Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tuning of the Berry curvature in 2D perovskite polaritons

An Author Correction to this article was published on 12 November 2021

This article has been updated

Abstract

The engineering of the energy dispersion of polaritons in microcavities through nanofabrication or through the exploitation of intrinsic material and cavity anisotropies has demonstrated many intriguing effects related to topology and emergent gauge fields such as the anomalous quantum Hall and Rashba effects. Here we show how we can obtain different Berry curvature distributions of polariton bands in a strongly coupled organic–inorganic two-dimensional perovskite single-crystal microcavity. The spatial anisotropy of the perovskite crystal combined with photonic spin–orbit coupling produce two Hamilton diabolical points in the dispersion. An external magnetic field breaks time-reversal symmetry owing to the exciton Zeeman splitting and lifts the degeneracy of the diabolical points. As a result, the bands possess non-zero integral Berry curvatures, which we directly measure by state tomography. In addition to the determination of the different Berry curvatures of the multimode microcavity dispersions, we can also modify the Berry curvature distribution, the so-called band geometry, within each band by tuning external parameters, such as temperature, magnetic field and sample thickness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sample structure and polarized photoluminescence dispersion of a 2D perovskite-based microcavity.
Fig. 2: Breaking of the TRS with an external magnetic field.
Fig. 3: Berry curvature k-space distribution at low temperature.
Fig. 4: Tuning of the maximum value of the Berry curvature (B0).

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available in the Open Science Framework (OSF) repository via the following link: https://osf.io/x5h7v/?view_only=6a9fa8e1568343f797ec5a76d4626fe1

Change history

References

  1. Aidelsburger, M., Nascimbene, S. & Goldman, N. Artificial gauge fields in materials and engineered systems. C. R. Phys. 19, 394–432 (2018).

    Article  CAS  Google Scholar 

  2. J. Dalibard, Introduction to the physics of artificial gauge fields. Preprint at https://arxiv.org/abs/1504.05520 (2015).

  3. Goldman, N., Budich, J. C. & Zoller, P. Topological quantum matter with ultracold gases in optical lattices. Nat. Phys. 12, 639–645 (2016).

    Article  CAS  Google Scholar 

  4. Goldman, N., Juzeliunas, G., Öhberg, P. & Spielman, I. B. Light-induced gauge fields for ultracold atoms. Rep. Prog. Phys. 77, 126401 (2014).

    Article  CAS  Google Scholar 

  5. Lu, L., Joannopoulos, J. D. & Soljacic, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    Article  CAS  Google Scholar 

  6. Hafezi, M. Synthetic gauge fields with photons. Int. J. Mod. Phys. B 28, 1441002 (2014).

    Article  Google Scholar 

  7. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article  CAS  Google Scholar 

  8. Vozmediano, M. A., Katsnelson, M. & Guinea, F. Gauge fields in graphene. Phys. Rep. 496, 109–148 (2010).

    Article  CAS  Google Scholar 

  9. Ren, Y., Qiao, Z. & Niu, Q. Topological phases in two-dimensional materials: a review. Rep. Prog. Phys. 79, 066501 (2016).

    Article  Google Scholar 

  10. Huber, S. D. Topological mechanics. Nat. Phys. 12, 621–623 (2016).

    Article  CAS  Google Scholar 

  11. Gao, T. et al. Observation of non-Hermitian degeneracies in a chaotic exciton–polariton billiard. Nature 526, 554–558 (2015).

    Article  CAS  Google Scholar 

  12. Estrecho, E. et al. Visualising Berry phase and diabolical points in a quantum exciton–polariton billiard. Sci. Rep. 6, 37653 (2016).

    Article  CAS  Google Scholar 

  13. Lim, H.-T., Togan, E., Kroner, M., Miguel-Sanchez, J. & Imamoglu, A. Electrically tunable artificial gauge potential for polaritons. Nat. Commun. 8, 14540 (2017).

    Article  CAS  Google Scholar 

  14. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    Article  Google Scholar 

  15. Gianfrate, A. et al. Measurement of the quantum geometric tensor and of the anomalous Hall drift. Nature 578, 381–385 (2020).

    Article  CAS  Google Scholar 

  16. Raghu, S. & Haldane, F. D. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008).

    Article  Google Scholar 

  17. Karzig, T., Bardyn, C. E., Lindner, N. H. & Refael, G. Topological polaritons. Phys. Rev. 5, 031001 (2015).

    Article  Google Scholar 

  18. Kavokin, A., Malpuech, G. & Glazov, M. Optical spin Hall effect. Phys. Rev. Lett. 95, 135501 (2005).

    Article  Google Scholar 

  19. Bardyn, C. E., Karzig, T., Refael, G. & Liew, T. C. Topological polaritons and excitons in garden-variety systems. Phys. Rev. B Condens. Matter Mater. Phys. 91, 161413 (2015).

    Article  Google Scholar 

  20. Nalitov, A. V., Solnyshkov, D. D. & Malpuech, G. Polariton Z topological insulator. Phys. Rev. Lett. 114, 116401 (2015).

    Article  CAS  Google Scholar 

  21. Klembt, S. et al. Exciton–polariton topological insulator. Nature 112, 552–556 (2018).

    Article  Google Scholar 

  22. Jacqmin, T. et al. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014).

    Article  CAS  Google Scholar 

  23. Real, B. et al. Semi-Dirac transport and anisotropic localization in polariton honeycomb lattices. Phys. Rev. Lett. 125(18), 186601 (2020).

    Article  CAS  Google Scholar 

  24. Milicévic, M. et al. Orbital edge states in a photonic honeycomb lattice. Phys. Rev. Lett. 118, 107403 (2017).

    Article  Google Scholar 

  25. Scafirimuto, F., Urbonas, D., Scherf, U., Mahrt, R. F. & Stöferle, T. Room-temperature exciton–polariton condensation in a tunable zero-dimensional microcavity. ACS Photonics 5, 85–89 (2018).

    Article  CAS  Google Scholar 

  26. Su, R. et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys. 16, 301–306 (2020).

    Article  CAS  Google Scholar 

  27. Pedesseau, L. et al. Advances and promises of layered halide hybrid perovskite semiconductors. ACS Nano 10, 9776–9786 (2016).

    Article  CAS  Google Scholar 

  28. Saparov, B. & Mitzi, D. B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 10, 4558–4596 (2016).

    Article  Google Scholar 

  29. Thouin, F. et al. Stable biexcitons in two-dimensional metal–halide perovskites with strong dynamic lattice disorder. Phys. Rev. Mater. 2, 034001 (2018).

    Article  CAS  Google Scholar 

  30. Polimeno, L. et al. Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites. Adv. Opt. Mater. 8, 2000176 (2020).

    Article  CAS  Google Scholar 

  31. Fieramosca, A. et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv. 5, 9967 (2019).

    Article  Google Scholar 

  32. Rechcinska, K. et al. Engineering spin–orbit synthetic Hamiltonians in liquid-crystal optical cavities. Science 366, 727–730 (2019).

    Article  CAS  Google Scholar 

  33. Ren, J. et al. Nontrivial band geometry in an optically active system. Nat. Comm. 12, 689 (2021).

    Article  CAS  Google Scholar 

  34. Lédée, F. et al. Fast growth of monocrystalline thin films of 2D layered hybrid perovskite. CrystEngComm 19, 2598–2602 (2017).

    Article  Google Scholar 

  35. Fieramosca, A. et al. Chromodynamics of photons in an artificial non-Abelian magnetic Yang–Mills field. Preprint at https://arxiv.org/abs/1912.09684 (2019).

  36. Donati, S. et al. Twist of generalized skyrmions and spin vortices in a polariton superfluid. Proc. Natl Acad. Sci. USA 113, 14926–14931 (2016).

    Article  CAS  Google Scholar 

  37. Berry, M. V. & Dennis, M. R. The optical singularities of birefringent dichroic chiral crystals. Proc. R. Soc. Lond. A 459, 1261–1292 (2003).

    Article  Google Scholar 

  38. Bleu, O., Solnyshkov, D. D. & Malpuech, G. Measuring the quantum geometric tensor in two-dimensional photonic and exciton–polariton systems. Phys. Rev. B 97, 195422 (2018).

    Article  CAS  Google Scholar 

  39. Waltersperger, S. et al. PRIGo: a new multi-axis goniometer for macromolecular crystallography. J. Synchrotron Radiat. 22, 895–900 (2015).

    Article  Google Scholar 

  40. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

  41. Giacovazzo, C. Phasing in Crystallography: A Modern Perspective (Oxford Univ. Press, 2014).

  42. Burla, M. C. et al. Crystal structure determination and refinement via SIR2014. J. Appl. Crystallogr. 48, 306–309 (2015).

    Article  CAS  Google Scholar 

  43. Sheldrick, G. M. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge P. Cazzato for technical support, I. Tarantini for metal evaporation, and D. Gerace and A. Gianfrate for useful discussions. We acknowledge the project PRIN Interacting Photons in Polariton Circuits (INPhoPOL) (Ministry of University and Scientific Research (MIUR), 2017P9FJBS_001), the project TECNOMED—Tecnopolo di Nanotecnologia e Fotonica per la Medicina di Precisione (Ministry of University and Scientific Research (MIUR) Decreto Direttoriale number 3449 of 4 December 2017, CUP B83B17000010001) and the Accordo bilaterale CNR/RFBR (Russia)—triennio 2021–2023. G.G. gratefully acknowledges the project PERSEO-PERrovskite-based Solar cells: Towards High Efficiency and Long-term Stability (Bando PRIN 2015, Italian Ministry of University and Scientific Research (MIUR) Decreto Direttoriale number 2488 of 4 November 2015, project number 20155LECAJ). D.D.S. and G.M. acknowledge the support of the projects EU QUANTOPOL (846353), Quantum Fluids of Light (ANR-16-CE30-0021), ANR Labex GaNEXT (ANR-11-LABX-0014) and ANR programme ‘Investissements d’Avenir’ through the IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25). Q.X. gratefully acknowledges the National Natural Science Foundation of China (number 12020101003), strong support from the State Key Laboratory of Low-Dimensional Quantum Physics and a start-up grant from Tsinghua University. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. For theoretical information, contact D.D.S. (dmitry.solnyshkov@uca.fr); for materials information, contact L.D.M. (luisa.demarco@nanotec.cnr.it).

Author information

Authors and Affiliations

Authors

Contributions

L.P. realized the experiments with the help of M.D.G. and G.L. D.S., G.L. and M.D.G. supervised the experimental part with the help of V.A., F.T. and D.B. L.P, L.D.M., A.C., M.P., C.T.P., Q.X., A.F. and V.M. fabricated the samples. A.M. and C.G. carried out the structure characterization by single-crystal X-ray diffraction and V.O. performed X-ray measurements. D.D.S., G.M., G.L. and L.D. performed the treatment of the experimental data. D.D.S. and G.M. performed analytical calculations. L.P., M.D.G., L.D. with the help of G.L. and D.S. wrote the manuscript with input from all the authors. All authors have contributed to the discussion of the work.

Corresponding authors

Correspondence to Milena De Giorgi, Luisa De Marco or Dmitry D. Solnyshkov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Temperature dependence.

Comparison of the energy vs the ky in-plane momentum dispersion maps of the photoluminescence intensity at 9 T as function of the temperature of a 3 μm-thick single crystal. As the temperature increases, the exciton moves towards higher energy, inducing the increase of the photonic fractions for all polariton bands. d), e), f) Experimental Berry curvature extracted from the polarization-resolved measurements, for the band 2 at D) 4 K, e) 50 K and D) 100 K. The photonic fraction of the band 1 increases from 0.344 at 4 K to 0.366 at 100 K. g) Asymmetry ratio (ratio between B0 and the maximal Bz value on the axis ky = 0 μm−1) versus temperature. The error bars indicate the measurement uncertainty.

Extended Data Fig. 2 Optical Setup.

Sketch of the optical setup.

Supplementary information

Supplementary Information

Supplementary discussion Sections I–X, Figs. 1–9 and Tables 1–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polimeno, L., Lerario, G., De Giorgi, M. et al. Tuning of the Berry curvature in 2D perovskite polaritons. Nat. Nanotechnol. 16, 1349–1354 (2021). https://doi.org/10.1038/s41565-021-00977-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00977-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing