telecommunication wavelength. Adv. Quantum Technol. 5, 2200006 (2022).

    Google Scholar 

  84. De Greve, K. et al. Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).

    Google Scholar 

  85. Weber, J. H. et al. Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters. Nat. Nanotechnol. 14, 23–26 (2019).

    CAS  Google Scholar 

  86. Ikuta, R. et al. Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network. Nat. Commun. 9, 1997 (2018).

    Google Scholar 

  87. Agha, I., Davanço, M., Thurston, B. & Srinivasan, K. Low-noise chip-based frequency conversion by four-wave-mixing Bragg scattering in SiNx waveguides. Opt. Lett. 37, 2997–2999 (2012).

    CAS  Google Scholar 

  88. Li, Q., Davanço, M. & Srinivasan, K. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics. Nat. Photon. 10, 406–414 (2016).

    CAS  Google Scholar 

  89. Moody, G. et al. 2022 roadmap on integrated quantum photonics. J. Phys. Photon. 4, 012501 (2022).

    Google Scholar 

  90. McGuinness, H. J., Raymer, M. G., McKinstrie, C. J. & Radic, S. Quantum frequency translation of single-photon states in a photonic crystal fiber. Phys. Rev. Lett. 105, 093604 (2010).

    CAS  Google Scholar 

  91. Singh, A. et al. Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip. Optica 6, 563–569 (2019).

    CAS  Google Scholar 

  92. Chen, J.-Y. et al. Photon conversion and interaction in a quasi-phase-matched microresonator. Phys. Rev. Appl. 16, 064004 (2021).

    CAS  Google Scholar 

  93. Ulsig, E. Z. et al. Efficient low threshold frequency conversion in AlGaAs-on-insulator waveguides. Front. Photon. 3, 904651 (2022).

    Google Scholar 

  94. Kim, J.-H., Aghaeimeibodi, S., Carolan, J., Englund, D. & Waks, E. Hybrid integration methods for on-chip quantum photonics. Optica 7, 291–308 (2020).

    CAS  Google Scholar 

  95. Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).

    CAS  Google Scholar 

  96. Kim, J.-H. et al. Hybrid integration of solid-state quantum emitters on a silicon photonic chip. Nano Lett. 17, 7394–7400 (2017).

    CAS  Google Scholar 

  97. Katsumi, R. et al. CMOS-compatible integration of telecom band InAs/InP quantum-dot single-photon sources on a Si chip using transfer printing. Appl. Phys. Express 16, 012004 (2023).

    Google Scholar 

  98. Aghaeimeibodi, S. et al. Integration of quantum dots with lithium niobate photonics. Appl. Phys. Lett. 113, 221102 (2018).

    Google Scholar 

  99. Davanco, M. et al. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Nat. Commun. 8, 889 (2017).

    Google Scholar 

  100. Xu, S.-W. et al. Bright single-photon sources in the telecom band by deterministically coupling single quantum dots to a hybrid circular Bragg resonator. Photon. Res. 10, B1–B6 (2022).

    CAS  Google Scholar 

  101. Billah, M. R. et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica 5, 876–883 (2018).

    CAS  Google Scholar 

  102. Gehring, H. et al. Low-loss fiber-to-chip couplers with ultrawide optical bandwidth. APL Photon. 4, 010801 (2019).

    Google Scholar 

  103. Liu, S. et al. Dual-resonance enhanced quantum light-matter interactions in deterministically coupled quantum-dot-micropillars. Light. Sci. Appl. 10, 158 (2021).

    Google Scholar 

  104. Liu, S., Srinivasan, K. & Liu, J. Nanoscale positioning approaches for integrating single solid-state quantum emitters with photonic nanostructures. Laser Photon. Rev. 15, 2100223 (2021).

    CAS  Google Scholar 

  105. Liu, J. et al. Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: the role of nanofabrication. Phys. Rev. Appl. 9, 064019 (2018).

    CAS  Google Scholar 

  106. Li, X. S. et al. Bright semiconductor single-photon sources pumped by heterogeneously integrated micropillar lasers with electrical injections. Light. Sci. Appl. 12, 65 (2023).

    CAS  Google Scholar 

  107. Zhou, X. et al. Epitaxial quantum dots: a semiconductor launchpad for photonic quantum technologies. Photon. Insights 1, R07 (2022).

    Google Scholar 

  108. Wang, J. et al. Bright room temperature single photon source at telecom range in cubic silicon carbide. Nat. Commun. 9, 4106 (2018).

    Google Scholar 

  109. Meunier, M. et al. Telecom single-photon emitters in GaN operating at room temperature: embedment into bullseye antennas. Nanophotonics 12, 1405–1419 (2023).

    CAS  Google Scholar 

  110. Ourari, S. et al. Indistinguishable telecom band photons from a single Er ion in the solid state. Nature 620, 977–981 (2023).

    CAS  Google Scholar 

  111. Wei, Y. et al. Tailoring solid-state single-photon sources with stimulated emissions. Nat. Nanotechnol. 17, 470–476 (2022).

    CAS  Google Scholar 

  112. Schwartz, I. et al. Deterministic writing and control of the dark exciton spin using single short optical pulses. Phys. Rev. X 5, 011009 (2015).

    CAS  Google Scholar 

  113. Gerardot, B. D. et al. Optical pumping of a single hole spin in a quantum dot. Nature 451, 441–444 (2008).

    CAS  Google Scholar 

  114. Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).

    CAS  Google Scholar 

  115. Tiurev, K. et al. High-fidelity multiphoton-entangled cluster state with solid-state quantum emitters in photonic nanostructures. Phys. Rev. A 105, L030601 (2022).

    CAS  Google Scholar 

  116. Schwartz, I. et al. Deterministic generation of a cluster state of entangled photons. Science 354, 434–437 (2016).

    CAS  Google Scholar 

  117. Coste, N. et al. High-rate entanglement between a semiconductor spin and indistinguishable photons. Nat. Photon. 17, 582–587 (2023).

    CAS  Google Scholar 

  118. Schall, J. et al. Bright electrically controllable quantum-dot-molecule devices fabricated by in situ electron-beam lithography. Adv. Quantum Technol. 4, 2100002 (2021).

    CAS  Google Scholar 

  119. Boyer de la Giroday, A. et al. Exciton-spin memory with a semiconductor quantum dot molecule. Phys. Rev. Lett. 106, 216802 (2011).

    CAS  Google Scholar 

  120. Economou, S. E., Lindner, N. & Rudolph, T. Optically generated 2-dimensional photonic cluster state from coupled quantum dots. Phys. Rev. Lett. 105, 093601 (2010).

    Google Scholar 

  121. Gangloff, D. A. et al. Quantum interface of an electron and a nuclear ensemble. Science 364, 62–66 (2019).

    CAS  Google Scholar 

  122. Tang, J.-S. et al. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory. Nat. Commun. 6, 8652 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the early contribution to this work from S. Xu and X. Huang. Y.Y. and J.L. acknowledge the National Key R&D Program of China (2021YFA1400803), the Science and Technology Program of Guangzhou (202103030001) and the National Natural Science Foundation of China (12074442). K.S. acknowledges partial funding support from the NIST-on-a-chip programme. S.R. acknowledges financial support from the Federal Ministry of Education and Research (BMBF) via project QR.X (16KISQ014), the German Research Foundation (DFG) via project Re2974-25/1, and the European Union via project SE-QUME (20FUN05) that has received funding from the EMPIR programme co-financed by the participating states and from the European Union’s Horizon 2020 Research and Innovation programme. P.M. gratefully acknowledges the funding by the German Federal Ministry of Education and Research (BMBF) via the project QR.X (no. 16KISQ013) and the European Union’s Horizon 2020 Research and Innovation programme under grant agreement no. 899814 (Qurope). Furthermore, we acknowledge financial support by the EMPIR programme (20FUN05 SEQUME), co-financed by the participating states and from the European Union’s Horizon 2020 Research and Innovation programme. C.-M.L. and E.W. acknowledge funding support from the National Science Foundation (grant numbers OMA1936314, PHY1915375, ECCS1933546), the Office of Naval Research (ONR) (grant number N000142012551), the Air Force Office of Scientific Research (AFOSR) (grant number 1021098624), the Maryland ARL quantum partnership (MAQP) and the Quantum Leap Challenge Institute for Robust Quantum Simulation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Jin Dong Song and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Liu, S., Lee, CM. et al. Telecom-band quantum dot technologies for long-distance quantum networks. Nat. Nanotechnol. 18, 1389–1400 (2023). https://doi.org/10.1038/s41565-023-01528-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01528-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing