Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Priorities for ocean microbiome research

Abstract

Microbial communities have essential roles in ocean ecology and planetary health. Microbes participate in nutrient cycles, remove huge quantities of carbon dioxide from the air and support ocean food webs. The taxonomic and functional diversity of the global ocean microbiome has been revealed by technological advances in sampling, DNA sequencing and bioinformatics. A better understanding of the ocean microbiome could underpin strategies to address environmental and societal challenges, including achievement of multiple Sustainable Development Goals way beyond SDG 14 ‘life below water’. We propose a set of priorities for understanding and protecting the ocean microbiome, which include delineating interactions between microbiota, sustainably applying resources from oceanic microorganisms and creating policy- and funder-friendly ocean education resources, and discuss how to achieve these ambitious goals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Roles of the ocean microbiome.
Fig. 2: Estimates of total biomass in the ocean.
Fig. 3: Timeline of ocean microbiome research.
Fig. 4: Key features related to the ocean microbiome.
Fig. 5: Connections between ocean microbiome priorities.

Similar content being viewed by others

References

  1. Bar-On, Y. & Milo, R. The biomass composition of the oceans: a blueprint of our blue planet. Cell 179, 1451–1454 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Field, C. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Boyd, P., Claustre, H., Levy, M., Siegel, D. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Worden, A. et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).

    Article  PubMed  CAS  Google Scholar 

  5. Smetacek, V. Microbial food webs: the ocean’s veil. Nature 419, 565 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Keeling, P. & Campo, J. Marine protists are not just big bacteria. Curr. Biol. 27, R541–R549 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Pierella Karlusich, J. J., Ibarbalz, F. & Bowler, C. Exploration of marine phytoplankton: from their historical appreciation to the omics era. J. Plankton Res. 42, 595–612 (2020).

    Google Scholar 

  9. Suttle, C. Marine viruses — major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Sunagawa, S. et al. Tara Oceans: towards global ocean ecosystems biology. Nat. Rev. Microbiol. 18, 428–445 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Venter, J. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Global Ocean Science Report 2020 (UNESCO, 2020).

  13. DeLong, E. & Karl, D. Genomic perspectives in microbial oceanography. Nature 437, 336–342 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Trevathan-Tackett, S. M. et al. A horizon scan of priorities for coastal marine microbiome research. Nat. Ecol. Evol. 3, 1509–1520 (2019).

    Article  PubMed  Google Scholar 

  15. Jonkers, L., Hillebrand, H. & Kucera, M. Global change drives modern plankton communities away from the pre-industrial state. Nature 570, 372–375 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Kashtan, N. et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344, 416–420 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Delmont, T. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 3, 804–813 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nand, A. et al. Genetic and spatial organization of the unusual chromosomes of the dinoflagellate Symbiodinium microadriaticum. Nat. Genet. 53, 618–629 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chadwick, G. et al. NanoSIMS imaging reveals metabolic stratification within current-producing biofilms. Proc. Natl Acad. Sci. USA 116, 20716–20724 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karl, D. & Church, M. Microbial oceanography and the Hawaii Ocean Time-series programme. Nat. Rev. Microbiol. 12, 699–713 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Lombard, F. et al. Globally consistent quantitative observations of planktonic ecosystems. Front. Mar. Sci. 6, 196 (2019).

    Article  Google Scholar 

  22. Zhang, Y. et al. Targeted sampling by autonomous underwater vehicles. Front. Mar. Sci. 6, 3773–3784 (2019).

    CAS  Google Scholar 

  23. Coles, V. et al. Ocean biogeochemistry modeled with emergent trait-based genomics. Science 358, 1149–1154 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. French, V. et al. (eds) Advancing Citizen Science for Coastal and Ocean Research (European Marine Board, 2017); https://doi.org/10.25607/OBP-29

  25. Vezzulli, L., Martinez-Urtaza, J. & Stern, R. Continuous plankton recorder in the omics era: from marine microbiome to global ocean observations. Curr. Opin. Biotechnol. 73, 61–66 (2021).

    Article  PubMed  CAS  Google Scholar 

  26. Mitchell, A. et al. MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz1035 (2019).

  27. Wood-Charlson, E. et al. The National Microbiome Data Collaborative: enabling microbiome science. Nat. Rev. Microbiol. 18, 313–314 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Webb, T. Marine and terrestrial ecology: unifying concepts, revealing differences. Trends Ecol. Evol. 27, 535–541 (2012).

    Article  PubMed  Google Scholar 

  29. Siano, R. et al. Sediment archives reveal irreversible shifts in plankton communities after World War II and agricultural pollution. Curr. Biol. 31, 2682–2689.e7 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Harrison, J., Sunday, J. & Rogers, S. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proc. R. Soc. B 286, 20191409 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wild, C. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomarkers Prev. 14, 1847–1850 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Halpern, B. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11609 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Gulder, T. & Moore, B. Salinosporamide natural products: potent 20S proteasome inhibitors as promising cancer chemotherapeutics. Angew. Chem. Int. Ed. 49, 9346–9367 (2010).

    Article  CAS  Google Scholar 

  34. Tortorella, E. et al. Antibiotics from deep-sea microorganisms: current discoveries and perspectives. Mar. Drugs 16, 355 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  35. Pausch, P. et al. CRISPR–CasΦ from huge phages is a hypercompact genome editor. Science 369, 333–337 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alava, J. in Predicting Future Oceans (eds Cisneros-Montemayor, A. M. et al.) 495–518 (Elsevier, 2019).

  37. Torres-Tiji, Y., Fields, F. & Mayfield, S. Microalgae as a future food source. Biotechnol. Adv. 41, 107536 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Gephart, J. et al. Environmental performance of blue foods. Nature 597, 360–365 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Giordano, D. et al. Marine microbial secondary metabolites. Adv. Microb. Physiol. https://doi.org/10.1016/bs.ampbs.2015.04.001 (2015).

  40. Gerwick, W. & Fenner, A. Drug discovery from marine microbes. Microb. Ecol. 65, 800–806 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. McKinley, E., Acott, T. & Yates, K. Marine social sciences: looking towards a sustainable future. Environ. Sci. Policy 108, 85–92 (2020).

    Article  Google Scholar 

  42. Timmis, K. et al. The urgent need for microbiology literacy in society. Environ. Microbiol. 21, 1513–1528 (2019).

    Article  PubMed  Google Scholar 

  43. Bennett, N. Marine social science for the peopled seas. Coast. Manage. 47, 244–252 (2019).

    Article  Google Scholar 

  44. Dasgupta, P. The Economics of Biodiversity: the Dasgupta Review (London HM Treasury, 2021).

  45. Bartkowski, B. and Lienhoop, N. Beyond rationality, towards reasonableness: enriching the theoretical foundation of deliberative monetary valuation. Ecol. Econ. 143, 97–104 (2018).

  46. Hirt, H. Healthy soils for healthy plants for healthy humans. EMBO Rep. 21, e51069 (2020).

  47. Foster, E. and Deardorff, A. Open Science Framework (OSF). J. Med. Libr. Assoc. 105, 203–206 (2017).

  48. Clayton, S. et al. Bio-GO-SHIP: the time is right to establish global repeat sections of ocean biology. Front. Mar. Sci. 8, 767443 (2022).

  49. Delmont, T. et al. Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. Elife 8, e46497 (2019).

  50. Dolan, J. Pioneers of plankton research: Victor Hensen (1835–1924). J. Plankton Res. 43, 507–510 (2021).

    Article  Google Scholar 

  51. Benway, H. et al. Ocean time series observations of changing marine ecosystems: an era of integration, synthesis, and societal applications. Front. Mar. Sci. 6, 393 (2019).

  52. Kopf, A. et al. The ocean sampling day consortium. GigaScience 4, 27 (2015).

  53. Rohwer, F. et al. The complete genomic sequence of the marine phage Roseophage SIO1 shares homology with nonmarine phages. Limnol. Oceanogr. 45, 408–418 (2000).

    Article  CAS  Google Scholar 

  54. Rocap, G. et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424, 1042–1047 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Dufresne, A. et al. Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc. Natl Acad. Sci. USA 100, 10020–10025 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Armbrust, E. et al. The genome of the diatom Thalassiosira Pseudonana: ecology, evolution, and metabolism. Science 306, 79–86 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Giovannoni, S. SAR11 bacteria: the most abundant plankton in the oceans. Annu. Rev. Mar. Sci. 9, 231–255 (2017).

    Article  Google Scholar 

  58. Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Swan, B. et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333, 1296–1300 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. DeLong, E. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311, 496–503 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Breitbart, M. et al. Genomic analysis of uncultured marine viral communities. Proc. Natl Acad. Sci. USA 99, 14250–14255 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Saito, M. et al. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers. Science 345, 1173–1177 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Millard, A., Clokie, M., Shub, D. & Mann, N. Genetic organization of the psbAD region in phages infecting marine Synechococcus strains. Proc. Natl Acad. Sci. USA 101, 11007–11012 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Foster, R. et al. Nitrogen fixation and transfer in open ocean diatom–cyanobacterial symbioses. ISME J. 5, 1484–1493 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Corliss, J. et al. Submarine thermal springs on the Galápagos Rift. Science 203, 1073–1083 (1979).

    Article  CAS  PubMed  Google Scholar 

  67. Moon-van der Staay, S., De Wachter, R. & Vaulot, D. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409, 607–610 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Bergh, Ø., BØrsheim, K., Bratbak, G. & Heldal, M. High abundance of viruses found in aquatic environments. Nature 340, 467–468 (1989).

    Article  CAS  PubMed  Google Scholar 

  69. Dutkiewicz, S. et al. Dimensions of marine phytoplankton diversity. Biogeosciences 17, 609–634 (2020).

    Article  Google Scholar 

  70. Henson, S., Sanders, R. & Madsen, E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Glob. Biogeochem. Cycles 26, GB1028 (2012).

    Article  CAS  Google Scholar 

  71. Kaschner, K., Tittensor, D., Ready, J., Gerrodette, T. & Worm, B. Current and future patterns of global marine mammal biodiversity. PLoS ONE 6, e19653 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Spalding, M., Ravilious, C. & Green, E. World Atlas Of Coral Reefs (Univ. California Press, 2001).

  73. Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. USA 106, 12377–12381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Friess, D. et al. The state of the world’s mangrove forests: past, present, and future. Annu. Rev. Environ. Resour. 44, 89–115 (2019).

    Article  Google Scholar 

  75. Webb, P. Introduction to Oceanography (Rebus Community, 2020); https://open.umn.edu/opentextbooks/textbooks/introduction-to-oceanography

  76. Eakins, B.W. & Sharman, G. F. Volumes of the World’s Oceans from ETOPO1 (NOAA National Geophysical Data Center, 2010).

  77. Costello, M. J., Cheung, A. & De Hauwere, N. Surface area and the seabed area, volume, depth, slope, and topographic variation for the world’s seas, oceans, and countries. Environ. Sci. Technol. 44, 8821–8828 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).

    Article  Google Scholar 

  79. Kuypers, M., Marchant, H. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).

    Article  CAS  Google Scholar 

  81. Halpern, B. S. et al. An index to assess the health and benefits of the global ocean. Nature 488, 615–620 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Jansson, J. & Hofmockel, K. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2019).

    Article  PubMed  CAS  Google Scholar 

  83. Thompson, L. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mirzayi, C. et al. Reporting guidelines for human microbiome research: the STORMS checklist. Nat Med. 27, 1885–1892 (2021).

Download references

Acknowledgements

We thank R. Zaayman-Gallant, T. Rauscher and F. Ibarbalz for preparation of the figures, and the European Union’s Horizon 2020 research and innovation project AtlantECO, under grant agreement no. 862923. This article is contribution number 131 of Tara Oceans.

Author information

Authors and Affiliations

Consortia

Contributions

A.G. and C.B. wrote the paper, with input from A.A., E. Boss, E. Bourgois, R.T., S.G.A., P.B., E.B., M.B., S.C., C.d.V., T.O.D., D.E., L.G., D.I., S.K., H.M., F.L., R.P., J.J.P.K., G.P., A.R., G.S.-K., L.S., M.B.S., S.S., P.W., O.Z., D.A., J.B., R.F., E.H., B.R., R.C., I.C., M.C., A.E.K., W.H.C.F.K., M.O., N.P., D.M.P., I.S., T.M.T., J. Vamathevan and J. Vanaverbeke.

Corresponding author

Correspondence to Chris Bowler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Oded Beja, Hebe Mónica Dionisi, Jack Gilbert and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tara Ocean Foundation., Tara Oceans., European Molecular Biology Laboratory (EMBL). et al. Priorities for ocean microbiome research. Nat Microbiol 7, 937–947 (2022). https://doi.org/10.1038/s41564-022-01145-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-022-01145-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing